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Abstract

This paper is concerned with problem of the geometry of B-manifolds. We give some properties of Riemannian curvature tensors
of paraholomorphic B-manifolds. Finally, we consider some examples of paraholomorphic B-manifolds.
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1. Introduction

Let M, be a Riemannian manifold with metric g, which is not necessarily positive definite. We denote by ?sg (My)
the set of all tensor fields of type (p, ¢) on M,,. Manifolds, tensor fields and connections are always assumed to be
differentiable and of class C*°.

An almost paracomplex manifold is an almost product manifold (M,,, ¢), ¢*> = id, such that the two eigenbundles
T+ M, and T~ M,, associated to the two eigenvalues +1 and —1 of ¢, respectively, have the same rank. Note that the
dimension of an almost paracomplex manifold is necessarily even. Considering the paracomplex structure ¢, we obtain
the following set of affinors on M,, : {id, ¢}, ¢ = id, which form a bases of a representation of the algebra of order 2
over the field of real numbers R, which is called the algebra of paracomplex (or double) numbers and is denoted by
R(j)={ao+a1j|j>=1; ag,a; € R}. Obviously, it is associative, commutative and it admits principal unit 1. The
canonical bases of this algebra has the form {1, j}. Structural constants of an algebra are defined by the multiplication
law of the base units of this algebra: ¢;e; = C;‘jek. The components of Clkj are given by Cll1 = sz = C%l = Czl2 =1,
all the others being zero, with respect to the canonical bases of R(j).
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Consider R(j) endowed with the usual topology of R? and a domain U of R(j). Let
X=x"+ sz

be a variable in R(j), where x! are real coordinates of a point of a certain domain U fori = 1, 2. Using two real-valued
functions f* ()c1 , x2), i =1, 2, we introduce a paracomplex function

F=f'+ijf?
of variable X. It is said to be paraholomorphic if we have
dF = F'(X)dX

for the differentials dX = dx' 4+ jdx?, dF =df' + jdf? and the derivative F'(X). The paraholomorphy of the
function F = f! + jf? in the variable X = x' + jx? is equivalent to the fact that the Jacobian matrix D = (3 f7)
commutes with the matrix

a=)=(1 )

(see [10, p. 87]). It follows that F is paraholomorphic if and only if f! and f? satisfy the para-Cauchy-Riemann
equations:
oft  af? oft  ar?
ax!  9x2’ dx2  axl’
For almost paracomplex structure the integrability is equivalent to the vanishing of the Nijenhuis tensor

Ny(X.,Y) =[pX,0Y] = ¢loX. Y] - ¢[X, Y]+ [X,Y].

On the other hand, in order that an almost paracomplex structure be integrable, it is necessary and sufficient that we
can introduce a torsion free linear connection such that Vg = 0. A paracomplex manifold is an almost paracomplex
manifold (M», ¢) such that the G-structure defined by the affinor field ¢ is integrable. We can give another-equivalent-
definition of paracomplex manifold in terms of local homeomorphisms in the space RF(H ={(X",.... X" | X €
R(j), i =1,..., k} and paraholomorphic changes of charts in a way similar to [3] (for more details see [10] or [4]),
i.e. a manifold My, with an integrable paracomplex structure ¢ is a real realization of the paraholomorphic manifold

My (R(j)) over the algebra R(j). Let ? be a paracomplex tensor field on My (R(j)). The real model of such a tensor
field is a tensor field on My of the same order that is independent of whether its vector or covector arguments is
subject to the action of the affinor structure ¢. Such tensor fields are said to be pure with respect to ¢. They were
studied by many authors (see, e.g., [5,8—10,12]). In particular, being applied to a (0, g)-tensor field w, the purity
means that for any X1,..., X, € S(l)(Mzk), the following conditions should hold:

w(@X1, X2, ..., Xg) =0 (X1,0X2,...,Xy) ==X, X2,...,0Xy).
We define an operator
by : 39 (Max) — 0, | (May)
applied to the pure tensor field w by [12]
(D) (X, Y1, Y2, ..., Y) = (@X) (0 (Y1, Y2, ..., ¥y)) — X(w(pY1, Y2, ..., ¥y))
+o((Ly,@)X.Y2,....Y) +-+o(Y1.Y2, ..., (Ly,9)X), (1.1)
where Ly denotes the Lie differentiation with respectto Y.

. . *
When ¢ is a paracomplex structure on My and the tensor field ¢, vanishes, the paracomplex tensor field w on

My (R(j)) is said to be paraholomorphic [5]. Thus a paraholomorphic tensor field @ on My (R(j)) is realized on My
in the form of a pure tensor field w, such that

(¢(/Jw)(xv Y15Y2’”-7Yq)=0 (12)

forany X, Yy,..., Y, € S(l)(Mn). Therefore such a tensor field w on My is also called paraholomorphic tensor field.
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The main results of the present paper are the following ones: Almost paracomplex manifolds endowed with a para-
holomorphic Riemannian metric g are the manifolds where the Levi-Civita connection of the metric parallelizes the
almost paracomplex structure (Theorem 2). In that case, the Levi-Civita connection is also the Levi-Civita connection
of the metric G given by G(X, Y) = g(¢X, Y) (Theorem 5). Moreover, in such a manifold, the Riemannian curvature
tensor is pure (Theorem 6).

2. Paraholomorphic B-manifold

A pure metric with respect to the almost paracomplex structure is a Riemannian metric g such that

g(@X,Y)=g(X,¢pY) 2.1

forany X,Y € So(My). Such Riemannian metrics were studied in [11], where they were said to be B-metrics, since the
metric tensor g with respect to the structure ¢ is B-tensor according to the terminology accepted in [10]. If (M2, )
is an almost paracomplex manifold with B-metric, we say that (M2, ¢, g) is an almost B-manifold. If ¢ is integrable,
we say that (Mg, ¢, g) is an B-manifold.

In a B-manifold a B-metric is called a paraholomorphic if

If (Mo, @, g) is a B-manifold with paraholomorphic B-metric, we say that (Mo, ¢, g) is a paraholomorphic B-
manifold (in some papers, (almost) B-manifolds are simply (almost) paracomplex manifolds, as in [4]). Now we
establish a formula for the B-metric for an almost B-manifold.

Theorem 1. Let g be a B-metric of almost B-manifold. Then

8(Z, (Vye) (X)) = g((Vye)(2), X),

where V denotes the operator of the Riemannian covariant derivative with respect to g.

Proof. By virtue of (2.1) and
Yg(Z,X)=8(VyZ, X) +g(Z, Vy X),
from Yg(¢Z,X)=Yg(Z, pX), we have
8(Vy9Z, X)+g(9Z, VyX) =g(VyZ, ¢X) +g(Z, VypX)
or
8@Z,VyX) —g(Z,VypX) =g(VyZ,¢X) — g(Vy9Z, X)
and consequently
8(Z.9(VyX) = VyoX) =g(¢(VyZ) - Vy¢Z. X)
from which by virtue of formula
(Vyo)X =(Vo)(X,Y) = VypX — ¢(Vy X) (2.2)
we see that the proof is completed. O
In some aspects, paraholomorphic B-manifolds are similar to Kahler manifolds. The following theorem is analogue

to the next known result: An almost Hermitian manifold is Kahler if and only if the almost complex structure is parallel
with respect to the Levi-Civita connection.

Theorem 2. An almost B-manifold is paraholomorphic B-manifold if and only if the almost paracomplex structure is
parallel with respect to the Levi-Civita connection V.
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Proof. Putting (g o ¢)(X,Y) =g(pX,Y), we get from (1.1)

($p)(X, Z1, Z2) = (Lyxg — Lx(g 0 9))(Z1, Z2) + 8(Z1,9Lx Z2) — g(9Z1, Lx Z2)

=(pX)g(Z1,2Z2) — 8(VyxZ1 — Vz,0X, Z2) — §(Z1, Vyx Zo — V2,90 X)
— Xg(9Z1,Z2) + (g o) (VxZ1 — V7, X, Z2) — (80 9)(Z1,VxZy — V7, X)
+8(Z1,9(VxZy = V2,X)) — 8(@0Z1,VxZs — V7, X)

=(0X)g(Z1,2Z2) — Xg(9Z1,Z3) — g(VyxZ1, Z2) + g(NVz,0X, Z2)
—8(Z1, Vyx Z2) + 8(Z1, V2,0X) + 8(¢(Vx Z1), Z2) — g(¢(V2,X), Z2)
+8(9Z1,VxZ2) — 8@Z1,V2,X) +8(Z1,9(Vx Z2)) — g(Z1, 9(V2, X))
—8WZ1,VxZs) +8(9Z1,Vz,X)

= (pX)g(Z1, Z2) — Xg(9Z1, Z2) — §(VpxZ1, Z2) + §(Vz,90X, Z>)
—8(Z1,VoxZ2) + 8(Z1, V2,0 X) + (0 (Vx Z1), Z2) — g(¢(V72,X), Z>)

+8(@Z1,VxZ2) — g(Z1.9(Vz,X)).
Taking account of (2.2), we find

8(Vz,9X, Z2) — g(¢(Vz,X), Z2) + 8(Z1, V2,0 X) — g(Z1,9(V2, X))
=g((Vo) (X, Z1), Z2) + g(Z1, (Vo) (X, Z2)).
Substitution (2.4) into (2.3), (2.3) may be written as

(908) (X, Z1, Z2) = (9 X)g(Z1, Z2) — Xg(9Z1, Z2) + g (Vo) (X, Z1), Z»)
+8(Z1. (Vo)(X. 22)) — 8(Vyx Z1, Z2) — 8(Z1, Vyx Z2)
+8(0(VxZ1), Z2) + 8(9Z1, Vx Z2).

On the other hand, with respect to the Levi-Civita connection V, we have

(©X)g(Z1,2Z2) —g(VpxZ1,Z2) — 8(Z1,VyxZ2) = (Vyx8)(Z1,27) =0

and

—Xg(9Z1,Z2) + g(9(VxZ1), Z2) + 8(9Z1, Vx Z2)
= —Xg(9Z1. Z2) + g((Vx9Z1), Z2) + 8(9Z1, Vx Z2) — g((Vx9) Z1. Z2)
= —(Vx8)(9Z1. Z2) — g((Vx9)Z1. Z2) = —g((Vx ) Z1. Z5).
By virtue of (2.6) and (2.7), (2.5) reduces to

(Do) (X, Z1, Z2) = —g((Vx9) Z1, Z2) + 8((VZ,0) X, Z2) + g(Z1. (V2,9) X).

Similarly, we have

($08)(Z2, Z1, X) = —8((V2,0) Z1, X) + 8((V2,0) Z2, X) + g(Z1, (Vx ) Z>).

The sufficiency follows easily from (2.8) (or (2.9)).
By virtue of Theorem 1 we find

(Bp8)(X, Z1, Z2) + (¢p8)(Z2, Z1, X) =28(X, (VZ,9) Z2).

2.3)

(2.4)

2.5)

(2.6)

2.7

2.8)

(2.9)

(2.10)

Now, putting ¢y g = 0 in (2.10), we find V¢ = 0 from which the necessity follows. Thus Theorem 2 is proved. O

Corollary. The almost paracomplex structure ¢ on almost B-manifold is integrable if ¢,g = 0.

Remark. The leaves of the foliations defined by the paracomplex structure of a paraholomorphic B-manifold are
totally geodesic submanifolds (see [6] or the book K. Yano and M. Kon [14, p. 420]). In the paper of A.M. Naveira

[6] Riemannian almost product manifolds were classified.
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Let (Mo, ¢, g) be an almost B-manifold. The associated B-metric of almost B-manifold is defined by
GX,Y)=(go9p)(X,Y) (2.11)

for all vector fields X and Y on My;. One can easily prove that G is a metric, which is also called the twin metric of
g (see [2]) and it plays a role similar to the Kahler form in Hermitian Geometry. We shall now apply the Tachibana
operator to the pure Riemannian metric G

($yG)(X,Y,Z) = (LyxG — Lx(G o9))(Y,Z) +G(Y,9LxZ) — G(¢Y, LxZ)

=(Lyx(g09) —Lx((go9)09))(Y.Z)+ (g0 @)(Y.9LxZ) — (g0 @) (Y. LxZ)

=((Lyxg) o@+goLyx¢—Lx(gog)og—(g09)Lxe)(Y,Z)
+(@gop)(Y,pLxZ) — (go@)(¢Y,LxZ)

=(Lyxg —Lx(g09))(@Y,Z) +g(pY,9LxZ)
—8(e@Y), LxZ) + (g0 Lyxg — (g0 9)Lx9) (Y, Z)

= (p8) (X, 9Y, Z) + g((Lyx9)Y. Z) — g(o((Lx®)Y), Z)

= ($p8)(X. 9Y. Z) + g([pX. 0Y] — 9[pX. Y], Z) — g(p[X. Y] — ¢’[X. Y], Z)

= (¢p8)(X, 0¥, Z) + g ([¢ X, 0Y1 — 9lpX, Y] — ¢[X, Y1+ ¢*[X, Y], Z)

= ($p8) (X, 9Y,Z) 4+ g(Ny(X,Y), Z). (2.12)

Thus (2.12) implies the following:

Theorem 3. In an almost B-manifold, we have

¢¢G = (¢<pg) op+go (Ncp)~
From Theorems 2 and 3 we have

Theorem 4. Almost B-manifold with condition ¢,G =0, N, # 0 i.e. analogues of the almost Kahler manifolds, does
not exist.

Corollary. The following conditions are equivalent:

(@) ¢pg=0;
(b) ¢,G =0.
We denote by V, the covariant differentiation of Levi-Civita connection of B-metric g. Then, we have
VG = (Veg)op+go(Vgp)=go(Vgp)
which implies V,G = 0 by virtue of Theorem 2. Therefore we have

Theorem 5. Let (Mo, ¢, g) be a paraholomorphic B-manifold. Then the Levi-Civita connection of B-metric g coin-
cides with the Levi-Civita connection of associated B-metric G.

3. Curvature tensors in a paraholomorphic B-manifold

Let R and S be the curvature tensors formed by g and G respectively, then for the paraholomorphic B-manifold
we have R = S by means of the Theorem 5.
Applying the Ricci’s identity to ¢, we get

9(RX,Y)Z)=R(X,Y)pZ 3.1

by virtue of Vg = 0. Hence R(X1, X2, X3, X4) = g(R(X1, X2) X3, X4) is pure with respect to X3 and X4 and also
pure with respect to X1 and X»:
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R(X1,X2,9X3, X4) = g(R(X1, X2)9X3, X4)
= g(p(R(X1, X2)X3), X4)
=g(R(X1, X2) X3, ¢X4)
= R(X1, X2, X3, 9X4).

On the other hand, S being the curvature tensor formed by associated B-metric G, if we put S(X1, X2, X3, X4) =
G(S(X1,X»2)X3, X4), then we have

S(X1, X2, X3, X4) = S(X3, X4, X1, X2). (3.2)
Taking account of (1.1), (2.11), (3.1) and R = S, we find that

S(X1. X2, X3, X4) = G(S(X1. X2) X3, X4)
=g(p(S(X1, X2)X3), X4)
=g(S(X1, X2)X3, 9X4)
= g(R(X1, X2) X3, 9Xa)
= R(X1, X2, X3, 9X4)

and

S(X3, X4, X1, X2) = G(S(X3, X4) X1, X2)
¢(S(X3, X9)X1), X2)

S(X3, X4)X1,9X2)

R(X3, X4)X1,9X2)

= R(X3, X4, X1, 9X2)

= R(X1, X2, X3, X4).

=g(
=g(
=g(

Thus Eq. (3.2) becomes
R(X1, X2, X3, 9X4) = R(X1, 9 X2, X3, X4),
which shows that R(X, X, X3, X4) is pure with respect to X, and X4. Therefore R(X 1, X», X3, X4) is pure.
Thus we get
Theorem 6. In a paraholomorphic B-manifold, the Riemannian curvature tensor of B-metric is pure.
Since the Riemannian curvature tensor R is pure, we can apply the ¢-operator to R. By similar devices (see proof
of Theorem 2), we can prove that
(P R)(X, Y1,Y2,Y3,Y4) = (Vpx R)(Y1, Y2, Y3, Yy) — (VxR)(pY1, Y2, Y3, Ya). (3.3)

Using (3.1) and applying the Bianchi’s 2nd identity to (3.3), we get

(P R)(X, Y1, Y2, Y3, Ys) = g((Vpx R)(Y1, Y2, ¥3) — (VX R)(¢Y1, Y2, Y3), Y4)
=g((VexR)(Y1,Y2,Y3) —((VxR)(Y1, Y2, Y3)), Ya)
=g(=(Vr, R)(Y2, 90X, Y3) — (Vr,R)(¢X, Y1, Y3)
—¢((VxR)(Y1, Y2, Y3)), Y4). (3.4)

On the other hand, using V¢ = 0, we find
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(Vr, R)(9X, Y1,Y3) = Vy, (R(9X, Y1, Y3)) — R(Vy, (9X), Y1, Y3) — R(¢X, Vy, Y1, Y3) — R(¢X, Y1, Vy,Y3)
= (V@) (R(X, Y1, Y3)) + ¢(Vr, R(X, Y1, Y3))
— R((Vr,@)X + ¢(Vy,X), Y1,Y3) — R(¢X, Vy, Y1, Y3) — R(¢X, Y1, Vy,13)
=¢(VnR(X, Y1, Y3)) — ¢(R(Vy, X, Y1, Y3))
—¢(R(X, Vp, Y1, Y3)) — o(R(X, Y1, Vy,13))
=¢((Vr,R)(X, Y1, 13)). (3.5)
Similarly
(Vy, R)(Y2, 90X, Y3) = ¢((Vy, R)(Y2, X, ¥3)). (3.6)

Substituting (3.5) and (3.6) in (3.4) and using again the Bianchi’s 2nd identity, we obtain

(P R)(X, Y1, Y2, Y3, Y4) = g(—90((Vy, R)(Y2, X, ¥3)) — o((Vr,R)(X. Y1, Y3)) — (VX R)(Y1, Y2, Y3)), Y4)
=—g(e(a{(VxR)(Y1, Y2}, Y3)), Ya)
:O’

where o denotes the cyclic sum with respect to X, Y7 and Y;. Therefore we have
Theorem 7. In a paraholomorphic B-manifold, the Riemannian curvature tensor field is paraholomorphic tensor field.
4. Examples

Examples 1. We suppose that the manifold M», is the tangent bundle 7 : T(Vn)_—> V,, of a Riemannian manifold V,,.
If x' are local coordinates on V,,, then x' together with the fibre coordinates x' = y', 1 =n + 1, ..., 2n, form local
coordinates on T (V,,).

A tensor field of type (0, g) on T (V,,) completely determined by its action on all vector fields X ii=1,2,...,q,
which are of the form ¥V X (vertical lift) or Hy (horizontal lift) [13, p. 101]:

.9 ] : il
Vx=x'—, Hx=x'— —y'ri,x"—.
ax! dx! ’ ox!
Therefore, we define the Sasakian metric *g on 7'(V,) by
Sg(X, 1Y) =V(g(X, 1)),
Se("X, YY) ="V(g(X, Y)), (4.1)
Se(VX, 1Y) =0,
forany X,Y € ?v(l)(V,,). 5 ¢ has local components
s (& ey VI Y
8= k s
y Fkigjs 8ji
with respect to the induced coordinates (x?, x") in T'(V,,), where Fl]]‘ are components of Levi-Civita connection V,

in V,.
The diagonal lift P¢ in T (V,,) is defined by

{D¢HX=H(¢X>,

4.2
boVx =-V(pX), “2

forany X € ?s(l)(Vn) and ¢ € Si (M,,). The diagonal lift P I of the identity tensor field I € Ts} (M},) has the components

o, ( & 0
I=\_opri s
—<y by =9
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with respect to the induced coordinates and satisfies (°1)? = I7(y,). Thus P is an almost paracomplex structure
determining the horizontal distribution and the distribution consisting of the tangent planes to fibres.
We put

AX, ) =5g(PIX,Y) - 5¢(X,P1Y).
If A()~(, 17) =0 for all vector fields X and Y which are of the form VX,VY or X, By, then A = 0. We have by
virtue of PIVX = -VX, P1HX =H X (4.1) and (4.2)
( ) ( VX HY) Se("x,"Y) =0,
A(Tx. YY) =% ("x. YY) = Sg("x.-Vy) =0,
A(HX,HY)z g(HX,HY)—Sg(HX,HY)zo,

S ¢ is B-metric with respect to 2 1.
We hence have:

Theorem 8. (T (V,), 1, Sg) is an almost B-manifold.

Using the properties of ¥ X, /X and y R(X,Y) = ySle]sX’Y’ —=, we have

(¢0:°8) ("X 1Y " 2) = =2(%" (Vy ). " 2) + 55 ("1, (VX)) =
bo,58) (' X, 1Y,V Z) = =255("7, [V 2.V X]) =0,
405X, VY. 1 2) = 25([*Y.VX]. " 2) =0

X,V VZ)=2"((Vxe)(¥, 2)) =0,
)=-2%(yR(¥.X),"Z2),
(¢D,5g)(Hx "Y Hz)=-25%("Y,yR(Z,X)).

Therefore we have
Theorem 9. The almost B-manifold (T (V,), P1,5g) is paraholomorphic if and only if Vy, is locally Euclidean.

Examples 2. Let now M,, be the locally product Riemannian manifold with integrable almost product structure

s 0 -
<p=<0f _8;_>, ij=1,... .k, i,j=k+1,...,n,
j

and let n = 2k. Then the paracomplex manifold M», admit a structure of B-manifold:

.. O _ )
g=<g(')J g;j'-)’ gijzgij(xt,x’), gffzgff(xt’xt)~

Suppose that the metric of the locally product Riemannian manifold My has the form
ds? =gij(x’)dxidxj +g;j(xf)dxidxj, i, jt=1,...k 1,j,t=k+1,...,2k,

that is g;; (x) are functions of x’ only, 8i;= 0, and g; i (x) are functions of x only, then we call the manifold a locally
decomposable Riemannian manifold. A necessary and sufficient condition for a locally product Riemannian manifold
to be a locally decomposable Riemannian manifold is that Vo9 = 0 [14, p. 420]. Then from Theorem 2 we have

Theorem 10. A locally decomposable Riemannian manifold Moy, is a paraholomorphic B-manifold.
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Examples 3. Let (M>y, @) be a symplectic manifold and let D be a Lagrangian distribution, which is a k-dimensional
distribution having w/D = 0. Then, M may be endowed with an almost B-structure.

First of all, we shall prove that there exist a transversal Lagrangian distribution. Taking into account that (M, w)
is an almost symplectic manifold one can find (see [1] or [7]) an almost Hermitian structure (J, G) on M such that
w(X,Y)=G(JX,Y).Let D the G-orthogonal distribution to D. Then one has:

() IfX,YeD,thenG(JX,Y)=w(X,Y)=0, thus proving that J (D) = D+
(2) D™ is a Lagrangian distribution, because w(J X, JY) =w (X, Y), forall X, Y € i‘s(]) (My,).

Let F be the almost product structure defined by D and D, i.e., F¥ = D and F~ = D Then, one easily check
that J o F = —F o J. Moreover, one can prove that (M, F, G) is a Riemannian almost product manifold:

If X € 3}(M,), then X = X;| + X, where X; € F* =D and X, € F~ = D = J(D), and one can write
X, = J(X3), with X3 € F*. Using this notation we obtain:

CX,Y)=GCX1+JX3, Y1 +JY3) =G(X1, Y1)+ GC(JX3,JY3) =G(X1, Y1) + G(X3, ¥3)
and

G(FX,FY)=G(X1—JX3,Y1 = JY3)=G(X,Y1)+G(JX3,JY3) =G(X1, Y1) + G(X3,Y3)
thus proving G(X,Y) = G(FX, FY).
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