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Abstract Many experimental and numerical studies were devoted to Dielectric Barrier Discharge (DBD)
in air, but no mathematical models were proposed, either for current or for power. As they depend on
several parameters, it is difficult to find a formula that considers many factors. The aim of this paper is first
to make a brief comparison between surface and volume DBD, and second to model the current and power
of a DBD in a “multipoints-plane” electrode system, using the methodology of experimental design. Three

factors were considered: inter-electrode distance, distance between adjacent points, and thickness of the
glass dielectric barrier. A double Composite Centred Faces experimental design (CCF) was carried out. The
obtained results made it possible to propose mathematical models and, therefore to study interactions

between various factors.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V.
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1. Introduction

Dielectric Barrier Discharge (DBD) in air has been the subject
of many research studies [1-3]. This physical phenomenon is
nowadays well known, and many researchers have contributed
to the comprehension and explanation of the micro-discharge
mechanism [4-7].

Many factors affect the DBD, such as electrical, geometri-
cal and climactic parameters. Nowadays, the influence of each
one of these is well-known, but we do not appreciate the in-
teractions existing between these factors. For example, when
the inter-electrode distance and thickness of the dielectric bar-
rier vary simultaneously, one has a larger influence than the
other. Thus, we make use of experimental design methodology,
being a powerful tool for modelling and analysing interactions
between factors. We opted for a configuration of electrodes
consisting of a high voltage multipoint electrode and planar
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dielectric and metallic electrodes. In this paper, we examine
three factors: inter-electrode distance, distance between adja-
cent points and thickness of the glass dielectric barrier. We first
make a brief comparison between surface and volume DBDs.

2. Surface and volume DBD

An electrostatic voltmeter and an oscilloscope were used
to measure the applied high voltage and the current. The high
voltage was delivered by a power supply of voltage 6 kV, current
30 mA and frequency 22 kHz. A 100 Q2 resistor is placed in
series with the circuit, whose voltage drop is visualised by the
oscilloscope to measure the current generated by the DBD.

We have accomplished, in this section, an experimental
study to compare two different electrode systems: “point-to-
plan” and “surface DBD”. The point electrode is sharp, has a
radius of 150 wm, and is placed above the dielectric barrier
at a distance of 1 mm. The surface DBD is obtained using two
bands of adhesive aluminium (length: 10 cm, width: 2 cm) as
electrodes, each placed on a different side of the dielectric. The
dielectric barrier is glass, having a thickness of 3 mm. The two
configurations are schematically shown in Figure 1.

Figures 2 and 3 show diagrams of voltage drop across the
resistor corresponding to the two configurations for an applied
voltage of 6 kV.
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Figure 1: Schematic representation of the experimental device. (a) Volume
DBD; and (b) surface DBD.
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Figure 3: Diagram of the voltage drop across the resistor of the surface DBD.

We can notice from the diagrams that there exists a
difference between the volume and surface DBD. The density
of micro-discharges is higher for surface DBD, because they
occur over the entire length of the electrode, which is equal
to 10 cm. However, in the case of a pointed electrode, the
pulse amplitude is greater, the current exceeding 80 mA for
some pulses. Furthermore, there is no discharge in the negative
alternation for the volume DBD. For the surface DBD, the
discharge occurs on a greater surface area, the effect of DBD
“memory” is more important and, therefore, the discharge is
more easily initiated in negative alternation.

3. Experimental design methodology

The methodology of the experimental designs makes it pos-
sible to determine the number of experiments to be achieved,
according to a well defined objective, to simultaneously study
several factors, to reduce dispersion related to measurements,
to appreciate the effects of coupling between factors and, fi-
nally, to evaluate the respective influence of the factors and
their interactions [8-11]. Many papers deal with the applica-
tion of this methodology in electrical and electrostatic pro-
cesses [12-20].

3.1. Development of the method

Finding mathematical models of good quality with mini-
mum effort depends on the way in which intervals of input fac-
tors are selected. This method can be used as follows [21,22]:

e Selection of the most interesting and influential factors.

e Determination of maximal, minimal and central values of
each factor.

e Carrying out a matrix of experiments with all possible states
and corresponding responses.

Before starting the experiments, it is necessary to set the best
and most suitable design, which can model the process with
the most possible precision. In this paper, we chose the double
Composite Centred Faces design (CCF), which gives quadratic
models. It is possible to determine a quadratic dependence
between the output function to optimize (response) and the
input variables, u; (i =1, ..., k) (factors):

y=f)=co+ Z citl + Z Cijuitj + Z cit]

Knowing that Au; and ujg are, respectively, the step of variation
and the central value of factor i, the reduced centred values of
input factors may be defined by the following relation:

Xi = (Ui — Ujp) /A,
With these new variables, the output function becomes:

y=f&)=a0+ Z aix; + Z axiXj + Z i}

The coefficients are calculated by a data-processing pro-
gram, using the least mean squares method.

3.2. Software MODDE 5.0

We used software MODDE 5.0 (Umetrics AB, Umea, Sweden),
which is a Windows program for the creation and evaluation
of experimental designs [23]. The program assists the user in
interpretation of the results and the prediction of the responses.
It calculates the coefficients of the mathematical model and
identifies the best adjustments of the factors to optimize the
process.

Moreover, the program calculates two significant statistical
criteria, which makes it possible to either validate the math-
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Figure 4: Schematic representation of the experimental device.

ematical model or not, symbolized by R? and Q2. The former
is called the goodness of fit, and is a measure of how well the
model can be made to fit the raw data; it varies between 0 and
1, where 1 indicates a perfect model and 0 no model at all. The
latter is called goodness of prediction, and estimates the predic-
tive power of the model. Like R?, Q2 has the upper bound 1, but
its lower limit is minus infinity. For a model to pass the diag-
nostic test, both parameters should be high, and preferably not
separated by more than 0.2-0.3.

4. Results

As the principal application of DBD is ozone generation
whose efficiency depends on generated power, this latter
is the response to optimize. We use, for this experimental
purpose, a typical multipoint-to-plane set-up, energized with
a 6 kV, 30 mA and 22 kHz power supply. The power was
measured using a current-voltage product in RMS values. The
experimental bench is shown in Figure 4.

The multipoint electrode consist of a rectangular matrix of
sharp needles, the distance, d,, between two adjacent needles
is constant. According to preliminary experiments, three factors
were considered as most influential for which we determine
limits of variation:

- Distance between adjacent points d, : d, ., = 10 mm and
Apnayx = 30 mm.

- Inter-electrode distance d, : d,, = 50 mm and de,, =
70 mm.

- Thickness of glass dielectric barrier e :
€max = 50 mm.

emin = 30 mm and

Figure 5 shows experiments of a CCF design with 3 factors.
It consists of 8 experiments located at the tops of the cubes
(square points A,B,...,H), 6 experiments located at the
centres of the cube faces (round points a,b,...,f) and 3
identical experiments done at the central point, M (star point).
Thus, a double CCF design with 3 factors includes 2 x 17
experiments.

Obtained results of power P are given in Table 1in which the
results of both factorial and composite designs are also given.

Once experimental values of power P are measured,
software MODDE 5.0 checks whether experimental results are
“reasonable” and detects any “doubtful” measurement result.
The graph represented in Figure 6 shows that all experiments
are located inside the validation limits of results, which makes
it possible to validate the experimental results.

The statistical tests lead to a valid mathematical model, since
R? and Q2 reach high values: R> = 0.94 and Q% = 0.88.

The mathematical model suggested by MODDE 5.0 is:

P = 74.2 — 24.52d} — 7.72d} — 0.12¢* 4 9.11d;* + 3.51d}”
+1.91e 4 12.45d;d; + 1.62d5e* — 0.25d;e".

5. Discussions

Breakdown in a gap with insulated electrodes normally
occurs in a large number of individual tiny breakdown channels,
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Figure 5: Diagram of experiments of a double CCF design with 3 factors of d,,
(distance between adjacent points (mm)), d. (inter-electrode distance), and e
(thickness of the glass dielectric barrier).

Table 1: Results of the double CCF experimental design.

Exp. no d, (mm) d, (mm) e (cm) P (W)

1 10 50 30 144.0
2 10 50 30 136.0
3 10 70 30 64.0
4 10 70 30 51.2
5 10 50 50 92.8
6 10 50 50 92.8
7 10 70 50 64.0
8 10 70 50 67.2
9 30 50 30 132.0
10 30 50 30 136.0
11 30 70 30 70.4
12 30 70 30 57.6
13 30 50 50 92.8
14 30 50 50 89.6
15 30 70 50 64.0
16 30 70 50 67.2
17 20 60 40 102.4
18 20 60 40 102.4
19 20 60 40 70.4
20 20 60 40 54.4
21 20 60 40 80.0
22 20 60 40 70.4
23 20 50 40 76.8
24 20 50 40 80.0
25 20 70 40 76.8
26 20 70 40 73.6
27 20 60 30 76.8
28 20 60 30 73.6
29 20 60 50 73.6
30 20 60 50 73.6
31 10 60 40 76.8
32 10 60 40 76.8
33 30 60 40 73.6
34 30 60 40 76.8

referred to as micro-discharges. By applying an electric field
larger than the breakdown field, local breakdown in the gap is
initiated. In an equivalent circuit, this is symbolized by closing
a switch and forcing some of the current through the plasma
filament whose resistance, R(t), rapidly changes with time. In
reality, growing electron avalanches quickly produce such a
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Figure 6: Graph for validation of measurements.
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Figure 7: Plotted coefficients for power modelling.

high space charge that self-propagating streamers are formed.
The current fiows through the conductive channel, bridging
the electrode gap peaks. Subsequently, charge accumulation at
the dielectric surface reduces the local electric field to such an
extent that ionization stops within a few nanoseconds and the
microdischarge is choked.

Values of the coefficients associated with the factors in
the mathematical model show the degree of influence of
each factor. The coefficients are also plotted in Figure 7. It
arises from the proposed mathematical model that within
the variation limits of the selected intervals, the separation
distance between adjacent points is the one which has the
most effect. The thickness of the dielectric seems to have little
influence compared to the other parameters. All the factors are
negative, which means that minimizing the separation distance
between adjacent points, d,, inter-electrode distance, d,, and
the thickness of the dielectric, e, leads to higher power values.
Among the different interactions between the factors, it is
noticeable to see that there exists a strong interaction between
d, and d., and a poor interaction between d. and e.

The program also has an optimization option, which gives
the most optimal values of factors to obtain maximal power.
Proposed optimal values are d, = 10 mm, d, = 50 mm and
e = 30 mm.

The contour plots obtained for the model are represented
in Figure 8. They point out that power is highly influenced
by the factors “distance between points” and “inter-electrode
distance”. On the contrary, the power seems to be very little
influenced by the thickness of the dielectric when compared
with inter-electrode distance influence.
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Figure 8: Contour plots of the model computed with MODDE 5.0.
6. Conclusion

Dielectric barrier discharges remain the subject of several
applications in industry, where power is the first criteria re-
quested by users. As it is difficult to find a formula for the power,
because it depends on numerous factors, the aim of this pa-
per consists of modelling it using the methodology of experi-
mental designs. Several factors were considered in this study:
inter-electrode distance, distance between adjacent points and
thickness of the glass dielectric barrier. Obtained results made



840 N. Hammadi et al. / Scientia Iranica, Transactions D: Computer Science & Engineering and Electrical Engineering 19 (2012) 836-840

it possible to propose a mathematical model and to analyze the
various interactions between these factors. Furthermore, we
made an experimental study to compare the surface and vol-
ume DBD and noticed that the first one is more powerful.
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