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Abstract

In this paper, we established two strong convergence theorems for a multi-step Noor iterative scheme
with errors for mappings of asymptotically nonexpansive in the intermediate sense(asymptotically quasi-
nonexpansive, respectively) in Banach spaces. Our results extend and improve the recent ones announced
by Xu and Noor [B.L. Xu, M.A. Noor, Fixed-point iterations for asymptotically nonexpansive mappings in
Banach spaces, J. Math. Anal. Appl. 267 (2002) 444-453], Cho, Zhou and Guo [Y.J. Cho, H. Zhou, G. Guo,
Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive
mappings, Comput. Math. Appl. 47 (2004) 707-717], and many others.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let C be a subset of real normed linear space X. A mapping 7 : C — C is said to be asymp-
totically nonexpansive on C if there exists a sequence {r,} in [0, co) with lim,,_, o r, = 0 such
that for each x, y € C,

7" =T"y| <A +r)llx =yl, ¥n>1.
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If r, =0, then T is known as a nonexpansive mapping. T is called asymptotically nonexpansive
in the intermediate sense [1] provided T is uniformly continuous and

n—-oo x

limsup sup (|| T"x — T"yH —lx—yl) <o0.
yeC

T is said to be asymptotically quasi-nonexpansive mapping, if there exists a sequence {r,} in
[0, o0) with lim,,— o r,, = 0 such that for all x € C, p € F(T),

I7"x = p|| < A+ra)lx = pl,
for all n > 1, where F(T) denotes the set of fixed points of T, i.e., F(T) ={x € C: Tx =x}.
T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that

[T"x = T"y|| < Lix = yl,

foralln > 1and x,y € C.

From the above definitions, it follows that asymptotically nonexpansive mapping must be
asymptotically nonexpansive in the intermediate sense, asymptotically quasi-nonexpansive map-
ping and L-Lipschitzian mapping. But the convergence does not hold such as in the following
example:

Example 1.1. (See [9]) Let X =R, C =[=!, 1] and |k| < 1. For each x € C, define
7o) = {kxsin)lc if x #0,
0 ifx=0.

Then T is asymptotically nonexpansive in the intermediate sense. It is well known [8] that
T"x — 0 uniformly, but is not a Lipschitzian mapping so that it is not asymptotically nonex-
pansive mapping.

Fixed-point iterations process for asymptotically nonexpansive mappings in Banach spaces
including Mann and Ishikawa iterations process have been studied extensively by many au-
thors to solve the nonlinear operator equations as well as variational inequations; see [6—18].
In 2000, Noor [13] introduced a three-step iterative scheme and studied the approximate solution
of variational inclusion in Hilbert spaces by using the techniques of updating the solution and
the auxiliary principle. Glowinski and Le Tallec [3] used three-step iterative schemes to find the
approximate solutions of the elastoviscoplasticity problem, liquid crystal theory, and eigenvalue
computation. It has been shown in [3] that the three-step iterative scheme gives better numerical
results than the two-step and one-step approximate iterations. In 1998, Haubruge, Nguyen and
Strodiot [5] studied the convergence analysis of three-step schemes of Glowinski and Le Tal-
lec [3] and applied these schemes to obtain new splitting-type algorithms for solving variation
inequalities, separable convex programming and minimization of a sum of convex functions.
They also proved that three-step iterations lead to highly parallelized algorithms under certain
conditions. Thus we conclude that three-step scheme plays an important and significant part in
solving various problems, which arise in pure and applied sciences.

Recently, Xu and Noor [19] introduced and studied a three-step scheme to approximate fixed
points of asymptotically nonexpansive mappings in Banach space. In 2004, Cho, Zhou and
Guo [2] extended the work of Xu and Noor to the three-step iterative scheme with errors and gave
weak and strong convergence theorems for asymptotically nonexpansive mappings in a Banach
space. Moreover, Suantai [18] gave weak and strong convergence theorems for a new three-
step iterative scheme of asymptotically nonexpansive mappings. Inspired and motivated by these
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facts, we introduce and study a multi-step scheme with errors for mappings of asymptotically
nonexpansive in the intermediate sense and asymptotically quasi-nonexpansive, respectively. Our
results include the Ishikawa, Mann and Noor iterative schemes for solving variational inclusions
(inequalities) as special case. The scheme is defined as follows.

Let C be a nonempty subset of normed space X and let 7:C — C be a mapping. For a
given x1 € C, and a fixed m € N (N denote the set of all positive integers), compute the iterative

sequences {x\"1, ..., {x\™} defined by

2D =g 4 g (1)

I'l ’
X =@ (D gDy 2O
NOBINOL EN I O M OMO)

(m l)_a(m l)Tn (m 2)+’3(m l)x +y(m 1) l(1m 1)
xn_,_l—x(m)—oc(m)Tn (m— D—i—ﬂ(m)x +)/(m) (m) n>1, (1.1)

where, {unl)} {u(m)} are bounded sequences in C and {a,(li)}, {,B,gi) IR {y,,(i) } are appropriate
real sequences in [0, 1] such that &\’ + B\ + ") = 1 foreachi € {1,2, ..., m}.

The iterative schemes (1.1) are called the multi-step Noor iterations with errors. These it-
erations include the Mann-Ishikawa—Noor iterations as special case. If m = 3 and ,B(I)

1 - ,(,’) — n’) for all i =1, 2,3, then (1.1) reduces to Noor iterations with errors defined by
Cho et al. [2]:

2 =0T 1 (1= a® — 5 O)x, £ DD,
5@ = a@T D 4 (1—a® — )5, + 5 2u®,
x,1+1=x,§3)=a,(l3)T"x,(12)+(1—a,(13) (%)x +yn(3) 3) (1.2)

}’l 3

where {oz,(f)} {yn(i)} are appropriate real sequences in [0, 1] for all i € {1, 2, 3}.
For m =3 and y(l) = y,l(z) = yn(3) =0, then (1.1) reduces to Noor iterations defined by Xu

and Noor [19]:

xV=a D75, + (1- m)xn,

5@ =a@77x0 4 (1 - @)

X1 =x =P TP + (1= aP)xy, n>1, (1.3)
where {anl)} {a(z)} {a,(,3)} are appropriate real sequences in [0, 1].

The purpose of this paper is to establish several strong convergence theorems of the multi-step

Noor iterative scheme with errors for mappings of asymptotically nonexpansive in the interme-
diate sense (asymptotically quasi-nonexpansive mappings, respectively) in a uniformly convex

Banach space. These results presented in this paper extend and improve the corresponding ones
announced by Xu and Noor [19], Cho et al. [2], and many others.

2. Preliminaries

In this section, we recall the well-known concepts and results.
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Definition 2.1. (See [4]) A Banach space X is said to be uniformly convex if the modulus of
convexity of X

: llx + vl
8x(6)=1nf{l—T: lxll=lyll=1, llx —yl=€§ >0

for all 0 < € <2 (i.e., §x(¢) is a function (0, 2] — (0, 1)).

It is known [12] that if X is a uniformly convex Banach space and T is a self-mapping of
bounded closed convex subset C of X which is an asymptotically nonexpansive in the interme-
diate sense, then F(T) # (.

Lemma 2.2. (See [10]) Let {a,}, {b,} and {y,} be sequences of nonnegative real numbers satis-
fying the inequality

anr1 < (M +yay+b,, Vo=1,2,....
IFY 0 yn <o0oand Y oo by < 00, then

(1) lim,_ o ay exists;
(1) lim,_, o a, =0, whenever liminf,,_, 5, a, = 0.

Lemma 2.3. [17, J. Schu’s Lemma] Let X be a uniformly convex Banach space, 0 < o <
th LB <1, xp,yp € X, limsup,,_, o, |xX21l < a, limsup,_, o, lynll < a, and lim,_ ||ty xn +
(1 = t)ynll = a, for some a > 0. Then lim,,_, || X, — yull =0.
3. Non-Lipschitzian mappings

Our first result is the strong convergence theorem for asymptotically nonexpansive in the
intermediate sense mappings. Note that the proof given below is different from that of Xu and

Noor. In order to prove our main result, the following lemmas are needed.

Lemma 3.1. Let X be a uniformly convex Banach space with x,,, y, € X, real numbers a > 0,
o, B €(0,1) and {ay,} be a real sequence number which satisfies

() 0 <a<a, <B <1, Vn>=ngand for some ng € N;
(ii) limsup,_, o [lx, || < a and limsup,,_, o, | yall < a;
(iii) limy— oo lonx, + (1 —an)ynll =a.

Then limy— oo [|Xn — yull = 0.

Proof. The proof is clear by Lemma 2.3. O

Lemma 3.2. Let X be a uniformly convex Banach space, C a nonempty closed bounded convex
subset of X and T : C — C be asymptotically nonexpansive in the intermediate sense. Put

Gu= sup (|[T"x =T"y| —llx—yll)vO0, Vn>1,
x,yeC

sothat Y 2 | G, < 0. Let the sequence {x,} be defined by (1.1) with the following restrictions:
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@) a(’)—i—,B(l) =1forallie{l1,2,...,m}and foralln > 1
(i) Yoo 1Vn <oof0rallie{1,2,...,m}.

If p e F(T), then lim,_, « || x, — p|| exists.

Proof. By [12], we have F(T)# @ . Let p € F(T). For each n > 1, we note that

[x37 = Pl = o T"xn + B + 7V — p|
<oV T"x, p|\+ﬁ,£”||xn P4y fu = p|
<l = pl+ UG+ BV In = pll + vV [y = p
= (" + B")xn — pll + VG + 1, |u — p|
<llxn — pll 44, 3.1)

where d\” = a\V G, + vV 1ul — pll. Since > o Gn < 00, we see that Y oo, d, d'\V < oo Tt
follows from (3.1) that

i

o2 | = pl + G+ B2 ln = pll + 12 [ = p
o2 (Ixn = pll+diP) + PG + B — pll + 9,2 |u? = p|
= (@ + B) I = pll + @2 di + e G+ 3, [u? = p

< — pll+dP (3.2)

— 7|

NN

where d? =aPd\V + PG, + P 14 — pll. Since Yo Gp<ooand Y o2 d d'V < 0o, it
follows that ZZ; d,gz) < 00. Moreover, we see that
I = bl <P - pl +afGo + B0 — o1+ 52 P ~ |

<o (e = pl+dP) + G+ B Iy — pll + 7,2 [ul = p|
= (af) + /3,53))||xn Pl +a(3)d(2) + a(3)G + )/,,G) “u(3) p||
< — pll+4d, (3.3)

2 3 3 3
)d( ) +a£l )Gn + Vn )”u( )
above method, there are nonnegative real sequences {d), * )} such that Yo | dy

where d(3) =0y, — pll. So that Y02 1d(3) < 00. By continuing the

() < oo and

40 = pl <o = pll+d forallk=1,2,....m

This together with Lemma 2.2 gives that lim,,_,  ||x, — p/|| exists. This completes the proof. O

Lemma 3.3. Let X be a real uniformly convex Banach space, C a nonempty closed convex subset
of X and T : C — C be asymptotically nonexpansive in the intermediate sense. Put

G,,:sup (|17"x =T"y| = llx = yll) VO, Vn=>1,

x,yeC

so that Z —1 Gu < 00. Let the sequence {x,} be defined by (1.1) whenever {a,(,’)} {,B,El)} {y(l)}
satisfy the same assumptions as in Lemma 3.2 for each i € {1,2,...,m} and the additional

assumption that 0 < o < oz(m l) (m) < B < 1 foralln > ny, for some ng € N. Then
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. -1
(a) Tim, o0 | T"x0" 2> — X =0
(©) iy oo 77602 — | =0

Proof. (a) For any p € F(T), it follows from Lemma 3.2 that lim,_,  ||x, — p|| exists. Let
lim,— o || x, — pll = a for some a > 0. We note that

[x{m=D — p|| < lxw — pll+d70, Wn>1,

4m=b

where {d,(lm_l)} is a nonnegative real sequence such that ZZOZ 14y < 00. It follows that

(m—1)

limsup ;""" — p|| <limsup |y — pll = lim llxu — pll = a.
—00 n—00 n—00

from which we have
(m—1)

timsup | 71 = p| <timsup (|5~ = p|| + G,) =timsup | — p] <a.
Next, we observe that

|70 p -y =) | < [T = ] 4 34 —
Thus we have

lim sup |77x" D — p 4y (™ = x,) | < a. (3.4)
Also,

|2 = P+ 1 (™ = xa) | < llxw = Pl + 1, Jul™ = xa]),
gives that

limsup |x, — p + ¥ @™ — x,)| <a, 3.5)

n—oo

and note that

(m)

a= lim Hx —p“

n—oo

= lim T 5D + 0, + y™Mul™ — p|

n—0oo

= lim ||a,(1m)T"x,(,m71)+(l—a,(lm))xn (’")x —}—y(’") (m) (l (m))p a(’”)p”

= lim o™ T"x{" "D — @™ p 4 o™y, my i — gy m x4 (1 - al™)x,

n—>oo
— (1= ™) p — Iy U — gy (1) g )
= Jim o™ (775" — p + ™ (" = x2))
+ (L= af™) (xa = p+ " (™ — x)) |
This together with (3.4), (3.5) and Lemma 3.1, gives
Tim 7750 — 5, =0. (6)

This completes the proof of (a).
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Proof of (b). Foreachn > 1,
btw = pIl < Jxn = TV + [ 7750 = p
< Jn =TV |+ Y = p| + G
Since 1imy— oo |xn — 7% V|| = 0 = lim,—, oo G, We obtain that
a= lim |x, — p|| <liminf ||x,5m71) - p||
n—oo n—0o0
It follows that

a < liminf Hx,(f"_l) — p| <limsup Hx,(lm_l) - p| <a.
n— o0 n—o0

This implies that

; (m—1) _ _
tim [~ p] =a.

On the other hand, we note that
|2 = p| < llw = pll+d" 7P, Vn>1,

n

where {d,(,m_z) } is a nonnegative real sequence such that ) - | d,(,m_z) < 00. So that
lim sup ||x,(lm_2) - p“ < limsup ||lx, — pll =a,
n—oo n—00
and hence

limsup | T"x "= — p| <limsup (||x,(lm_2) - p|+6Gn) <a.
n—oo n—oo

Next we observe that

|| Tnxr(zm_Z) —-p+ yn(m—l)(u}(;n—l) _ xn)” < ” Tnxr(lm—Z) _ p” + yn(m—l) ||u£lm—l) —x, ”

Thus,
limsup | 7"x" ™2 — p +y" D (@™ —x,) | <a. 3.7)
n—>oo
Also,
||xn —-p+ Vn(mil)(MSLM7l) - xn) ” < lxn — pll + Vyfmil) ||u£1m71) — Xn H s
gives that
lim sup ||x,, —p+ y,fmfl) (u,(qul) — xn) || <a, (3.8)
n—oo

and note that

a= lim ||x,§m_1) - p| = lim Hot,(lm_l)T”x,(,m_z) + B Dy, 4y =Dy n=D |

n—o0 n—0o0

= tim_ Jam D (5D — pby D (D x,)

n—>0oo
+ (1= N (= p+ 1" (@D = x))| (3.9)
It follows from (3.7)—(3.9) and Lemma 3.1 that
lim || 7"x{""? —x,| =0.
n—oo

This completes the proof of (b). O
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We now state and prove the first main result of this paper and this is the main motivation of
our next result.

Theorem 3.4. Let X be a uniformly convex Banach space, C a nonempty closed bounded con-
vex subset of X and T :C — C be completely continuous asymptotically nonexpansive in the
intermediate sense. Put

Gn= sup (|T"x = T"y| = llx=yll) VO, Vn>1,
x,yeC

so that Z:OZI G, < 00. Let the sequence {x,} be defined by (1.1) whenever {ot,(,i)}, {ﬂ,gi)}, {y,,(i)}

satisfy the same assumptions as in Lemma 3.2 for each i € {1,2,...,m} and the additional

assumption that 0 < o < a,(,’”*“,a,ﬁ’” < B < 1 for all n > ng, for some ny € N. Then {x,gk)}

converges strongly to a fixed point of T for eachk =1,2,3,...,m.
Proof. It follows from Lemma 3.3 that
lim [|[7"x"Y —x,|| =0= lim |7"x{""? —x,|
n—>oo n—oo

and this implies that,

st =l = ™ = | <@g [T 0 = x| 4+ 9™ ™ — x| = 0
asn — o0. (3.10)
It follows from (3.10) that
772 = 5| < [T = T30 77D ]
< Bt =574 Gy [T = |
<alf DLy = TP 4 Gty [ =]
+ ”T"x,(lm_l)—x,,H —0 asn— oo. (3.11)
Since

I, — Txpll < X1 — Xull + ”xn—H - Tn+1xn+1 ” + ” Tn+1xn+1 - Tn+1xn ”

+ || 7" x, — Tx,

it follows from (3.10), (3.11) and uniformly continuity of 7 that
lim ||x, — Tx,| =0. (3.12)
n—od

Since {x,} is a bounded and T is completely continuous, there exists a subsequence {7'x,,} of
{T'x,} such that Tx,, — p € C as k — co. Moreover, by (3.12), we have ||[Tx,, — x,, || = 0
which implies that x,, — p as k — o0o. By (3.12) again, we have

lp—Tpll= lim [xn —Txy [ =0.
k— 00

It shows that p € F(T). Since lim,_,  ||x, — p|l exists, we have lim,_,  ||x, — p|| = O; that
is 1im,,%ox,§’”) = lim,_, oo X, = p. Moreover, we observe that ||x,§k) —pll < lxn — pll + d,(Lk)
forall k=1,2,3,...,m — 1 and each limn_mod,gk) = 0. Therefore lim,,_mox,(,k) = p for all

k=1,2,3,...,m — 1. The proof is completed. O
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4. Asymptotically quasi-nonexpansive mappings

In the next result, we prove strong convergence theorem for the multi-step Noor iterations
(1.1) for asymptotically quasi-nonexpansive mapping in a uniformly convex Banach space. To
do this, we need the following lemmas.

Lemma 4.1. Let X be a uniformly convex Banach space, C a nonempty closed convex subset of X
and T be asymptotically quasi-nonexpansive with the sequence {ry}n>1 such that Y v | r, < 00
and F(T) # (. Let the sequence {x,} be defined by (1.1) with the following restrictions:

@) a(')—l—ﬁ(l)-i-yn(l)— 1foralli €{1,2,...,m}and foralln > 1
(i) Yoo 1)/n <ooforallie{1,2,...,m}.

If p e F(T), then lim,_, « || x, — p|| exists.

Proof. Let p € F(T). For each n > 1, we note that

15 = p|| = [0 T x5 + B+ Oul® — p

<aP||T"x, = p|| + B Ixa — pll+ 7,0 [ul — p|

<P +r)lxn = pl+ B e — pll + P ul’ = p|

<A +r)lxn — pll+4dP, @.1)
where d,(,l) = yn(l)||uf,1) — pll. Since {u )} is bounded and Zn ly,,(l) < 00, we see that
3% dP < oo. It follows from (4.1) that

| P (L +r) xS = p|| + B lxn = 2l + 2 [ul - p||
P (4 +r) (A +r)llx, — pl +dP) + BE A + 1) llxa — pll

2 2

- p| <
<
4

= (a? + B A+ 1) l1x0 — pll +aPdP (A + 1) + 3,2 |ul? = p||

<A+l = pll + P (1 +r) + 7,2 |u? = p

= (L +r)[xn — pll +d, 4.2)
where d(2) a,(Lz)d,(ll)(l + 1)+ v @) ||u(2) pll. Since {uﬁz)} is bounded and Zzo: (1) < 00, it
follows that Zzil d,(lz) < 00. Moreover, we see that

[ = Pl <aX+m) [« = pl| + B o — pll+ 7,7 [ — p]
3) 2 ) 3) 3

<aP A+ r) (L + )% xn — pll +dP) + B (L + 1) 1xa — pll
+y, 2 [ul = p||
(0 + B7) A+ 1) ln = pll+ P (1 ) + 1,7 [ = p
A+ 7 — pll +aVdP (1 +1) + 7,2 [ul — p|
= (1L +r) % — pll +d, 4.3)

<
<
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where d,(,3) = 2)a’Q) (I+r)+ y,f3) ||u(3) pll. So that Z;’le d,(,3) < 00. By continuing the above

4®

method, there are nonnegative real sequence {d,(,k)} such that Z;’;l h . < o0 and

||x,(lk) — p|| < (1 +rn)k||xn —pll +d,(lk) forallk=1,2,...,m

By Lemma 2.2 , we have lim,,_,  ||x, — p|| exists. This completes the proof. O

Lemma 4.2. Let X be a uniformly convex Banach space, C a nonempty closed convex sub-
set of X and T:C — C be asymptotically quasi-nonexpansive with the sequence {r,},>1
such that Zzozl rp, < o0 and F(T) # (. Let the sequence {x,} be defined by (1.1) whenever

{a(l)} {ﬁ,gi)} {y,fi)} satisfy the same assumptions as in Lemma 4.1 for eachi € {1,2, ..., m} and
the additional assumption that 0 < o < (m 1) ,(lm) < B < 1 forall n > ng, for some ny € N.
Then

(a) Timy o0 [ 772" 7Y — 2, =0
(®) im0 75" — | =0

Proof. (a) For any p € F(T), it follows from Lemma 4.1 that lim,_,  ||x, — p|| exists. Let
limy,— « [|x, — pll = a for some a > 0. We note that

Jxim=D = p| < A +r)" Mixw — pl+d" ", Vn>1,

4D

where {d,(lm_l) } is a nonnegative real sequence such that ZZO:I I < 00. It follows that

lim sup ||x(’" D _ p“ < limsup ((1 +r)" Nxn — pl +d,$m_l)) =nl_i)IIéo lxn — pll=a
n—00 n— 00
and so
hmsup |7"xm=1 — p| < hmsup(l +r)|Jx"Y — p| = hmsup |x"=Y — p| <a.
Next, consider
|77 = p 4 7™ (" = xa) | < [T""0 = | + ™ | = 2]
Thus,
linnisolép || T”x,(lm_l) p+ y(m)( (m) _ )H <a. 4.4
Also,
”x —p+V (m)( ;m) _xn)H < xn —pll + Vn(m) ”M,gm) —Xn||,
gives that
limsup |x, — p + y(’")( (m) _ x| <a, 4.5)
n—o00
and we observe that
“_nlinéo ||x(m) —p|| _ng)n;o ”a(”‘)T” (m— ”—i—ﬁ(’”)x —|—y(”’) (m) pH
= lim [l """ + (1 — o )xn = 7" x4, — (1= ™) p — " p|
— lim ||a(m)T” (m—1) _ p—i—a(”‘) (m) ,(m) ’(lm)yrfm)x’Z + (1 —Ol,(,m))xn

n—0o0
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—_ g (m),, (m) (m) (m),, (m) (m) (m)
(1 a, )p y )x, + ¥, Y + o, Xn ||
= lim [ (775D p+y<m>( ™ _ )

}’l—>OO

+ (=) = p4 1 — )|
It follows from (4.4), (4.5) and Lemma 3.1 that

lim ||T” (m—1) x,,“:O.
n— oo

This completes the proof of (a).

Proof of (b). Foreachn > 1, we have

I = Pl < = T 4 770 = ]
< xn — T2 || + (L4 r) 2= — p.

Since lim,, 0 || X, — T"x (m_l)|| =0 =1im,,_, 5 7', We obtain that

(m—1)

a= lim ||x, — p|l < llmmf ||x pH
n—oo

It follows that
a < liminf Hx(m D (n—1)
n—0oo

—p||<hmsupHx —p”éa,

which implies that

lim ||x(m_l) — p” =a.

n—o0

On the other hand, we note that

[xm=2 — p|| < (1 +r)" 2l — pll +d" 2, Va1,

d(m—z)

where {d, (m—2)} is a nonnegative real sequence such that Z;’ozl n < 00. Thus

lim sup ”x(m 2 p” <limsup(1 + )" 2 ||x, — pll = a,
n—oo n— oo
and hence
limsup |[7"x{"~ — p| < hmsup(l +r)||x"? — p| <a.
n—oQ

Next, consider

|| Tnxr(zm_Z) —p+ yn(m—l) (uﬁlm—l) _ xn)” < ” Tnxr(zm_Z) _ P” + yn(m—Z) ||u£lm—l) — X, ”

Thus,
lim sup || T”x,(lm_z) —p+ y,fm_l)(u,gm_l) - xn) ” <a. (4.6)
n—00
Also,
oen = p w0 (™0 =) | <l = I+ " gD = ]
gives that
limsup || x, — p + " P (@D - x,) || <a, (4.7)

n—oo
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and note that

a= lim (=D p”_ lim a7 m=2) 4 gon=Dy o m=b)y m=1) _ |

n—

— lim ”a(m l)(Tn (m—2) P+)/(m 1)( ;m—l)_xn))

n—>oo
(1 =a ) = ot D )
It follows from (4.6), (4.7) and Lemma 3.1 that

lim HT” n=2) _ 5 || =

n—o0

This completes the proof of (b). O

Theorem 4.3. Let X be a real uniformly convex Banach space, C a nonempty closed convex
subset of X and T : C — C be uniformly L-Lipschitzian, completely continuous asymptotically
quasi-nonexpansive with the sequence {rp},>1 such that Z:OZI rp <00 and F(T) # (. Let the

sequence {x,} be defined by (1.1) whenever {a,&i)} {ﬂ,gi) L {yn(i)} satisfy the same assumptions
as in Lemma 4.1 for each i € {1,2,...,m} and the additional assumption that 0 < o < (’) <
B<1forallie{m—1,m}. Then {x,(l )} converges strongly to a fixed point of T, for each

k=1,2,3,....,m
Proof. It follows from Lemma 4.2 that

hm HT” =D _ x, ”—0_ lim ”T" =2 _ x, ”

n—00
This implies that,
st =5l = [ — x| <o | — x| 45— ] 0
as n — o0. 4.8)
Thus, we have
[0 = 5] < 775 = T3 | 7750 |
< Ll =3+ 7 — |
<alf VL, = T P OLL ) < |
+ || 7% — x| > 0 asn— oo (4.9)
and we note that

T}’l+1xn+l ”

+ || Tn—i-lxn_'_1 _ Tn+lxn || + H Tn—Hxn _ Txn H

lxn — Txnll < NXn41 — Xl + | Xng1 —

<t =l + Jongr = T o |
+ Lllxn41 = Xl + L[ T"x0 — 20
This together with (4.8) and (4.9) gives
lim ||x, — Tx,| =0. (4.10)
n—00
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By the boundedness of {x,} and our assumption that 7 is completely continuous, there exists a
subsequence {7 'x,, } of {Tx,} such that Tx,, — p € C as k — oo. Moreover, by (4.10), we have
IT xn, — Xp, Il = O which implies that x,,, — p as k — oo. By (4.10) again, we have

lp—Tpll= lim [[xn — Txy || =0.
k— 00

It show that p € F(T). Furthermore, since lim,_, » || X, — pll exists, we obtain lim,_c ||x;, —
pll =0, that is limn_wox,(lm) = lim,,—, 00 X, = p. Moreover, we observe that ||x,(1k) —pll < llxn —
pll+d® forallk =1,2,3,...,m — 1 and each lim,_ 0 d° = 0. Therefore limy_ 00 X = p

forallk=1,2,3,...,m — 1. The proof is completed. O

For m = 3 and /3,?) =1- og,(,i) — yn(i) forall i =1, 2,3 in Theorem 3.4 or Theorem 4.3, we
obtain the following result.

Theorem 4.4. (See [2]) Let X be uniformly convex Banach space and C be a nonempty
closed convex subset of X. Let T :C — C be a completely continuous asymptotically nonex-
pansive mapping with the nonempty fixed-point set F(T) and a sequence {r,} in [0, 00) and
> o2 ra < 0. Let a sequence {x,} be defined by (1.2) with the following restrictions:

i) 0<a<aP <b<1;

(i) limsup, (14 rm)et? < 1;
(iii) 30, ¥\ < oo foralli=1,2,3.

Then the sequence {x,} converges strongly to a fixed point p of T.

When m = 3 and y,f]) = y,fz) = yn(3) = 0 in Theorem 3.4 or Theorem 4.3, we obtain strong

convergence theorem for Noor iteration as follows:

Theorem 4.5. [19, Theorem 2.1] Let X be a real uniformly convex Banach space, C be a
nonempty closed, bounded convex subset of X. Let T :C — C be a completely continuous as-
ympitotically nonexpansive self-mapping with sequence {r,} satisfying r, = 0and Yy ;2| ry < 00.
Let {ot,(,l)}, {oe,(,z)}, {oe,(,3)} be real sequences in [0, 1] satisfying:

(i) 0< liminf,,_moa,(f) < lim supn_)ooa,(,3) <1, and

(i) 0 <liminf,_, o e\? <limsup, . a\® <1.

For a given x| € C, the sequence {x,}, {x,(,l)}, {x,gz) } defined by (1.3) converges strongly to a fixed
point of T.

Proof. It follows from the conditions (i) and (ii) that there are «, 8 € (0, 1) and ng € N such that
O<a<a,(12), oz,(l3)<,3<1

for all n > ng. So that the conclusion of the theorem follows from Theorem 3.4 or Theorem 4.3.
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