
Theoretical Computer Science 103 (1992) 387-394

Elsevier

387

Note

A simple proof of a theorem
of Statman

Harry G. Mairson”
Cambridge Research Laboratory, Digital Equipment Corporation, Cambridge, MA 02139, USA

Communicated by A.R. Meyer

Received November 1991

Revised January 1992

Abstract

Mairson, H.G., A simple proof of a theorem of Statman, Theoretical Computer Science 103 (1992)

387-394.

In this note, we reprove a theorem of Statman that deciding the PT-equality of two first-order

typable A-terms is not elementary recursive (Statman, 1982). The basic idea of our proof, like

that of Statman’s, is the Henkin quantifier elimination procedure (Henkin, 1963). However, our

coding is much simpler, and easy to understand.

1. Introduction

A well-known theorem of Richard Statman states that if we have two A-terms

that are first-order typable, deciding whether the terms reduce to the same normal

form is not Kalmar elementary: namely, it cannot be decided in _&(n) steps for any

fixed integer k 3 0, where n is the length of the two terms, and f”(n) = n, A+,(n) =

2’1”“. The theorem is often cited, but in contrast, its proof is not well understood.

In this note, we give a simple proof of the theorem. The key idea that vastly simplifies

the technical details of the proof is to use fist iteration as a quantifier elimination

procedure.

* On leave from Brandeis University, Waltham, Massachusetts. Supported in part by NSF Grant

CCR-9017125, and grants from Texas Instruments and from the Tyson Foundation.

0304.3975/92/$05.00 @ 1992-Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82565613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

388 H.G. Mairson

2. Preliminaries

2.1. Deciding truth offormulas in higher-order type theory

Let 9& = {true, false}, and define 9 k+l =powerset(3/,). Simple logical formulas

usually quantify over elements of go, but we consider the truth of formulas allowing

higher-order quantification, that is, over the elements of 9Jk, for all k 2 0. Let xh, y’, .z’

be variables allowed to range over 9 I, ; we define the prime formulas as x0, true E y ‘,
falser y’, and x’ E y“+‘. Now consider a formula @ built up out of prime formulas,

the usual logical connectives v, A, +, 1, and the quantifiers V and 3: is @ true

under the usual interpretation?

As shown by Meyer, this decision problem requires nonelementary time [7].

Statman’s theorem is a reduction to this problem: it shows how to use typed lambda

calculus to simulate the logical connectives as well as a quantrjier elimination

procedure to reduce @, in the logical and A-calculus sense, to either true or false.

We indicate how list iteration is a straightforward way to code quantifier elimination.

In addition, we give a generic reduction; that is, how to simulate an arbitrary Turing

machine for nonelementary time, by reduction to our A-calculus problem. This

makes the presentation self contained.

2.2. List iteration

Let {x,, .x2,. . . , xh} be a set of A-terms, each of first-order type CY; then

L=Ac:~+r’r.An:T.cx,(cx,...(cxhM)...)

is a A-term of type (cu+~+r)+r+~, for any type 7. We abbreviate this list

construction as [x,, x2,. . . , xk]; observe that the variables c and n abstract over the

list constructors cons and nil. In the simply typed A-calculus, list iteration can be

used to implement primitive recursion. For example, given A-terms succ and 0 for

zero and successor on Church numerals, the length of a list of terms of type a can

be computed by

where Int = (Y+ v)+ y-2 v, and 7 is set to Int in the above definition of L.

List iteration is ideal for realizing quantifier elimination: imagine that we code

9Jk as a A-term Dh which lists all elements of Sk, each coded appropriately as a

A-term of type Ah, and we have coded a Boolean function @ as a A-term & of type

Ak+ Bool. Then the truth of Vx’.@(x“) can be coded as the A-term

D,(hxh:Ak.ArvD(6xh))true, and the truth of 3x”.@(x“) can be coded as the A-term

Dk(Axh:A,.oR(6xk))false, where AND, OR, true and false are A-terms coding up

Boolean logic. Observe, for example, that the latter reduces to oR(&,)

(oR(&e,). . . (oR(&e,)fafse) . . .), w er e, is a A-term coding thejth element of 9kr h e

lsj~t=(9~j. A s we will see, the prime formulas can also be simulated using list

iteration.

A simple proof of a theorem of Statman 389

3. The proof

3.1. Booleans

Let o be any first-order type, and define Boo1 = u -+ u + o. The Boolean values

and logical connectives are interpreted by their usual Church codings:

true = hx:u.Ay:u.x:Bool,

false - Ax:u.Ay:~~.y:Bool,

AND = Ap:Bool.hq:Bool.Ax:~.Ay:a.p(qxy)y:Bool+ BooI+ Bool,

OR = Ap:Bool.Aq:Bool.Ax:u.Ay:u.px(qxy):Bool+ BooI+ Bool,

NOT = Ap:Bool.Ax:u.Ay:u.pyx:Bool+ Bool,

IF = Ap:Bool.Aq:Boot.oR(Nor~)q:Bool+ BooI+ Bool.

3.2. Coding elements of the type hierarchy

The set 2&, is represented as the list D,, containing true and false:

D,, = Ac:Bool+~+~.An:~.ctrue(cfalsen):(Bool+~+~)+~+~.

We abbreviate the type of Do as A, ; in general, let A,,, = AT, where for any type

LY, we define CU*=((Y+T+T)+T+T, and A,=Bool.

Next, for each integer k > 0, we define a A-term Dk of length O(k) representing

9,, as a list of (recursively defined codings of) all subsets of elements of 23_, in

the type hierarchy. To do so, we must introduce an explicit powerset construction,

so as to build succinct terms coding these lists. First, we define a term double where,

given an element x:cy and a list e:cr** of lists of elements of type (Y, double appends

e to a list derived from adding x to each list in l. For example, when (Y = Bool,

doublefalse [[1, [true]] reduces to [[false], [false, true], [1, [true]].

double=Ax:Lu.Ae:(cY*+T-+~)+~+~.

Ac:(Y*+ 7’ -.An:r.

4?(Ae:cr*.c(Ac’:a + T+ T.An’:T.c’x(ec’n’)))(/cn)

double: cy + a**+ LY**.

Notice that if a A-term A* coding a list of A-terms of type (Y has type LY*=

((Y+T+T)+T+T for any T, then A* also has type (Y*=((Y+(Y**+(Y**)+LY**+

a**. We may then define

powerset=AA*:(cw+a”“*+a**)+a**+cu**.

A*double(Ac:a*+T-+T.An:T.

c(Ac’:cl + T+ T./in’:T.n’)n)

powerset: ((~~+a*“+a**)+a**+a**)+a**.

390 H. G. Mairson

The function of powerset on lists is like that of exponenfiation realized via iterated

doubling on Church numerals, since Church numerals are just lists having length

but containing no data.

Now we can succinctly define terms coding levels of the type hierarchy:

D,=powersetD,:A,=(A,+T+T)+T+T,

Dz=powersetD,:A,-(A,+~+~)+~+~,

D n+, =powersetD,:A,+,=(A,+,+~+~)+7+~.

In the definition of Dk+, , the leftmost occurrance of powerset is given type ((A, +

A~+z + Ak+z) + A,+, + Ak+J+Akt2. Note that the length of each A-term Dk, with

type information erased, grows as O(k). However, the length of its normal form

grows as fI(g(k)), where g(0) = 1, g(t + 1) = 2R”‘.

3.3. Coding set theory in the Dk

There is a natural idea of equality between elements of LSL; when these elements

are themselves sets, we can also define the idea of subset and of element of a set.

We realize the prime formulas of type theory using these concepts, together with

list iteration. For each integer n > 0, we define terms eq,, subset,, and member,,.

When n = 0, we define only

eq,= Ax~:BooI.~~":BooI.oR(ANDxOY()) (AND(NOTX')(NOTJI"))

as a basis; eq, is just the Boolean “iff”. For n = k + 1, we set r- Boo1 in the above

definitions of Aj, so that A-terms of type Aj can be used to iterate a Boolean function,

and define

memberk+, = Axk:Ak.Ayh+‘:AL+, .

yh+‘(Ay”:A,.oR(eq,x’y”))fu/se

:A, + Ak+, + Boo1

subsetk,, = h~‘~‘:A,+,.Ay’+‘:d,+,

xk+‘(Axk:Ak,AND(memberk+, x’y’+‘))true

:A L+, + Ak+, + BooI

eq,,, = Ax ‘+‘:Ak+,.Ayh+‘:AL+, .

(Aop:A,+, -+ A,,, + Bool.

AND(Ofd+'yk+')(OPyk+'Xk+'))SUbSe't~+,

:Ak+, + Ak+, + Bool.

A simple proof of a theorem of‘ Statman 391

The A-terms defining member,, subset,, and eqh, with type information erased, all

have length O(k). Note how the trick in the definition of eq,,, is essential: writing

subset,+, twice causes exponential blowup in the term size.

The above definitions give a typed h-calculus interpretation to all the logical

formulas in type theory, in the spirit of their standard logical meaning. In particular,

true and false are interpreted as true and @se, and the prime formula x’ E y’+’ is

interpreted as memberA+, x“y” ’ ‘, of type AC)= Bool, reducing to either true or false

when xh and y’+’ are closed A-terms. The logical connectives, interpreted by their

Church codings, take arguments of type Bool, producing terms of type Bool.

Quantifier elimination, as described earlier, interprets Vx’.@(x”) as the iterated

conjunction Dk(hxI‘:Ak.AND(&x’))true, where 6 is the interpretation of @; the

complementary interpretation of Bx’.@(x”) is the iterated disjunction D,,

(Ax”:A~.OR(~xI‘))false.

As a consequence, a formula @ in type theory is true if and only if its typed

A-calculus interpretation &:Bool is fin-equivalent to true = Ax:~.Ay:c~.x:Bool.

3.4. Remarks on separation theorems in A-cakzdus

It is instructive to realize how the notion of nonrecursive in the context of untyped

A-calculus functions precisely in the same manner as the notion of non-Kalmar-

elementary functions in the first-order typed A-calculus [9]. Scott’s undecidability

theorem (see, e.g., [.5]) states that no two nonempty, disjoint sets of A-terms are

recursively separable: given such sets A and IT of A-terms closed under pq-equality,

no algorithm can decide, given an arbitrary x chosen from A u ‘4, whether x E A,

or x E ‘4. Statman’s Theorem easily yields a similar corollary, where .I and I% contain

terms of some fixed type 7, if we replace “recursive” with “Kalmar elementary”.

The proof is simple. Let a and b be arbitrary elements of 4 and /1, respectively,

and let E:r+ T+ 7 be a A-term coding an expression E in higher-order type theory.

Then Eab is pn-equivalent to a if E is true, and to b if E is false. Hence deciding

membership of Eab in A or A? is as hard as deciding the truth of E, which cannot

be computed in elementary time.

Statman also gives another corollary [9]. Let A be a set of A-terms of fixed type

T, closed under /3n-equality, where membership in I4 is decidable in elementary

time. Then 11 contains all or none of the terms of type 7. The proof is trivial: suppose

by contradiction that 4 is nonempty, yet there exists a term b of type 7 not in n.

Let i be the A-terms of type r which are pn-equivalent to b, and repeat the argument

of the previous corollary.

4. A generic reduction

TO complete the exposition, we describe how type theory-equivalently, first-order

typed A-calculus-can be used to simulate an arbitrary Turing machine for non-

elementary time.

392 H.G. Mairson

4.1. Basic arithmetic in type theory

Since 19k+,l = 21fiA’, it is easy to show that each element xh+’ E gk+, can be thought

of as an integer, where the elements of xk+’ are just the bit positions set to 1 in its

binary encoding. We can then define cIr+, and succk+, over these elements. As a

consequence, simulating a Turing machine is easy: successor is used to move the

tape head.

To define a total order ch, we take

x 0 v- 0 0 <“_V =1x r\y,

Xh+l
<k+ly

k+'~3Zk.ZhEyk+'~=h~Xk+'r\~lM'h.Wk <,Zh

+ (wkExk+'~wW"E yh+‘).

(Translation: x < y if the zth bit in y is 1, but in x is 0, and the bits of lower order

than z are identical in x and y.) Successor is then defined as:

succk+l x (
!%+I

,y h+')-3zh.zkEy
h-cl A zhgxh+'

A VWk.Wk <kzk+(WkEXk+'A WkFz y“+‘)

A VWk.Zk <k wh + (Wk E Xki-‘H Wk E yk+‘).

(Translation: y =x + 1 if the zth bit of y is 1, and in x is 0; for the bits w of lower

order than z, the wth bit of x is 1 and of y is 0, and the bits of higher order than

z are identical in x and y. The zth bit is where the “carry” propagates.)

4.2. Simulating a Turing machine

An element x”+’ E gn+, can code the tape contents, where the tape is of length

19Ji),(, and tape cells hold a 0 (true) or 1 (false). xnt’ can also code the head position,

as long as Ix’+‘/ = 1. An ordered pair (x”+‘, y”“) coding tape contents and head

position can be represented in the standard set-theoretic way as {{I}, xnt’}, {y”“}} E

9 ,,+3; if we code the (finite) machine state into x”+‘, then a Turing machine ID

can be represented as an element of 6Bnt3. Using the logic of type theory, we can

now code a binary relation s” E 9Dn+3 x 9H+3, where s’(ID, ID’) means ID’ is reachable

from ID in one machine transition. The logical specification of $ is straightforward,

more or less on the level of the detailed coding in Cook’s Theorem [l, 21. Let

s^:A n+3+An+3 + Boo1 be the A-calculus interpretation of s”; instantiating Boo1 = (T+

(T+ o in this type as A,+,+ An+3+A,+,, we can define the transition function

6:A,+, --$ A,,,, as:

6 = hlD:A,,+,.D,+,(AID’:A,+,. hZD”:A,+,.(G^IDZD’)ZD’ZD”)emptyset,+3.

(Using the list Dn+3 of putative IDS, return the leftmost element ID’ of the list

where s^ ID ID’ reduces to true. The term emptyset,,,, is an arbitrary element of type

Ant3-the empty set of that type will do as well as any other term.)

A simple proof of a theorem of Starman 393

Now that we have a term 6 realizing the transition function, the rest is easy, and

here the full power of the simply typed A-calculus comes center stage: we use the

Church numerals to iterate 6. Writing ? = hs.hz.s(sz), we have the typing

22.. ~Z:(A,+,+ A ,I+4 + A,+, + &+3,

where

C-22.. .!@I D, hID.6(6(. . .(61D). . .)):A,,+x+A,+~.

The rightmost 2 has type (A,,, + A n+3) + An+3 + A,,, ; if the jth rightmost 2 has type

K, then the (j + 1)st rightmost 2 has type K + K. If there are n occurrances of 2, there

are g(n) applications of 6, where g(0) = 1, g(t + 1) = 2”“‘. Apply C to another

A-term coding an initial ID, extract the final state, and check if it is an accepting

state: the answer is of type Bool.

5. Final comments

Just as philosophy is said to be a long footnote to Plato, complexity results of

this genre are a footnote to Cook’s Theorem. The basic insight of Cook was that

logical formulas could be succinct representatives of machine computations, and

from this came a characterization of NP-completeness: a propositional formula

existentially quantified over Booleans. When the quantifiers were allowed to alter-

nate, more expressive power was gained, with completeness results for the

polynomial-time hierarchy, and ultimately PSPACE-completeness. By successively

increasing the range of quantification to sets of Booleans, sets of sets of Booleans,

etc., it was possible to quantify over Boolean functionals, capturing more and more

powerful complexity classes.

Statman’s Theorem just uses the typed A-calculus to realize the quantifier elimina-

tion procedure of Henkin [4] on these succinct formulas. The recent results on

complexity of type inference for higher-order typed lambda calculi [6,3] follow a

similar development, except that logical characterizations of computation are

replaced by characterizations based on first-order unification. Although details of

the type inference arguments are technically more complicated and quite different

from Statman’s result and its various analogues, the structural similarity-with

virtually identical complexity-theoretic consequences-is that higher-order quan-

tification is used to succinctly compose functions, and to generate long reduction

sequences.

References

[l] S.A. Cook, The complexity of theorem-proving procedures, in: Proc. 3rd Ann. ACM Symp. on the

Theory ofComputing (1971) 151-158.

394 H. G. Mairson

[2] M.R. Carey and D.S. Johnson, Computers and Inrractibiliryc A Guide to the Theory oJNP-Complete-

ness (Freeman, San Francisco, 1979).

[3] F. Henglein and H.G. Mairson, The complexity of type inference for higher-order typed lambda
calculi, in: Proc. 18th ACM Symp. on the Principles ofProgramming Languages (1991) 119-130.

[4] L. Henkin, A theory of propositional types, Fund. Math. 52 (1963) 323-344.

[5] J.R. Hindley and J.P. Seldin, Introduction to Combinators and A-Calculus (Cambridge University

Press, Cambridge, 1986).

[6] P.C. Kanellakis, H.G. Mairson and J.C. Mitchell, Unification and ML type reconstruction, in:

J.-L. Lassez and G. Plotkin, eds., Compurational Logic: Essays in Honor ofAlan Robinson (MIT

Press, Cambridge, MA, 1991) 444-478.

[7] A.R. Meyer, The inherent computational complexity of theories of ordered sets, in: Proc. Internat.

Congress of Marhematicians (1975) 477-482.

[8] R. Statman, The typed A-calculus is not elementary recursive, 7heorer. Compur. Sci. 9 (1979) 73-81.

[9] R. Statman, Completeness, invariance, and A-definability, J. Svmbolic Logic 47(l) (1982) 17-26.

[IO] L. Stockmeyer, The polynomial time hierarchy, Theoret. Comput. Sci. 3 (1976) I-22.

