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Abstract

The simplest consequences of the comnigr symmetry of the eleven-dimensiondlA and 11B theories are derived and
are shown to imply the known relations between these three theories.
0 2004 Published by Elsevier B.\Open access under CC BY license,

1. Introduction

It has been argued that eleven-dimensional supergrfiitywhen suitably extended possess a non-linearly
realisedE11 symmetry[2]. Furthermore, both the 1A supergraviy] and IIB supergravity theorigg,5], when
suitably extended, should also possess a non-linearly realisedymmetry[2,6]. As explained below, the three
different theories arise from the same underlyingedlra due to the different possible embeddingg&in of the
sub-algebras that describe graviy6]. Their commonE1; symmetry can be exploited to find explicit relations
between the eleven-dimensional, II1A and IIB non-linearly realised thepfletndeed, one can find a one-to-one
correspondence between the fields that occur in any two of these three theories providing a very concrete idea of
what M theory actually i$7]. In this Letter we derive the simplest of these relations which are those that involve
fields that are associated with the Cartan sub-algeb of\We recover the known relations between the eleven-
dimensional, IIA and IIB theories, when dimensionally reduced on a suitable torus, in a simple way. Originally
these relations were found by using a mie of string and solitonic properti¢®—13], but we will show that they
follow from the way the sub-algebra associated with the gravity sectors of the different theories are embedded
in E17. We also give an example of how the correspondence works for a field not associated with the Cartan
sub-algebra and derive the effect of the Weyl transformations oEQh%* theory for the IIA and IIB theories.
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An account of Kac—Moody algebras suitable for this Letter can be found in previous papers of the author, e.g.,
[14] or in the extended version of this Letter that appears on hep-th.

So little is known about Kac—Moody algebras that it is difit to calculate the genalrproperties of a non-linear
realisation based upon them. However, by setting to zkithe fields of the non-linear realisation, except those
associated with the Cartan sub-algebra,ghoup element takes the very simple form

g= eXD(Xg: da Ha)- (1.1)

The fieldsq, are then the only fields of the theory. Provided one restricts ones attention to operations that preserve
the Cartan sub-algebra it is then essentially trivial to examine the consequences. Such is the case for Weyl transfor-
mations. Indeed, these were considered in just such a setting fﬁgtﬁé non-linear realisation appropriate to the
eleven-dimensional theory and the Weyl transformations were sfitbyiio be are none other than the U-duality
transformation§18].

The algebraG*™+* contains a GL(D) sub-algebra, with generat&i%,, a,b = 1, ..., D which leads in the
non-linear realisation to the gravitgstor of the resulting theory whei® is the dimension of the space—time of
the theory. Thed p_1, or SL(D), part of this sub-algebra is obtained by takihg 1 dots of the Dynkin diagram of
Gt T which are connected to the very extended node, i.e., selectidg,amn sub-Dynkin diagram which contains
as an extreme node the very extended node. As we shall see, there is more than one way to do this in general anc
these lead to different physical theories. The part of the group eleméntof which contains the generators of
the preferred sub-algebra is of the form eXngb h."K%,) and carrying out the non-linear realisation one finds
that the vierbeir, * is identified withe,,* = (eh)ﬂ, where in this last equation, we tréags a matri§2,16]. This
GI(D), or in some cases the SL(D), sub-algebra is referred to as the gravity sub-algebra Bnd thdots of the
Dynkin diagram ofG ™+ which belong to the SL(D), oA p_1, sub-algebra are referred to as the gravity line.

The eleven-dimensional, I1A and 1B theories all have an underlyigg *, but they are distinguished by their
different gravity sub-algebras. The eleven-dimensional theory must possesg gnavity algebra and there is
only one such algebra. We must choose the gravity algebra to b greib-Dynkin diagram that consist of nodes
labeled one to ten. That is it is found by deleting node eleven iEgie" Dynkin diagran{2].

The lIA and 1IB theories are ten-dimewsial and so to find these theories we seekAgngravity algebra.
Looking at theE;{*Jr Dynkin diagram there are only two ways to do this. Starting from the very extended node
we must choose dg sub-Dynkin diagram, but once we get to the junction‘:g‘TJr+ Dynkin diagram, situated at
the node labeled 8, we can continue along the horizontal line with two further nodes taking only the first node to
belong to thedg, or we can find the finallg node by taking it to be the only node in the other choice of direction at
the junction. These two ways correspond to the IIA and IIB theories, respectively. Hence, in the lIA theory we take
the gravity line to be nodes labeled one to nine inclusive while for the 1IB theory the gravity line contains nodes
one to eight and in addition node eleVjgng].

The gravity sub-algebra is such th&f,, a = 1,..., D are part of the Cartan sub-algebraf **. For the
eleven-dimensional theory, these eleven generators span the Cartan sub-algebra and so one can also write the grou
element of Eq(1.6)in the form

1
g=exp<2ha“1(“a> =exp(h’ K). 1.2)

a=1
In the second equation we have used matrix notation whose meaning should be clear. The relationship between the
Chevalley generatord, and the physical generatok&’, can be written in matrix form a& = pH. It is given

by [2]
1 2
Ho=K%—K™ap1, a=1,...,10,  Hu=—3(K'1++K%)+ 3(K%+ K %0+ K ).
(1.3)
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We also record the relations

E,=K%41, a=1,...,10, Ep1 = R9%01L (1.4)

between the Chevalley generatdig and the simple root generators of SL(11) and the geneR§r*3 which is
responsible in the non-linear realisation for the introduction of the gauge4igld., of the eleven-dimensional
supergravity theory. Hence, keeping only fields assed with the Cartan sub-algebra implies keeping only the
diagonal parts of the metric and, as we will see below for the IIA and IIB theories, also the dilaton field.

The normalisation of the fields in the group element of @q7), like all the analogous such group elements in
this Letter, is chosen with reference to the normalisation of the generat«ﬁréé*b*f. However, one can carry out
the non-linear realisation CE;{J“Jr at low levels, as was done in effect[ib6] and in[20], to find the supergravity
equations in terms of these fields. By comparison with the formulation of supergravity in terms of ones preferred
fields one can find the relationship between the two sets of fields.

The form of theH,, of Eg.(1.8)can essentially be determined given that they must obeglE4)with the Cartan
matrix of E§ **, together with the knowledge of the simple roots generators of EEt0)and that tensors, such as
R“4293, transform in the obvious way under GL(11), i 4, R*192%3] = §* R°92%3 4 §72 R°93%1 4 §3 R°912,

We denote quantities in the IIA and IIB theories with a tilde and hat, respectively. For these theories the Cartan
sub-algebra of the gravity sub-algebra, i.e., §f&,, a = 1, ..., 10 for the IIA theory and th&“?,, a =1, ...,10
for the 1IB theory, account for only ten of the eleven generators of the Cartan sub-algeEgafréf The final
commuting generator is associatedhathe dilaton which appears in the lland IIB theories. We denote this
generator by the symbat and the dilaton byd with appropriate tildes or hats. As such, for the IlA theory the
E¢** group element of Eq1.6) can be written in terms of the physical generators in the form

10
g):exp<Zl§a“I?“a> exp(AR) = exp(h’ K). (1.5)

a=1

In the second equation we have used matrix notation for whiisha column vector whose first ten components
areh,®, a =1,...,10 and whose eleventh componentisand similarlyK has its first ten components &g,

and eleventh componem The Cartan sub-algebra generatéksof E11 and the physical generatoks’,, a =
1,...,10 andR are related byH = 5K which is given by[2]

Ho= R =K1, a=1..9,  Hio=—g(Ri++R%) + L K% >R,

H11=—%(1511+~-~+1€88)+§(1€99+1€1010)+1é~ (1.6)
While the E, Chevalley generators dfg ** are given in terms of II1A generators 3]

E,=K%41, a=1,...,9, E10= R, E11= R%10, (1.7)

The fields associated with the generat&fsand R%” in the non-linear realisation are the one form and two form
fields of the lIA supergravity theory.

Equating the Chevalley generatdiis of Egs.(1.8) and (1.11)ve find that the generators in the physical basis
of the eleven-dimensional and IlA theory are related2jy

K% =K%, a=1,...,10, K= R. (1.8)
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For the 1IB theory, the generatof§®,, a = 1, ..., 10 andR span the Cartan sub-algebraf ** and so the
group element of Eq1.6)can be expressed as

10
8= exp( Zﬁa“k“a> exp(AR) = exp(h! K). (1.9)

a=1

In the second equation we have used matrix notation for whista column vector whose first ten components are

ha®,a=1,...,10 and whose eleventh componentisand similarlyK has its first ten components &', and
eleventh componem. The relationship between the Cartan sub-algebra genen‘a,;cnv:sEE‘{JFJr and the physical

generatork“,,a =1, ...,10 andR can be written in the fornt/ = 5K and it is explicitly given by[6]

10
Hy=K% K1, a=1...8 H9=1€99+1€1010+1§—221€aa,
a=1
_ D _ 9 >10
Hipo= —2R, Hi1=K79— K 1. (1.10)

The Chevalley generatofs, of E4 ", as they appears in I1B theory are given[by
E, =1€“Q+1, a=1,...8, Eg:]églalo, E]_o:]%z, E11=I€910. (1.11)

The fields associated with the generatéﬁé and R, are the NS—NS two form and the axighof the 11B theory.
The last equation reflects the fact that the node labeled eleven is the last node in the 1IB gravity line.

Equating the Chevalley generatdils of Egs.(1.8) and (1.11)ve find that the generators in the physical basis
of the eleven dimensional and 1B theory are relateddy

9
. X 1 2
K% =K%, a=1,...,9, K100= 3 > K4 — S (K%0+ KM),

a=1 3
A 1
R = —E(Klolo— Kllll). (1.12)

For completeness we note the relationship between the 11A and 1B physical generators;

9
A - A 1 ~ 3 ~
a __ a _ 10 — a _ ~ 10 _
K% =K%, a=1,...,9, K 10_4§1Ka 7 K%0— R,
a=

R, (1.13)

Bx
Q
Q
|
|~
>
5
5
_|_
IR

We note that the generator corresponding to the ndateéd ten in the eleven-dimensional theorki¥’; 1 and
so is associated with the exchange of the ten and eleven space—time coordinigeis, tlub 11B theory it isR2
which is the non-perturbative part of the @,.Z) symmetry of the IIB theory.

2. Relations between the eleven-dimensional, |1 A and | 1B theories

As explained in Ref{7], the commorEgJr+ origin of these three theories implies a one-to-one correspondence
between the fields of the three theories. In particular, any field in the non-linearly realised IIB theory arises in the
group element as the coefficient of a particular generator which is in the Borel sub-algeﬁg*a“tf however,
the generators of§ ** are essentially unique and so we can identify this generator from the viewpoint of the
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eleven-dimensional theory. For example, the component gravitonifiéfcbf the 11B theory is associated with the
generatork °1o which is equal to the Chevalley generatoy; of Eg *+. However, from the eleven-dimensional
perspective this Chevalley generator is equal to the geneRdidthat is associated with the fielth 1911 which

is one component of the third rank anti-symmetric field of the eleven-dimensional supergravity theory. In this
section, we will find these correspondences at the simplest possible level.

2.1. The correspondence between the eleven-dimensional and 11 A theories

To find the correspondence for the Cartan sub-algebra we simply equate the two group elements in the eleven-
dimensional and I1A theories of Egd..2) and (1.5)respectively;

11 10
g=2g or exp(Zha”K”a> = exp(Zfza”I?"a> exp(AR). (2.1)
a=1 a=1

Using Eq.(1.8), we conclude that

N 1 . 3
L =het + éhu“, a=1,...,10, A= éhllll. (2.2)

We expect these relations to hold even if one does not carries out dimensional reduction of the theory on a torus,
but then one must also carry out a corresponding exchange of the generalised coditiifatesvever, if we do
dimensionally reduce some of the dimensions on a torus then it is useful to change to the variables

R
ha“zlnl—”, a=1,...,11, (2.3)

p
wherel,, is the eleven-dimensional Planck scale. We note that in the group elements used to construct the non-
linear realisation the fields are dimensionless and so the resulting part of the achiospace—time dimensions
that has two space—time derivatives is muItipIiedlpSP_z). In particular, we will apply the change of variable to
the constant background part of the fields. For a rectangular torus, the coordinate and parameterisation invariant
length of its cycle in the direction i5, [ ¢,* dx® = R,,.

Similarly we introduce the analogous IlA variables by

he=In=2%, a=1,...,10, A=Ing,, (2.4)

wherei,, is the ten-dimensional Planck scale of the IIA the@gmparing the low energy action with that calcu-
lated from string scattering allows us to identify the string séaty (7,)8 = g2(/;)® andg, in Eq. (2.4)with the
string coupling constant in the usual way.

The last relation in E((2.2)implies that

3

. R11

(&)%= (z_) . (2.5)
p

Since the eleven-dimensional theory after reductioa circle coincides with the 11A theory we may takg = R,,,

a=1,...,10 and then we find that

L2 3_ 73
= =gs Or lp = (l5)78s. (2.6)
Iy
The first relation in the above equation together with &g5) implies that% = lis Egs.(2.5) and (2.6pre the

4 4
known relations between the IlA theory and the so-called eleven—dimensionall M theory. They encouraged the idea
that eleven-dimensional M theory is the strong coupling limit of the I1A string thgtdy11]
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2.2. The correspondence between the eleven-dimensional and 11B theories

We now find the analogous relations between the fields, which are associated with their Cartan sub-algebra, of
the eleven-dimensional and II1B theories. Equating the eleven-dimensional and 11B group elemen{d df)aqd
Eq. (1.9)we find that

11 10
g=25 or ex Zha“K“a> =exp<2fza“1€“a> exp(AR) (2.7)
a=1 a=1
which using the identifications of Eg@l..12)implies that
A 1. 2. 1. 2. 1.
ho® =he 4+ Zh1o'®  h100=—Zh10'°— ZA,  hptlt=—Zhio!%+ ZA. 2.8
a a* +3h10 10 M0 — 3 11 Mo+ 3 (2.8)

These relations hold without compactifications, but for a torus compactification it is appropriate to adopt the vari-
ables

he"=In=2, a=1,...,10, A=Ing,, (2.9)

wheref,, is the Planck length in the 1IB theory arf its string coupling. Introducing the IIB string scale by
(,)® = §2(l)® the relations given in Eq2.8)become

74 4 6 74 6  74s4

l58s _ 5 h_ Ls h_lsgf 2.10
3 = Rio, 6 = 7452’ 6 = pa (2.10)
p p R8s P Ry

respectively. These are equivalent to the more familiar relations

3 3

R Rll A l N l

g=——, 2= Rypp=-" (2.11)
R1io R11 RioR11

which relate the eleven-dimensional theory reduced on rectangular torus witlR§g@ind R11 to the 1IB theory
reduced on a circle of radiug; o [9,12,13]

As explained in Ref[7], there is a one-to-one map between all the fields of the 11B and the eleven-dimensional
non-linearly realised theories and not just those associated with the Cartan sub-algebra. We close this section
by giving a simple illustration of how this map works for a field outside the Cartan sub-algebrg1&)sand
(1.11)state thatE1o = K103 = R, and as explained at the beginning of this section this implies that the eleven-
dimensional fieldr10'! corresponds to the axion fielfl of the 11B theory. We now enlarge the fields which are
non-zero by including these fields in addition to those associated with the Cartaaigsliba. As a result, the
eleven-dimensional group element takes the form

11
g= exp( ZhaaKaa> exp(hlollKloll). (2.12)
a=1

Putting only the Cartan sub-algebra elements in the first exponential will allow us to perform the computation
more easily, but it is not quite the form given in the non-linear realisation of R2f66] and used to find the
eleven-dimensional supergravity theory. As a result, we must use the form of the vierbein that follows fgom the
of Eq.(2.12) its non-vanishing components are given by

10 10
eh0'®  oh10'%p, 11

a
eﬂ:SZ, a,pn=1,...,9, ef:( i1 ) , a,n=10,11. (2.13)
m

0 e
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On the other hand, the IIB group element can be written as

10 10
6= exp(Zﬁa“I%“a> exp(x R2) exp(AR) = exp(Zfza“IQ“a> eXp(AR) exp(e? 7 R2). (2.14)
a=1 a=1

The first form ofg is the one used to construct the non-linear realisation of 11B supergra\j&y while the second
form is suitable for our companson with eleven-dimensional group element. To change from one form to the other
we used the relatlo[]R R2] [Hlo, E19l=—E10= —R2

Settingg = ¢ and using Eqs(l 12), (1.4) and (1.1ye find the same relations of E(@.8)as well as

eAg = hiott (2.15)

Let us now suppose that the ten and eleven directionsecélgwven-dimensional theory are a torus with lengths
R1pandR1;. To discuss the properties of the torus it is simplest to make a rigid coordinate transformation from the
coordinates:” = (x19, x11) to the coordinates” = (y1°, y11) that diagonalises the metric in these directions. In
particular, we will diagonalise the veirbein in the ten and eleven directions. We denoted the latter by the matrix
which can be read off from the last relation in E£8.13) The transformatiom — Ae given by

A=(é ?>, (2.16)

wherem = —ji—‘l’i, has the desired result. The new veirbein has the same diagonal components as the old one. Using

Eq.(2.13)we find thatn = —hlollexp(hlolo— h1111). In the diagonal coordinateswe take the cycles of the torus
to be given byl =u, y19=0; 0<u <1 and }0 =v, y11 0; 0< v < 1. The coordinate and parameterisation

invariant length of the first cycle |$0 elllld‘ du = e11* = R11 and similarly with the invariant length of the
second cycle is given by g% = R10. Hence, we still have the relatio%—é =exp(A) = §, of Eq.(2.11)

In terms of the originat coordinates which are related by= A” y the cycles of the torus ard® =0, x11 =
0<u<1and 0=y, x11=mv; 0< v < 1. If we define the complex coordinate= x11 — i x19 then the periods
corresponding to the first and second cycleszare z = 1 andz — z + 1, respectively, where = t1 + i 72 with
71 = 1 andr; = —m. Hence, the modulus parameter of the torus is given by

A em=3. (2.17)

72
This agrees with the identification of Refd2,13] after one takes into account that one must make the field
redefinitiony — exp(—A)x to find thex of [6] from that of[12] in order to gain agreement between the field
equations of the two references. By a judicious choice of coordinates we can[HY,iarrange forro to be

exp(—A), but the physically relevant quantil% remains the same.

3. Weyl transformationsin thellB and I A theories

The Weyl reflectionS, corresponding to the simple ro@f on any weigh{s is given byS,8 =8 — 2((0‘[8 "(‘;‘a))
For the simple roots this becomes

(otp, o)

(g, oq)

The action of the Weyl transformatidfy on the Cartan sub-algebra of a Kac—Moody algebra is given by

Sqop =ap — 2 oy = (sa)p . 3.1)

Hyy = SqHp = (54)5° He. (3.2)
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Since the Weyl group acts on Cartan sub-algebra generators to give Cartan sub-algebra generators it makes sens
to consider their action on elements restricted to be of the form ofIEf). Writing the group element in matrix

form g = exp(g” H), we conclude that the Weyl group acts on the fieldssg’” =¢7s, orq’ =s"q ass® = 1I.

Clearly, these transformations hold for the eleven-dimensional theory and the IIA and IIB theories.

To find the physical effects of the Weyl transformations we need to find their action on the physical variables
h,* and also the dilaton field, for the cases of the IIA digltheories, However, the relationship between the
Chevalley generatord, and the physical generators depends upon which theory we are considering and so the
effect of the Weyl transformations on the physical get@saand fields is different for each theory. Using matrix
notation, in the eleven-dimensional theory we may wHte= p K and then the effect of the Weyl transformation
isS,K =K' =p~Ls,pK =r,K and so the physical fieldstransform ag’ = raTh. However, for the 1I1B theory,

H = pK and so we have the equations

SK =K' =p"Ys,pK =7, K and W' =#lh. (3.3)

The equation for IIA being found by replacifig by ”s. Using Eqs(2.3), (2.4) and (2.9)he effects of the Weyl
transformations can then be readily deduced on the radii of any compactified directions and the appropriate length
scales and coupling constants.

This calculation was carried out in R¢15] for the eleven-dimensional theory and we briefly summarize the
result. The Weyl transformatiorss,, a = 1, ..., 10 implied thatR, <> R,1, I, — I,. However,S11 induces the
transformations,'® = ho® + 3(he® + h10'® + h11'Y), a =1,...,8 andh,'® = hy® — §(ho® + h10'® + h1a'h),

a =9,10,11 which in turn implies that

I3 I3 I3 16
Ry=—2—, Ryg= —2—, Ry =—2—, )3 =—r— (3.4)
RioR11 R11Rg R9R10 RgoR10R11

For the 1B theory, the Weyl transformatios, a =1,...,8 correspond?“ DN 13“+1a+1 fora=1,...,8as
well asR — R. The effect on the variables of E(R.9)is R PR Ra+1 for a= 1,...,7 as well asg; — g;. The
Weyl transformatioriy leavesk and all thek ¢, inert except fork 99 < K 10;,. The effectis to takeRg PR Rlo
with all other variables being inert. This is consistent with the node labeled eleven being the last on the gravity line
of the 1IB theory and one finds that all the Weyl transformations corresponding to all points on the gravity line just
exchanges the corresponding radii.

The Weyl transformatiofi;o acts on the Cartan sub-algebratég = — Hio, Hy = Hg + Hip all other elements
being inert. Using Eq(1.10)we find that these transformations imply that

R =—R, K% =K%, (3.5)
Using Eqs(2.9) and (3.3)the effect on the physical variables is given by

A=—A, KhT=h (3.6)
Which in turn implies that

g;:(éi, R =R,, a=1,...,10, [?=32 (3.7)
N
This is just the non-perturbative S-duality transformations of the 11B theoiigtwolds if the theory is compacti-
fied or not. This is to be expected as the node labeled ten just leads tgarRSkransformation of the supergravity
theory. We note that in the eleven-dimensional theory, node eleven is the last node in the gravity line of this theory
and the corresponding Weyl transformation swops the eleventh and tenth coordinates.
Finally, we consider the Weyl transformatisg which induces the transformatioty = — Hg, H;y= Ho +
Hio, Hg = Hg + Hg with all other elements of the Cartan sub-dige being inert. The transformation on the
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physical generators is given by
K% =K%, a=1,...,8,
. N 1,. . 3, N .
K'%=K%~+ Z(Kll +o+ KB) — Z(K% +---+ K0~ R, a=0910,
A A1 s N 3,4 N 1.
R =R+ é(Kll+"'+K88) - é(K99+-'~+K1010) -5k (3.8)
The corresponding effect on the fields of the IIB theory is

N 7S 1.
h;a=haa+z<h99+hlolo+§A>, a=1,...,8,

N N 3/~ N 1. A " N N 1.
h=he® — Z(hgg + h1o"0+ EA), a=9,10, A =A- <h99 +h10'+ EA). (3.9)
As a result the variables of E(R.9)transform as
A~ ~ R i2 5/ j2
R =Ry a=1..8  =4=_-5_ 4=910, S:-_ (3.10)
Rs  R9Ri1o 8 RoR10

and!/ = I;. We recognise this as a double T tiyaseen from the 11B viewpoint.

We now briefly discuss the effect on the Weyl transformationE@TJr for the 1IA theory. The Weyl transfor-
mationssS,, a = 1,...,9 takesk“, <> K*t1, 1 and soR, <> R,.1. The Weyl transformatios;; leads to the
double T duality

R =R,, a=1,....8 R’:E R :ii g = 2 I'=I, (3.11)
¢ a’ Y ° Rio’ 10 Ro’ * RoRwo
Finally, the Weyl transformatiofi;o induces the changes
~ ~ 1~ 10 3 ~
h;azhaa-i-ghlo +3—2A, a:l,...,9,
. - 7 - 21 . - . 3. 9.
o0 =h1o%— 710"+ 224, a=9,10, A=A+ —h1o'°—ZA 3.12
10 107~ ghio”+ a +5h10” — 2 (3.12)
which leads to
o 3 77\ 2 7 ~
- - B R10 1 lsgs
R =R,, a=1,....,9, R.y=Ig, ’Zz(~ )~—, (—) =287 3.13
a a 10 s8s 8 7. Zs 7. R0 ( )

Clearly, this is a non-perturbative relation which is in some sense the IIA analogue of (ReZ3lsymmetry of
the 1IB theory.

4. Discussion

One could use the same techniques as used in this Letter to identify the relations betwe&hndtharon-
linearly realised theogis where there is a choice of gravity sub-algebra.
The eleven-dimensional, IIA and 11B theories are all expected to possess a non-linearly rEg‘Ifs%dymme-

try [2,6]. Although, their differences arise from the way their gravity sub-algebras are embedded, their common

symmetry allows one to establish a one-to-one correspondence between the fields of these[Tebridsis

Letter, we have found the simplest consequences of this correspondence which are those for the fields asso-

ciated with the Cartan sub-algebra Eg . We have recover the known relatiof&-11] between the three
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theories. We also gave one example of the correspondence for a field outside the Cartan sub-algebra and re-
covered the facfl2,13] that the axion field of the IIB theory dimensionally reduced on a circle can be iden-
tified with the modulus of the two-dimensional torus used to dimensionally reduce the eleven-dimensional the-
ory.

The correspondence between the thitesories resulting from their commaty ** symmetry implies many
more results, such as the eleven-dimensional origin of the massive IIA theory and the IIB space-fillinyhrane
However, the purpose of this Letter is to demonstrate that the underE;g”ﬁLgJr symmetry can be used to find
results central to string theory in a very simple way.

As we noted above, the identifications of the fields of the three theories should hold even if one does not perform
a dimensional reduction. In this case one is the fields which depend on the generalised codidihaftése theory
and, as explained in Refi7], one must then also swop the generalised coordinates of the theory. However, these
includes central charge coordinatesveell as the usual coordinates of spaaee and their interchange will have
far reaching effects on the theory.

We also computed the effect of the Weyl transformations of the I1A andlilgB“r theories on the diagonal
components of the metric and dilaton to recover theeeigd U-duality symmetries of these theories. It would be
interesting to compare these results with the different perturbative sub—algebrasﬁgﬁﬁealgebra for the 1A
and |1B theories found il 9].
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