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Abstract

The simplest consequences of the commonE11 symmetry of the eleven-dimensional,IIA and IIB theories are derived an
are shown to imply the known relations between these three theories.
 2004 Published by Elsevier B.V.

1. Introduction

It has been argued that eleven-dimensional supergravity[1] when suitably extended possess a non-line
realisedE11 symmetry[2]. Furthermore, both the IIA supergravity[3] and IIB supergravity theories[4,5], when
suitably extended, should also possess a non-linearly realisedE11 symmetry[2,6]. As explained below, the thre
different theories arise from the same underlying algebra due to the different possible embeddings inE11 of the
sub-algebras that describe gravity[2,6]. Their commonE11 symmetry can be exploited to find explicit relatio
between the eleven-dimensional, IIA and IIB non-linearly realised theories[7]. Indeed, one can find a one-to-o
correspondence between the fields that occur in any two of these three theories providing a very concret
what M theory actually is[7]. In this Letter we derive the simplest of these relations which are those that in
fields that are associated with the Cartan sub-algebra ofE11. We recover the known relations between the elev
dimensional, IIA and IIB theories, when dimensionally reduced on a suitable torus, in a simple way. Ori
these relations were found by using a mixture of string and solitonic properties[8–13], but we will show that they
follow from the way the sub-algebra associated with the gravity sectors of the different theories are em
in E11. We also give an example of how the correspondence works for a field not associated with the
sub-algebra and derive the effect of the Weyl transformations of theE+++

8 theory for the IIA and IIB theories.
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An account of Kac–Moody algebras suitable for this Letter can be found in previous papers of the auth
[14] or in the extended version of this Letter that appears on hep-th.

So little is known about Kac–Moody algebras that it is difficult to calculate the general properties of a non-linea
realisation based upon them. However, by setting to zero all the fields of the non-linear realisation, except tho
associated with the Cartan sub-algebra, the group element takes the very simple form

(1.1)g = exp

(∑
a

qaHa

)
.

The fieldsqa are then the only fields of the theory. Provided one restricts ones attention to operations that p
the Cartan sub-algebra it is then essentially trivial to examine the consequences. Such is the case for Wey
mations. Indeed, these were considered in just such a setting for theE+++

8 non-linear realisation appropriate to t
eleven-dimensional theory and the Weyl transformations were shown[15] to be are none other than the U-dual
transformations[18].

The algebraG+++ contains a GL(D) sub-algebra, with generatorsKa
b, a, b = 1, . . . ,D which leads in the

non-linear realisation to the gravity sector of the resulting theory whereD is the dimension of the space–time
the theory. TheAD−1, or SL(D), part of this sub-algebra is obtained by takingD −1 dots of the Dynkin diagram o
G+++ which are connected to the very extended node, i.e., selecting anAD−1 sub-Dynkin diagram which contain
as an extreme node the very extended node. As we shall see, there is more than one way to do this in ge
these lead to different physical theories. The part of the group element ofG+++ which contains the generators
the preferred sub-algebra is of the form exp(

∑
a�b ha

bKa
b) and carrying out the non-linear realisation one fin

that the vierbeineµ
a is identified witheµ

a = (eh)µ
a , where in this last equation, we treath as a matrix[2,16]. This

Gl(D), or in some cases the SL(D), sub-algebra is referred to as the gravity sub-algebra and theD − 1 dots of the
Dynkin diagram ofG+++ which belong to the SL(D), orAD−1, sub-algebra are referred to as the gravity line.

The eleven-dimensional, IIA and IIB theories all have an underlyingE+++
8 , but they are distinguished by the

different gravity sub-algebras. The eleven-dimensional theory must possess anA10 gravity algebra and there
only one such algebra. We must choose the gravity algebra to be theA10 sub-Dynkin diagram that consist of nod
labeled one to ten. That is it is found by deleting node eleven in theE+++

8 Dynkin diagram[2].
The IIA and IIB theories are ten-dimensional and so to find these theories we seek anA9 gravity algebra.

Looking at theE+++
8 Dynkin diagram there are only two ways to do this. Starting from the very extended

we must choose aA9 sub-Dynkin diagram, but once we get to the junction ofE+++
8 Dynkin diagram, situated a

the node labeled 8, we can continue along the horizontal line with two further nodes taking only the first
belong to theA9, or we can find the finalA9 node by taking it to be the only node in the other choice of directio
the junction. These two ways correspond to the IIA and IIB theories, respectively. Hence, in the IIA theory w
the gravity line to be nodes labeled one to nine inclusive while for the IIB theory the gravity line contains
one to eight and in addition node eleven[2,6].

The gravity sub-algebra is such thatKa
a , a = 1, . . . ,D are part of the Cartan sub-algebra ofE+++

8 . For the
eleven-dimensional theory, these eleven generators span the Cartan sub-algebra and so one can also writ
element of Eq.(1.6)in the form

(1.2)g = exp

(
11∑

a=1

ha
aKa

a

)
= exp

(
hT K

)
.

In the second equation we have used matrix notation whose meaning should be clear. The relationship be
Chevalley generatorsHa and the physical generatorsKa

a can be written in matrix form asK = ρH . It is given
by [2]

Ha = Ka
a − Ka+1

a+1, a = 1, . . . ,10, H11 = −1

3

(
K1

1 + · · · + K8
8
) + 2

3

(
K9

9 + K10
10 + K11

11
)
.

(1.3)
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We also record the relations

(1.4)Ea = Ka
a+1, a = 1, . . . ,10, E11 = R91011,

between the Chevalley generatorsEa and the simple root generators of SL(11) and the generatorRa1a2a3 which is
responsible in the non-linear realisation for the introduction of the gauge fieldAa1a2a3 of the eleven-dimensiona
supergravity theory. Hence, keeping only fields associated with the Cartan sub-algebra implies keeping only
diagonal parts of the metric and, as we will see below for the IIA and IIB theories, also the dilaton field.

The normalisation of the fields in the group element of Eq.(1.7), like all the analogous such group element
this Letter, is chosen with reference to the normalisation of the generators ofE+++

8 . However, one can carry ou
the non-linear realisation ofE+++

8 at low levels, as was done in effect in[16] and in[20], to find the supergravity
equations in terms of these fields. By comparison with the formulation of supergravity in terms of ones pr
fields one can find the relationship between the two sets of fields.

The form of theHa of Eq.(1.8)can essentially be determined given that they must obey Eq.(1.4)with the Cartan
matrix ofE+++

8 , together with the knowledge of the simple roots generators of Eq.(1.10)and that tensors, such a
Ra1a2a3, transform in the obvious way under GL(11), i.e.,[Kc

d,Ra1a2a3] = δ
a1
d Rca2a3 + δ

a2
d Rca3a1 + δ

a3
d Rca1a2.

We denote quantities in the IIA and IIB theories with a tilde and hat, respectively. For these theories the
sub-algebra of the gravity sub-algebra, i.e., theK̃a

a , a = 1, . . . ,10 for the IIA theory and thêKa
a , a = 1, . . . ,10

for the IIB theory, account for only ten of the eleven generators of the Cartan sub-algebra ofE+++
8 . The final

commuting generator is associated with the dilaton which appears in the IIAand IIB theories. We denote th
generator by the symbolR and the dilaton byA with appropriate tildes or hats. As such, for the IIA theory
E+++

8 group element of Eq.(1.6)can be written in terms of the physical generators in the form

(1.5)g̃ = exp

(
10∑

a=1

h̃a
aK̃a

a

)
exp(ÃR̃) = exp

(
h̃T K̃

)
.

In the second equation we have used matrix notation for whichh̃ is a column vector whose first ten compone
are h̃a

a , a = 1, . . . ,10 and whose eleventh component isÃ and similarlyK̃ has its first ten components as̃Ka
a

and eleventh component̃R. The Cartan sub-algebra generatorsHa of E11 and the physical generators̃Ka
a , a =

1, . . . ,10 andR̃ are related byH = ρ̃K̃ which is given by[2]

Ha = K̃a
a − K̃a+1

a+1, a = 1, . . . ,9, H10 = −1

8

(
K̃1

1 + · · · + K̃9
9
) + 7

8
K̃10

10 − 3

2
R̃,

(1.6)H11 = −1

4

(
K̃1

1 + · · · + K̃8
8
) + 3

4

(
K̃9

9 + K̃10
10

) + R̃.

While theEa Chevalley generators ofE+++
8 are given in terms of IIA generators by[2]

(1.7)Ea = K̃a
a+1, a = 1, . . . ,9, E10 = R̃10, E11 = R̃910.

The fields associated with the generatorsR̃a andRab in the non-linear realisation are the one form and two fo
fields of the IIA supergravity theory.

Equating the Chevalley generatorsHa of Eqs.(1.8) and (1.11)we find that the generators in the physical ba
of the eleven-dimensional and IIA theory are related by[2]

(1.8)Ka
a = K̃a

a, a = 1, . . . ,10, K11
11 = 1

8

10∑
a=1

K̃a
a + 3

2
R̃.
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For the IIB theory, the generatorŝKa
a , a = 1, . . . ,10 andR̂ span the Cartan sub-algebra ofE+++

8 and so the
group element of Eq.(1.6)can be expressed as

(1.9)ĝ = exp

(
10∑

a=1

ĥa
aK̂a

a

)
exp(ÂR̂) = exp

(
ĥT K̂

)
.

In the second equation we have used matrix notation for whichĥ is a column vector whose first ten components
ĥa

a , a = 1, . . . ,10 and whose eleventh component isÂ and similarlyK̂ has its first ten components aŝKa
a and

eleventh component̂R. The relationship between the Cartan sub-algebra generatorsHa of E+++
8 and the physica

generatorsK̂a
a , a = 1, . . . ,10 andR̂ can be written in the formH = ρ̂K̂ and it is explicitly given by[6]

Ha = K̂a
a − K̂a+1

a+1, a = 1, . . . ,8, H9 = K̂9
9 + K̂10

10 + R̂ − 1

4

10∑
a=1

K̂a
a,

(1.10)H10 = −2R̂, H11 = K̂9
9 − K̂10

10.

The Chevalley generatorsEa of E+++
8 , as they appears in IIB theory are given by[6]

(1.11)Ea = K̂a
a+1, a = 1, . . .8, E9 = R̂910

1 , E10 = R̂2, E11 = K̂9
10.

The fields associated with the generatorsR̂ab
1 andR̂2 are the NS–NS two form and the axion,χ̂ of the IIB theory.

The last equation reflects the fact that the node labeled eleven is the last node in the IIB gravity line.
Equating the Chevalley generatorsHa of Eqs.(1.8) and (1.11)we find that the generators in the physical ba

of the eleven dimensional and IIB theory are related by[7]

Ka
a = K̂a

a, a = 1, . . . ,9, K̂10
10 = 1

3

9∑
a=1

Ka
a − 2

3

(
K10

10 + K11
11

)
,

(1.12)R̂ = −1

2

(
K10

10 − K11
11

)
.

For completeness we note the relationship between the IIA and IIB physical generators;

K̂a
a = K̃a

a, a = 1, . . . ,9, K̂10
10 = 1

4

9∑
a=1

K̃a
a − 3

4
K̃10

10 − R̃,

(1.13)R̂ = 1

16

9∑
a=1

K̃a
a − 7

16
K̃10

10 + 3

4
R̃,

We note that the generator corresponding to the node labeled ten in the eleven-dimensional theory isK10
11 and

so is associated with the exchange of the ten and eleven space–time coordinates, while in the IIB theory it isR̂2
which is the non-perturbative part of the SL(2,Z) symmetry of the IIB theory.

2. Relations between the eleven-dimensional, IIA and IIB theories

As explained in Ref.[7], the commonE+++
8 origin of these three theories implies a one-to-one correspond

between the fields of the three theories. In particular, any field in the non-linearly realised IIB theory arise
group element as the coefficient of a particular generator which is in the Borel sub-algebra ofE+++

8 , however,
the generators ofE+++

8 are essentially unique and so we can identify this generator from the viewpoint
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10 of the IIB theory is associated with th

generatorK̂9
10 which is equal to the Chevalley generatorE11 of E+++

8 . However, from the eleven-dimension
perspective this Chevalley generator is equal to the generatorR9 10 11that is associated with the fieldA9 10 11which
is one component of the third rank anti-symmetric field of the eleven-dimensional supergravity theory.
section, we will find these correspondences at the simplest possible level.

2.1. The correspondence between the eleven-dimensional and IIA theories

To find the correspondence for the Cartan sub-algebra we simply equate the two group elements in th
dimensional and IIA theories of Eqs.(1.2) and (1.5), respectively;

(2.1)g = g̃ or exp

(
11∑

a=1

ha
aKa

a

)
= exp

(
10∑

a=1

h̃a
aK̃a

a

)
exp(ÃR̃).

Using Eq.(1.8), we conclude that

(2.2)h̃a
a = ha

a + 1

8
h11

11, a = 1, . . . ,10, Ã = 3

2
h11

11.

We expect these relations to hold even if one does not carries out dimensional reduction of the theory on
but then one must also carry out a corresponding exchange of the generalised coordinates[17]. However, if we do
dimensionally reduce some of the dimensions on a torus then it is useful to change to the variables

(2.3)ha
a = ln

Ra

lp
, a = 1, . . . ,11,

wherelp is the eleven-dimensional Planck scale. We note that in the group elements used to construct
linear realisation the fields are dimensionless and so the resulting part of the action inD space–time dimension
that has two space–time derivatives is multiplied byl

−(D−2)
p . In particular, we will apply the change of variable

the constant background part of the fields. For a rectangular torus, the coordinate and parameterisation
length of its cycle in the direction islp

∫
ea

a dxa = Ra .
Similarly we introduce the analogous IIA variables by

(2.4)h̃a
a = ln

R̃a

l̃p
, a = 1, . . . ,10, Ã = ln g̃s,

wherel̃p is the ten-dimensional Planck scale of the IIA theory. Comparing the low energy action with that calc
lated from string scattering allows us to identify the string scalels by (l̃p)8 = g̃2

s (l̃s)
8 andg̃s in Eq. (2.4)with the

string coupling constant in the usual way.
The last relation in Eq.(2.2)implies that

(2.5)(g̃s)
2 =

(
R11

lp

)3

.

Since the eleven-dimensional theory after reduction on a circle coincides with the IIA theory we may takeR̃a = Ra ,
a = 1, . . . ,10 and then we find that

(2.6)

(
lp

l̃p

)12

= g̃s or l3p = (l̃s )
3g̃s .

The first relation in the above equation together with Eq.(2.5) implies thatR11
l9p

= 1
l̃8p

. Eqs.(2.5) and (2.6)are the

known relations between the IIA theory and the so-called eleven-dimensional M theory. They encouraged
that eleven-dimensional M theory is the strong coupling limit of the IIA string theory[10,11].
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2.2. The correspondence between the eleven-dimensional and IIB theories

We now find the analogous relations between the fields, which are associated with their Cartan sub-alg
the eleven-dimensional and IIB theories. Equating the eleven-dimensional and IIB group elements of Eq.(1.1)and
Eq.(1.9)we find that

(2.7)g = ĝ or exp

(
11∑

a=1

ha
aKa

a

)
= exp

(
10∑

a=1

ĥa
aK̂a

a

)
exp(ÂR̂)

which using the identifications of Eqs.(1.12)implies that

(2.8)ha
a = ĥa

a + 1

3
ĥ10

10, h10
10 = −2

3
ĥ10

10 − 1

2
Â, h11

11 = −2

3
ĥ10

10 + 1

2
Â.

These relations hold without compactifications, but for a torus compactification it is appropriate to adopt th
ables

(2.9)ĥa
a = ln

R̂a

l̂p
, a = 1, . . . ,10, Â = ln ĝs,

where l̂p is the Planck length in the IIB theory and̂gs its string coupling. Introducing the IIB string scale b
(l̂p)8 = ĝ2

s (l̂s)
8 the relations given in Eq.(2.8)become

(2.10)
l̂4s ĝs

l3p
= R̂10,

R6
10

l6p
= l̂4s

R̂4
10ĝ

2
s

,
R6

11

l6p
= l̂4s ĝ4

s

R̂4
10

,

respectively. These are equivalent to the more familiar relations

(2.11)ĝs = R11

R10
, l̂ 2

s = l3p

R11
, R̂10 = l3p

R10R11

which relate the eleven-dimensional theory reduced on rectangular torus with radiiR10 andR11 to the IIB theory
reduced on a circle of radiuŝR10 [9,12,13].

As explained in Ref.[7], there is a one-to-one map between all the fields of the IIB and the eleven-dimen
non-linearly realised theories and not just those associated with the Cartan sub-algebra. We close thi
by giving a simple illustration of how this map works for a field outside the Cartan sub-algebra. Eqs.(1.4) and
(1.11)state thatE10 = K10

11 = R̂2 and as explained at the beginning of this section this implies that the el
dimensional fieldh10

11 corresponds to the axion field̂χ of the IIB theory. We now enlarge the fields which a
non-zero by including these fields in addition to those associated with the Cartan sub-algebra. As a result, th
eleven-dimensional group element takes the form

(2.12)g = exp

(
11∑

a=1

ha
aKa

a

)
exp

(
h10

11K10
11

)
.

Putting only the Cartan sub-algebra elements in the first exponential will allow us to perform the comp
more easily, but it is not quite the form given in the non-linear realisation of Refs.[2,16] and used to find the
eleven-dimensional supergravity theory. As a result, we must use the form of the vierbein that follows fromg

of Eq.(2.12); its non-vanishing components are given by

(2.13)eµ
a = δa

µ, a,µ = 1, . . . ,9, eµ
a =

(
eh10

10
eh10

10
h10

11

0 eh11
11

)
µ

a

, a,µ = 10,11.
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On the other hand, the IIB group element can be written as

(2.14)ĝ = exp

(
10∑

a=1

ĥa
aK̂a

a

)
exp(χ̂R̂2)exp(ÂR̂) = exp

(
10∑

a=1

ĥa
aK̂a

a

)
exp(ÂR̂)exp

(
eÂχ̂R̂2

)
.

The first form ofĝ is the one used to construct the non-linear realisation of IIB supergravity in[6] while the second
form is suitable for our comparison with eleven-dimensional group element. To change from one form to th
we used the relation[R̂, R̂2] = −1

2[H10,E10] = −E10 = −R̂2.
Settingg = ĝ and using Eqs.(1.12), (1.4) and (1.11)we find the same relations of Eq.(2.8)as well as

(2.15)eÂχ̂ = h10
11.

Let us now suppose that the ten and eleven directions of the eleven-dimensional theory are a torus with leng
R10 andR11. To discuss the properties of the torus it is simplest to make a rigid coordinate transformation fr
coordinatesxT = (x10, x11) to the coordinatesyT = (y10, y11) that diagonalises the metric in these directions
particular, we will diagonalise the veirbein in the ten and eleven directions. We denoted the latter by the me

which can be read off from the last relation in Eq.(2.13). The transformatione → Λe given by

(2.16)Λ =
(

1 m

0 1

)
,

wherem = − e10
11

e11
11 , has the desired result. The new veirbein has the same diagonal components as the old on

Eq.(2.13)we find thatm = −h10
11exp(h10

10−h11
11). In the diagonal coordinatesy we take the cycles of the toru

to be given byy11 = u, y10 = 0; 0� u < 1 and y10 = v, y11 = 0; 0� v < 1. The coordinate and parameterisat

invariant length of the first cycle is
∫ 1

0 e11
11dy11

du
du = e11

11 = R11 and similarly with the invariant length of th

second cycle is given bye10
10 = R10. Hence, we still have the relationR11

R10
= exp(Â) = ĝs of Eq.(2.11).

In terms of the originalx coordinates which are related byx = ΛT y the cycles of the torus arex10 = 0,x11 = u;
0 � u < 1 and x10 = v, x11 = mv; 0 � v < 1. If we define the complex coordinatez = x11 − ix10 then the periods
corresponding to the first and second cycles arez → z = 1 andz → z + τ , respectively, whereτ = τ1 + iτ2 with
τ1 = 1 andτ2 = −m. Hence, the modulus parameter of the torus is given by

(2.17)
τ1

τ2
= m = χ̂ .

This agrees with the identification of Refs.[12,13] after one takes into account that one must make the
redefinitionχ̂ → exp(−Â)χ̂ to find theχ̂ of [6] from that of[12] in order to gain agreement between the fi
equations of the two references. By a judicious choice of coordinates we can, as in[12], arrange forτ2 to be
exp(−Â), but the physically relevant quantityτ1

τ2
remains the same.

3. Weyl transformations in the IIB and IIA theories

The Weyl reflectionSa corresponding to the simple rootαa on any weightβ is given bySaβ = β − 2 (β,αa)
(αa,αa)

αa .
For the simple roots this becomes

(3.1)Saαb = αb − 2
(αb,αa)

(αa,αa)
αa = (sa)b

cαc.

The action of the Weyl transformationSa on the Cartan sub-algebra of a Kac–Moody algebra is given by

(3.2)H ′
b = SaHb = (sa)b

cHc.
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Since the Weyl group acts on Cartan sub-algebra generators to give Cartan sub-algebra generators it ma
to consider their action on elements restricted to be of the form of Eq.(1.1). Writing the group element in matri
form g = exp(qT H), we conclude that the Weyl group acts on the fieldsq asq ′T = qT s, or q ′ = sT q ass2 = I .
Clearly, these transformations hold for the eleven-dimensional theory and the IIA and IIB theories.

To find the physical effects of the Weyl transformations we need to find their action on the physical va
ha

a and also the dilaton field, for the cases of the IIA andIIB theories, However, the relationship between
Chevalley generatorsHa and the physical generators depends upon which theory we are considering and
effect of the Weyl transformations on the physical generators and fields is different for each theory. Using mat
notation, in the eleven-dimensional theory we may writeH = ρK and then the effect of the Weyl transformati
is SaK = K ′ = ρ−1saρK = raK and so the physical fieldsh transform ash′ = rT

a h. However, for the IIB theory
H = ρ̂K̂ and so we have the equations

(3.3)SaK̂ = K̂ ′ = ρ̂−1saρ̂K̂ = r̂aK̂ and ĥ′ = r̂T
a ĥ.

The equation for IIA being found by replacingˆ’s by ˜’s. Using Eqs.(2.3), (2.4) and (2.9)the effects of the Wey
transformations can then be readily deduced on the radii of any compactified directions and the appropria
scales and coupling constants.

This calculation was carried out in Ref.[15] for the eleven-dimensional theory and we briefly summarize
result. The Weyl transformationsSa , a = 1, . . . ,10 implied thatRa ↔ Ra+1, lp → lp. However,S11 induces the
transformationsha

′a = ha
a + 1

3(h9
9 + h10

10 + h11
11), a = 1, . . . ,8 andha

′a = ha
a − 2

3(h9
9 + h10

10 + h11
11),

a = 9,10,11 which in turn implies that

(3.4)R′
9 = l3p

R10R11
, R′

10 = l3p

R11R9
, R′

11 = l3p

R9R10
, (l′p)3 = l6p

R9R10R11
.

For the IIB theory, the Weyl transformationsSa , a = 1, . . . ,8 correspondK̂a
a ↔ K̂a+1

a+1, for a = 1, . . . ,8 as
well asR̂ → R̂. The effect on the variables of Eq.(2.9) is R̂a ↔ R̂a+1 for a = 1, . . . ,7 as well asĝs → ĝs . The
Weyl transformationS11 leavesR̂ and all theK̂a

a inert except forK̂9
9 ↔ K̂10

10. The effect is to takêR9 ↔ R̂10
with all other variables being inert. This is consistent with the node labeled eleven being the last on the gra
of the IIB theory and one finds that all the Weyl transformations corresponding to all points on the gravity li
exchanges the corresponding radii.

The Weyl transformationS10 acts on the Cartan sub-algebra asH ′
10 = −H10, H ′

9 = H9 +H10 all other elements
being inert. Using Eq.(1.10)we find that these transformations imply that

(3.5)R̂′ = −R̂, K̂ ′a
a = K̂a

a.

Using Eqs.(2.9) and (3.3), the effect on the physical variables is given by

(3.6)Â′ = −Â, h′
a
a = ha

a

Which in turn implies that

(3.7)ĝ′
s = 1̂

ĝs

, R̂′
a = R̂a, a = 1, . . . ,10, l̂′2s = ĝs l̂

2
s .

This is just the non-perturbative S-duality transformations of the IIB theory which holds if the theory is compact
fied or not. This is to be expected as the node labeled ten just leads to an SL(2,R) transformation of the supergravi
theory. We note that in the eleven-dimensional theory, node eleven is the last node in the gravity line of thi
and the corresponding Weyl transformation swops the eleventh and tenth coordinates.

Finally, we consider the Weyl transformationS9 which induces the transformationsH ′
9 = −H9, H ′

10 = H9 +
H10, H ′

8 = H8 + H9 with all other elements of the Cartan sub-algebra being inert. The transformation on t
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physical generators is given by

K̂ ′a
a = K̂a

a, a = 1, . . . ,8,

K̂ ′a
a = K̂a

a + 1

4

(
K̂1

1 + · · · + K̂8
8
) − 3

4

(
K̂9

9 + · · · + K̂10
10

) − R̂, a = 9,10,

(3.8)R̂′ = R̂ + 1

8

(
K̂1

1 + · · · + K̂8
8
) − 3

8

(
K̂9

9 + · · · + K̂10
10

) − 1

2
R̂.

The corresponding effect on the fields of the IIB theory is

ĥ′
a
a = ĥa

a + 1

4

(
ĥ9

9 + ĥ10
10 + 1

2
Â

)
, a = 1, . . . ,8,

(3.9)ĥ′
a
a = ĥa

a − 3

4

(
ĥ9

9 + ĥ10
10 + 1

2
Â

)
, a = 9,10, Â′ = Â −

(
ĥ9

9 + ĥ10
10 + 1

2
Â

)
.

As a result the variables of Eq.(2.9)transform as

(3.10)R̂′
a = R̂a, a = 1, . . . ,8,

R̂′
a

R̂a

= l̂ 2
s

R̂9R̂10
, a = 9,10,

ĝ′
s

ĝs

= l̂ 2
s

R̂9R̂10

andl̂′s = l̂s . We recognise this as a double T duality seen from the IIB viewpoint.
We now briefly discuss the effect on the Weyl transformations ofE+++

8 for the IIA theory. The Weyl transfor
mationsSa , a = 1, . . . ,9 takesKa

a ↔ Ka+1
a+1 and soRa ↔ Ra+1. The Weyl transformationS11 leads to the

double T duality

(3.11)R′
a = Ra, a = 1, . . . ,8, R̃′

9 = l̃ 2
s

R̃10
, R̃′

10 = l̃ 2
s

R̃9
, g̃′

s = g̃s l̃
2
s

R̃9R̃10
, l̃′s = l̃s .

Finally, the Weyl transformationS10 induces the changes

h̃′
a
a = h̃a

a + 1

8
h̃10

10 + 3

32
Ã, a = 1, . . . ,9,

(3.12)h̃′
10

10 = h̃10
10 − 7

8
h̃10

10 + 21

32
Ã, a = 9,10, Ã′ = Ã + 3

2
h̃10

10 − 9

8
Ã

which leads to

(3.13)R′
a = Ra, a = 1, . . . ,9, R̃′

10 = l̃s g̃s , g̃′2
s =

(
R̃10

l̃s

)3 1

g̃s

,

(
l̃′s
l̃s

)2

= l̃s g̃s

R̃10
.

Clearly, this is a non-perturbative relation which is in some sense the IIA analogue of the SL(2,Z) symmetry of
the IIB theory.

4. Discussion

One could use the same techniques as used in this Letter to identify the relations between otherG+++ non-
linearly realised theories where there is a choice of gravity sub-algebra.

The eleven-dimensional, IIA and IIB theories are all expected to possess a non-linearly realisedE+++
8 symme-

try [2,6]. Although, their differences arise from the way their gravity sub-algebras are embedded, their c
symmetry allows one to establish a one-to-one correspondence between the fields of these theories[7]. In this
Letter, we have found the simplest consequences of this correspondence which are those for the fie
ciated with the Cartan sub-algebra ofE+++

8 . We have recover the known relations[8–11] between the thre
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theories. We also gave one example of the correspondence for a field outside the Cartan sub-algebr
covered the fact[12,13] that the axion field of the IIB theory dimensionally reduced on a circle can be
tified with the modulus of the two-dimensional torus used to dimensionally reduce the eleven-dimensio
ory.

The correspondence between the threetheories resulting from their commonE+++
8 symmetry implies many

more results, such as the eleven-dimensional origin of the massive IIA theory and the IIB space-filling br[7].
However, the purpose of this Letter is to demonstrate that the underlyingE+++

8 symmetry can be used to fin
results central to string theory in a very simple way.

As we noted above, the identifications of the fields of the three theories should hold even if one does not
a dimensional reduction. In this case one is the fields which depend on the generalised coordinates[17] of the theory
and, as explained in Ref.[7], one must then also swop the generalised coordinates of the theory. However
includes central charge coordinates as well as the usual coordinates of space–time and their interchange will hav
far reaching effects on the theory.

We also computed the effect of the Weyl transformations of the IIA and IIBE+++
8 theories on the diagona

components of the metric and dilaton to recover the expected U-duality symmetries of these theories. It would
interesting to compare these results with the different perturbative sub-algebras of theE+++

8 algebra for the IIA
and IIB theories found in[19].
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