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Abstract 

Mairson, H.G., A simple proof of a theorem of Statman, Theoretical Computer Science 103 (1992) 

387-394. 

In this note, we reprove a theorem of Statman that deciding the PT-equality of two first-order 

typable A-terms is not elementary recursive (Statman, 1982). The basic idea of our proof, like 

that of Statman’s, is the Henkin quantifier elimination procedure (Henkin, 1963). However, our 

coding is much simpler, and easy to understand. 

1. Introduction 

A well-known theorem of Richard Statman states that if we have two A-terms 

that are first-order typable, deciding whether the terms reduce to the same normal 

form is not Kalmar elementary: namely, it cannot be decided in _&(n) steps for any 

fixed integer k 3 0, where n is the length of the two terms, and f”(n) = n, A+,(n) = 

2’1”“. The theorem is often cited, but in contrast, its proof is not well understood. 

In this note, we give a simple proof of the theorem. The key idea that vastly simplifies 

the technical details of the proof is to use fist iteration as a quantifier elimination 

procedure. 
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2. Preliminaries 

2.1. Deciding truth offormulas in higher-order type theory 

Let 9& = {true, false}, and define 9 k+l =powerset(3/,). Simple logical formulas 

usually quantify over elements of go, but we consider the truth of formulas allowing 

higher-order quantification, that is, over the elements of 9Jk, for all k 2 0. Let xh, y’, .z’ 

be variables allowed to range over 9 I, ; we define the prime formulas as x0, true E y ‘, 
falser y’, and x’ E y“+‘. Now consider a formula @ built up out of prime formulas, 

the usual logical connectives v, A, +, 1, and the quantifiers V and 3: is @ true 

under the usual interpretation? 

As shown by Meyer, this decision problem requires nonelementary time [7]. 

Statman’s theorem is a reduction to this problem: it shows how to use typed lambda 

calculus to simulate the logical connectives as well as a quantrjier elimination 

procedure to reduce @, in the logical and A-calculus sense, to either true or false. 

We indicate how list iteration is a straightforward way to code quantifier elimination. 

In addition, we give a generic reduction; that is, how to simulate an arbitrary Turing 

machine for nonelementary time, by reduction to our A-calculus problem. This 

makes the presentation self contained. 

2.2. List iteration 

Let {x,, .x2,. . . , xh} be a set of A-terms, each of first-order type CY; then 

L=Ac:~+r’r.An:T.cx,(cx,...(cxhM)...) 

is a A-term of type (cu+~+r)+r+~, for any type 7. We abbreviate this list 

construction as [x,, x2,. . . , xk]; observe that the variables c and n abstract over the 

list constructors cons and nil. In the simply typed A-calculus, list iteration can be 

used to implement primitive recursion. For example, given A-terms succ and 0 for 

zero and successor on Church numerals, the length of a list of terms of type a can 

be computed by 

where Int = (Y+ v)+ y-2 v, and 7 is set to Int in the above definition of L. 

List iteration is ideal for realizing quantifier elimination: imagine that we code 

9Jk as a A-term Dh which lists all elements of Sk, each coded appropriately as a 

A-term of type Ah, and we have coded a Boolean function @ as a A-term & of type 

Ak+ Bool. Then the truth of Vx’.@(x“) can be coded as the A-term 

D,(hxh:Ak.ArvD(6xh))true, and the truth of 3x”.@(x“) can be coded as the A-term 

Dk(Axh:A,.oR(6xk))false, where AND, OR, true and false are A-terms coding up 

Boolean logic. Observe, for example, that the latter reduces to oR(&,) 

(oR( &e,). . . (oR( &e,)fafse) . . .), w er e, is a A-term coding thejth element of 9kr h e 

lsj~t=(9~j. A s we will see, the prime formulas can also be simulated using list 

iteration. 
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3. The proof 

3.1. Booleans 

Let o be any first-order type, and define Boo1 = u -+ u + o. The Boolean values 

and logical connectives are interpreted by their usual Church codings: 

true = hx:u.Ay:u.x:Bool, 

false - Ax:u.Ay:~~.y:Bool, 

AND = Ap:Bool.hq:Bool.Ax:~.Ay:a.p(qxy)y:Bool+ BooI+ Bool, 

OR = Ap:Bool.Aq:Bool.Ax:u.Ay:u.px(qxy):Bool+ BooI+ Bool, 

NOT = Ap:Bool.Ax:u.Ay:u.pyx:Bool+ Bool, 

IF = Ap:Bool.Aq:Boot.oR(Nor~)q:Bool+ BooI+ Bool. 

3.2. Coding elements of the type hierarchy 

The set 2&, is represented as the list D,, containing true and false: 

D,, = Ac:Bool+~+~.An:~.ctrue(cfalsen):(Bool+~+~)+~+~. 

We abbreviate the type of Do as A, ; in general, let A,,, = AT, where for any type 

LY, we define CU*=((Y+T+T)+T+T, and A,=Bool. 

Next, for each integer k > 0, we define a A-term Dk of length O(k) representing 

9,, as a list of (recursively defined codings of) all subsets of elements of 23_, in 

the type hierarchy. To do so, we must introduce an explicit powerset construction, 

so as to build succinct terms coding these lists. First, we define a term double where, 

given an element x:cy and a list e:cr** of lists of elements of type (Y, double appends 

e to a list derived from adding x to each list in l. For example, when (Y = Bool, 

doublefalse [[ 1, [true]] reduces to [[false], [false, true], [ 1, [true]]. 

double=Ax:Lu.Ae:(cY*+T-+~)+~+~. 

Ac:(Y*+ 7’ -.An:r. 

4?(Ae:cr*.c(Ac’:a + T+ T.An’:T.c’x(ec’n’)))(/cn) 

double: cy + a**+ LY**. 

Notice that if a A-term A* coding a list of A-terms of type (Y has type LY*= 

((Y+T+T)+T+T for any T, then A* also has type (Y*=((Y+(Y**+(Y**)+LY**+ 

a**. We may then define 

powerset=AA*:(cw+a”“*+a**)+a**+cu**. 

A*double(Ac:a*+T-+T.An:T. 

c(Ac’:cl + T+ T./in’:T.n’)n) 

powerset: ((~~+a*“+a**)+a**+a**)+a**. 
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The function of powerset on lists is like that of exponenfiation realized via iterated 

doubling on Church numerals, since Church numerals are just lists having length 

but containing no data. 

Now we can succinctly define terms coding levels of the type hierarchy: 

D,=powersetD,:A,=(A,+T+T)+T+T, 

Dz=powersetD,:A,-(A,+~+~)+~+~, 

D n+, =powersetD,:A,+,=(A,+,+~+~)+7+~. 

In the definition of Dk+, , the leftmost occurrance of powerset is given type ((A, + 

A~+z + Ak+z) + A,+, + Ak+J+Akt2. Note that the length of each A-term Dk, with 

type information erased, grows as O(k). However, the length of its normal form 

grows as fI(g(k)), where g(0) = 1, g( t + 1) = 2R”‘. 

3.3. Coding set theory in the Dk 

There is a natural idea of equality between elements of LSL; when these elements 

are themselves sets, we can also define the idea of subset and of element of a set. 

We realize the prime formulas of type theory using these concepts, together with 

list iteration. For each integer n > 0, we define terms eq,, subset,, and member,,. 

When n = 0, we define only 

eq,= Ax~:BooI.~~":BooI.oR(ANDxOY()) (AND(NOTX')(NOTJI")) 

as a basis; eq, is just the Boolean “iff”. For n = k + 1, we set r- Boo1 in the above 

definitions of Aj, so that A-terms of type Aj can be used to iterate a Boolean function, 

and define 

memberk+, = Axk:Ak.Ayh+‘:AL+, . 

yh+‘(Ay”:A,.oR(eq,x’y”))fu/se 

:A, + Ak+, + Boo1 

subsetk,, = h~‘~‘:A,+,.Ay’+‘:d,+, 

xk+‘(Axk:Ak,AND(memberk+, x’y’+‘))true 

:A L+, + Ak+, + BooI 

eq,,, = Ax ‘+‘:Ak+,.Ayh+‘:AL+, . 

(Aop:A,+, -+ A,,, + Bool. 

AND(Ofd+'yk+')(OPyk+'Xk+'))SUbSe't~+, 

:Ak+, + Ak+, + Bool. 
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The A-terms defining member,, subset,, and eqh, with type information erased, all 

have length O(k). Note how the trick in the definition of eq,,, is essential: writing 

subset,+, twice causes exponential blowup in the term size. 

The above definitions give a typed h-calculus interpretation to all the logical 

formulas in type theory, in the spirit of their standard logical meaning. In particular, 

true and false are interpreted as true and @se, and the prime formula x’ E y’+’ is 

interpreted as memberA+, x“y” ’ ‘, of type AC)= Bool, reducing to either true or false 

when xh and y’+’ are closed A-terms. The logical connectives, interpreted by their 

Church codings, take arguments of type Bool, producing terms of type Bool. 

Quantifier elimination, as described earlier, interprets Vx’.@(x”) as the iterated 

conjunction Dk(hxI‘:Ak.AND( &x’))true, where 6 is the interpretation of @; the 

complementary interpretation of Bx’.@(x”) is the iterated disjunction D,, 

(Ax”:A~.OR(~xI‘))false. 

As a consequence, a formula @ in type theory is true if and only if its typed 

A-calculus interpretation &:Bool is fin-equivalent to true = Ax:~.Ay:c~.x:Bool. 

3.4. Remarks on separation theorems in A-cakzdus 

It is instructive to realize how the notion of nonrecursive in the context of untyped 

A-calculus functions precisely in the same manner as the notion of non-Kalmar- 

elementary functions in the first-order typed A-calculus [9]. Scott’s undecidability 

theorem (see, e.g., [.5]) states that no two nonempty, disjoint sets of A-terms are 

recursively separable: given such sets A and IT of A-terms closed under pq-equality, 

no algorithm can decide, given an arbitrary x chosen from A u ‘4, whether x E A, 

or x E ‘4. Statman’s Theorem easily yields a similar corollary, where .I and I% contain 

terms of some fixed type 7, if we replace “recursive” with “Kalmar elementary”. 

The proof is simple. Let a and b be arbitrary elements of 4 and /1, respectively, 

and let E:r+ T+ 7 be a A-term coding an expression E in higher-order type theory. 

Then Eab is pn-equivalent to a if E is true, and to b if E is false. Hence deciding 

membership of Eab in A or A? is as hard as deciding the truth of E, which cannot 

be computed in elementary time. 

Statman also gives another corollary [9]. Let A be a set of A-terms of fixed type 

T, closed under /3n-equality, where membership in I4 is decidable in elementary 

time. Then 11 contains all or none of the terms of type 7. The proof is trivial: suppose 

by contradiction that 4 is nonempty, yet there exists a term b of type 7 not in n. 

Let i be the A-terms of type r which are pn-equivalent to b, and repeat the argument 

of the previous corollary. 

4. A generic reduction 

TO complete the exposition, we describe how type theory-equivalently, first-order 

typed A-calculus-can be used to simulate an arbitrary Turing machine for non- 

elementary time. 
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4.1. Basic arithmetic in type theory 

Since 19k+,l = 21fiA’, it is easy to show that each element xh+’ E gk+, can be thought 

of as an integer, where the elements of xk+’ are just the bit positions set to 1 in its 

binary encoding. We can then define cIr+, and succk+, over these elements. As a 

consequence, simulating a Turing machine is easy: successor is used to move the 

tape head. 

To define a total order ch, we take 

x 0 v- 0 0 <“_V =1x r\y, 

Xh+l 
<k+ly 

k+'~3Zk.ZhEyk+'~=h~Xk+'r\~lM'h.Wk <,Zh 

+ (wkExk+'~wW"E yh+‘). 

(Translation: x < y if the zth bit in y is 1, but in x is 0, and the bits of lower order 

than z are identical in x and y.) Successor is then defined as: 

succk+l x ( 
!%+I 

,y h+')-3zh.zkEy 
h-cl A zhgxh+' 

A VWk.Wk <kzk+(WkEXk+'A WkFz y“+‘) 

A VWk.Zk <k wh + (Wk E Xki-‘H Wk E yk+‘). 

(Translation: y =x + 1 if the zth bit of y is 1, and in x is 0; for the bits w of lower 

order than z, the wth bit of x is 1 and of y is 0, and the bits of higher order than 

z are identical in x and y. The zth bit is where the “carry” propagates.) 

4.2. Simulating a Turing machine 

An element x”+’ E gn+, can code the tape contents, where the tape is of length 

19Ji),(, and tape cells hold a 0 (true) or 1 (false). xnt’ can also code the head position, 

as long as Ix’+‘/ = 1. An ordered pair (x”+‘, y”“) coding tape contents and head 

position can be represented in the standard set-theoretic way as {{I}, xnt’}, {y”“}} E 

9 ,,+3; if we code the (finite) machine state into x”+‘, then a Turing machine ID 

can be represented as an element of 6Bnt3. Using the logic of type theory, we can 

now code a binary relation s” E 9Dn+3 x 9H+3, where s’( ID, ID’) means ID’ is reachable 

from ID in one machine transition. The logical specification of $ is straightforward, 

more or less on the level of the detailed coding in Cook’s Theorem [l, 21. Let 

s^:A n+3+An+3 + Boo1 be the A-calculus interpretation of s”; instantiating Boo1 = (T+ 

(T+ o in this type as A,+,+ An+3+A,+,, we can define the transition function 

6:A,+, --$ A,,,, as: 

6 = hlD:A,,+,.D,+,(AID’:A,+,. hZD”:A,+,.(G^IDZD’)ZD’ZD”)emptyset,+3. 

(Using the list Dn+3 of putative IDS, return the leftmost element ID’ of the list 

where s^ ID ID’ reduces to true. The term emptyset,,,, is an arbitrary element of type 

Ant3-the empty set of that type will do as well as any other term.) 
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Now that we have a term 6 realizing the transition function, the rest is easy, and 

here the full power of the simply typed A-calculus comes center stage: we use the 

Church numerals to iterate 6. Writing ? = hs.hz.s(sz), we have the typing 

22.. ~Z:(A,+,+ A ,I+4 + A,+, + &+3, 

where 

C-22.. .!@I D, hID.6(6(. . .(61D). . .)):A,,+x+A,+~. 

The rightmost 2 has type (A,,, + A n+3) + An+3 + A,,, ; if the jth rightmost 2 has type 

K, then the (j + 1)st rightmost 2 has type K + K. If there are n occurrances of 2, there 

are g(n) applications of 6, where g(0) = 1, g(t + 1) = 2”“‘. Apply C to another 

A-term coding an initial ID, extract the final state, and check if it is an accepting 

state: the answer is of type Bool. 

5. Final comments 

Just as philosophy is said to be a long footnote to Plato, complexity results of 

this genre are a footnote to Cook’s Theorem. The basic insight of Cook was that 

logical formulas could be succinct representatives of machine computations, and 

from this came a characterization of NP-completeness: a propositional formula 

existentially quantified over Booleans. When the quantifiers were allowed to alter- 

nate, more expressive power was gained, with completeness results for the 

polynomial-time hierarchy, and ultimately PSPACE-completeness. By successively 

increasing the range of quantification to sets of Booleans, sets of sets of Booleans, 

etc., it was possible to quantify over Boolean functionals, capturing more and more 

powerful complexity classes. 

Statman’s Theorem just uses the typed A-calculus to realize the quantifier elimina- 

tion procedure of Henkin [4] on these succinct formulas. The recent results on 

complexity of type inference for higher-order typed lambda calculi [6,3] follow a 

similar development, except that logical characterizations of computation are 

replaced by characterizations based on first-order unification. Although details of 

the type inference arguments are technically more complicated and quite different 

from Statman’s result and its various analogues, the structural similarity-with 

virtually identical complexity-theoretic consequences-is that higher-order quan- 

tification is used to succinctly compose functions, and to generate long reduction 

sequences. 
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