Paraholomorphic B-manifold and its properties **

A.A. Salimov ${ }^{\text {a,b, }, *}$, M. Iscan ${ }^{\text {b }}$, F. Etayo ${ }^{\text {c, }, 1}$
${ }^{\text {a }}$ Baku State University, Department of Geometry, Baku, 370145, Azerbaijan
${ }^{\text {b }}$ Atatürk University, Faculty of Arts and Sciences, Department of Mathematics, Erzurum, Turkey
${ }^{c}$ Department of Mathematics, Statistics and Computation Faculty of Sciences University of Cantabria Avda. de los Castros, $s / n, 39071$ Santander, Spain

Received 26 January 2006; accepted 4 October 2006

Abstract

This paper is concerned with problem of the geometry of B-manifolds. We give some properties of Riemannian curvature tensors of paraholomorphic B-manifolds. Finally, we consider some examples of paraholomorphic B-manifolds. © 2006 Elsevier B.V. All rights reserved.

MSC: 30G35; 53C55; 57R55; 53C80
Keywords: Pure tensor; Paraholomorphic tensor; Diagonal lift; Sasakian metric; Lagrangian distribution

1. Introduction

Let M_{n} be a Riemannian manifold with metric g, which is not necessarily positive definite. We denote by $\Im_{q}^{p}\left(M_{n}\right)$ the set of all tensor fields of type (p, q) on M_{n}. Manifolds, tensor fields and connections are always assumed to be differentiable and of class C^{∞}.

An almost paracomplex manifold is an almost product manifold $\left(M_{n}, \varphi\right), \varphi^{2}=\mathrm{id}$, such that the two eigenbundles $T^{+} M_{n}$ and $T^{-} M_{n}$ associated to the two eigenvalues +1 and -1 of φ, respectively, have the same rank. Note that the dimension of an almost paracomplex manifold is necessarily even. Considering the paracomplex structure φ, we obtain the following set of affinors on $M_{n}:\{\mathrm{id}, \varphi\}, \varphi^{2}=\mathrm{id}$, which form a bases of a representation of the algebra of order 2 over the field of real numbers R, which is called the algebra of paracomplex (or double) numbers and is denoted by $R(j)=\left\{a_{0}+a_{1} j \mid j^{2}=1 ; a_{0}, a_{1} \in R\right\}$. Obviously, it is associative, commutative and it admits principal unit 1 . The canonical bases of this algebra has the form $\{1, j\}$. Structural constants of an algebra are defined by the multiplication law of the base units of this algebra: $e_{i} e_{j}=C_{i j}^{k} e_{k}$. The components of $C_{i j}^{k}$ are given by $C_{11}^{1}=C_{12}^{2}=C_{21}^{2}=C_{22}^{1}=1$, all the others being zero, with respect to the canonical bases of $R(j)$.

[^0]Consider $R(j)$ endowed with the usual topology of R^{2} and a domain U of $R(j)$. Let

$$
X=x^{1}+j x^{2}
$$

be a variable in $R(j)$, where x^{i} are real coordinates of a point of a certain domain U for $i=1,2$. Using two real-valued functions $f^{i}\left(x^{1}, x^{2}\right), i=1,2$, we introduce a paracomplex function

$$
F=f^{1}+j f^{2}
$$

of variable X. It is said to be paraholomorphic if we have

$$
d F=F^{\prime}(X) d X
$$

for the differentials $d X=d x^{1}+j d x^{2}, d F=d f^{1}+j d f^{2}$ and the derivative $F^{\prime}(X)$. The paraholomorphy of the function $F=f^{1}+j f^{2}$ in the variable $X=x^{1}+j x^{2}$ is equivalent to the fact that the Jacobian matrix $D=\left(\partial_{k} f^{i}\right)$ commutes with the matrix

$$
C_{2}=\left(C_{2 j}^{k}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(see [10, p. 87]). It follows that F is paraholomorphic if and only if f^{1} and f^{2} satisfy the para-Cauchy-Riemann equations:

$$
\frac{\partial f^{1}}{\partial x^{1}}=\frac{\partial f^{2}}{\partial x^{2}}, \quad \frac{\partial f^{1}}{\partial x^{2}}=\frac{\partial f^{2}}{\partial x^{1}}
$$

For almost paracomplex structure the integrability is equivalent to the vanishing of the Nijenhuis tensor

$$
N_{\varphi}(X, Y)=[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+[X, Y]
$$

On the other hand, in order that an almost paracomplex structure be integrable, it is necessary and sufficient that we can introduce a torsion free linear connection such that $\nabla \varphi=0$. A paracomplex manifold is an almost paracomplex manifold ($M_{2 k}, \varphi$) such that the G-structure defined by the affinor field φ is integrable. We can give another-equivalentdefinition of paracomplex manifold in terms of local homeomorphisms in the space $R^{k}(j)=\left\{\left(X^{1}, \ldots, X^{k}\right) \mid X^{i} \in\right.$ $R(j), i=1, \ldots, k\}$ and paraholomorphic changes of charts in a way similar to [3] (for more details see [10] or [4]), i.e. a manifold $M_{2 k}$ with an integrable paracomplex structure φ is a real realization of the paraholomorphic manifold $M_{k}(R(j))$ over the algebra $R(j)$. Let $\stackrel{*}{t}$ be a paracomplex tensor field on $M_{k}(R(j))$. The real model of such a tensor field is a tensor field on $M_{2 k}$ of the same order that is independent of whether its vector or covector arguments is subject to the action of the affinor structure φ. Such tensor fields are said to be pure with respect to φ. They were studied by many authors (see, e.g., $[5,8-10,12]$). In particular, being applied to a $(0, q)$-tensor field ω, the purity means that for any $X_{1}, \ldots, X_{q} \in \mathfrak{\Im}_{0}^{1}\left(M_{2 k}\right)$, the following conditions should hold:

$$
\omega\left(\varphi X_{1}, X_{2}, \ldots, X_{q}\right)=\omega\left(X_{1}, \varphi X_{2}, \ldots, X_{q}\right)=\cdots=\omega\left(X_{1}, X_{2}, \ldots, \varphi X_{q}\right)
$$

We define an operator

$$
\phi_{\varphi}: \Im_{q}^{0}\left(M_{2 k}\right) \rightarrow \Im_{q+1}^{0}\left(M_{2 k}\right)
$$

applied to the pure tensor field ω by [12]

$$
\begin{align*}
\left(\phi_{\varphi} \omega\right)\left(X, Y_{1}, Y_{2}, \ldots, Y_{q}\right)= & (\varphi X)\left(\omega\left(Y_{1}, Y_{2}, \ldots, Y_{q}\right)\right)-X\left(\omega\left(\varphi Y_{1}, Y_{2}, \ldots, Y_{q}\right)\right) \\
& +\omega\left(\left(L_{Y_{1}} \varphi\right) X, Y_{2}, \ldots, Y_{q}\right)+\cdots+\omega\left(Y_{1}, Y_{2}, \ldots,\left(L_{Y_{q}} \varphi\right) X\right), \tag{1.1}
\end{align*}
$$

where L_{Y} denotes the Lie differentiation with respect to Y.
When φ is a paracomplex structure on $M_{2 k}$ and the tensor field $\phi_{\varphi} \omega$ vanishes, the paracomplex tensor field $\stackrel{*}{\omega}$ on $M_{k}(R(j))$ is said to be paraholomorphic [5]. Thus a paraholomorphic tensor field $\stackrel{*}{\omega}$ on $M_{k}(R(j))$ is realized on $M_{2 k}$ in the form of a pure tensor field ω, such that

$$
\begin{equation*}
\left(\phi_{\varphi} \omega\right)\left(X, Y_{1}, Y_{2}, \ldots, Y_{q}\right)=0 \tag{1.2}
\end{equation*}
$$

for any $X, Y_{1}, \ldots, Y_{q} \in \Im_{0}^{1}\left(M_{n}\right)$. Therefore such a tensor field ω on $M_{2 k}$ is also called paraholomorphic tensor field.

The main results of the present paper are the following ones: Almost paracomplex manifolds endowed with a paraholomorphic Riemannian metric g are the manifolds where the Levi-Civita connection of the metric parallelizes the almost paracomplex structure (Theorem 2). In that case, the Levi-Civita connection is also the Levi-Civita connection of the metric G given by $G(X, Y)=g(\varphi X, Y)$ (Theorem 5). Moreover, in such a manifold, the Riemannian curvature tensor is pure (Theorem 6).

2. Paraholomorphic B-manifold

A pure metric with respect to the almost paracomplex structure is a Riemannian metric g such that

$$
\begin{equation*}
g(\varphi X, Y)=g(X, \varphi Y) \tag{2.1}
\end{equation*}
$$

for any $X, Y \in \mathfrak{F}_{0}^{1}\left(M_{n}\right)$. Such Riemannian metrics were studied in [11], where they were said to be B-metrics, since the metric tensor g with respect to the structure φ is B-tensor according to the terminology accepted in [10]. If ($M_{2 k}, \varphi$) is an almost paracomplex manifold with B-metric, we say that ($M_{2 k}, \varphi, g$) is an almost B-manifold. If φ is integrable, we say that ($M_{2 k}, \varphi, g$) is an B-manifold.

In a B-manifold a B-metric is called a paraholomorphic if

$$
\left(\phi_{\varphi} g\right)(X, Y, Z)=0 .
$$

If ($M_{2 k}, \varphi, g$) is a B-manifold with paraholomorphic B-metric, we say that ($M_{2 k}, \varphi, g$) is a paraholomorphic Bmanifold (in some papers, (almost) B-manifolds are simply (almost) paracomplex manifolds, as in [4]). Now we establish a formula for the B-metric for an almost B-manifold.

Theorem 1. Let g be a B-metric of almost B-manifold. Then

$$
g\left(Z,\left(\nabla_{Y} \varphi\right)(X)\right)=g\left(\left(\nabla_{Y} \varphi\right)(Z), X\right),
$$

where ∇ denotes the operator of the Riemannian covariant derivative with respect to g.
Proof. By virtue of (2.1) and

$$
Y g(Z, X)=g\left(\nabla_{Y} Z, X\right)+g\left(Z, \nabla_{Y} X\right),
$$

from $Y g(\varphi Z, X)=Y g(Z, \varphi X)$, we have

$$
g\left(\nabla_{Y} \varphi Z, X\right)+g\left(\varphi Z, \nabla_{Y} X\right)=g\left(\nabla_{Y} Z, \varphi X\right)+g\left(Z, \nabla_{Y} \varphi X\right)
$$

or

$$
g\left(\varphi Z, \nabla_{Y} X\right)-g\left(Z, \nabla_{Y} \varphi X\right)=g\left(\nabla_{Y} Z, \varphi X\right)-g\left(\nabla_{Y} \varphi Z, X\right)
$$

and consequently

$$
g\left(Z, \varphi\left(\nabla_{Y} X\right)-\nabla_{Y} \varphi X\right)=g\left(\varphi\left(\nabla_{Y} Z\right)-\nabla_{Y} \varphi Z, X\right)
$$

from which by virtue of formula

$$
\begin{equation*}
\left(\nabla_{Y} \varphi\right) X=(\nabla \varphi)(X, Y)=\nabla_{Y} \varphi X-\varphi\left(\nabla_{Y} X\right) \tag{2.2}
\end{equation*}
$$

we see that the proof is completed.
In some aspects, paraholomorphic B-manifolds are similar to Kahler manifolds. The following theorem is analogue to the next known result: An almost Hermitian manifold is Kahler if and only if the almost complex structure is parallel with respect to the Levi-Civita connection.

Theorem 2. An almost B-manifold is paraholomorphic B-manifold if and only if the almost paracomplex structure is parallel with respect to the Levi-Civita connection ∇.

Proof. Putting $(g \circ \varphi)(X, Y)=g(\varphi X, Y)$, we get from (1.1)

$$
\begin{align*}
\left(\phi_{\varphi} g\right)\left(X, Z_{1}, Z_{2}\right)= & \left(L_{\varphi X} g-L_{X}(g \circ \varphi)\right)\left(Z_{1}, Z_{2}\right)+g\left(Z_{1}, \varphi L_{X} Z_{2}\right)-g\left(\varphi Z_{1}, L_{X} Z_{2}\right) \\
= & (\varphi X) g\left(Z_{1}, Z_{2}\right)-g\left(\nabla_{\varphi X} Z_{1}-\nabla_{Z_{1}} \varphi X, Z_{2}\right)-g\left(Z_{1}, \nabla_{\varphi X} Z_{2}-\nabla_{Z_{2}} \varphi X\right) \\
& -X g\left(\varphi Z_{1}, Z_{2}\right)+(g \circ \varphi)\left(\nabla_{X} Z_{1}-\nabla_{\left.Z_{1} X, Z_{2}\right)-(g \circ \varphi)\left(Z_{1}, \nabla_{X} Z_{2}-\nabla_{Z_{2}} X\right)}\right. \\
& +g\left(Z_{1}, \varphi\left(\nabla_{X} Z_{2}-\nabla_{Z_{2}} X\right)\right)-g\left(\varphi Z_{1}, \nabla_{X} Z_{2}-\nabla_{Z_{2}} X\right) \\
= & (\varphi X) g\left(Z_{1}, Z_{2}\right)-X g\left(\varphi Z_{1}, Z_{2}\right)-g\left(\nabla_{\varphi X} Z_{1}, Z_{2}\right)+g\left(\nabla_{Z_{1}} \varphi X, Z_{2}\right) \\
& -g\left(Z_{1}, \nabla_{\varphi X} Z_{2}\right)+g\left(Z_{1}, \nabla_{Z_{2}} \varphi X\right)+g\left(\varphi\left(\nabla_{X} Z_{1}\right), Z_{2}\right)-g\left(\varphi\left(\nabla_{\left.Z_{1} X\right)} X Z_{2}\right)\right. \\
& +g\left(\varphi Z_{1}, \nabla_{X} Z_{2}\right)-g\left(\varphi Z_{1}, \nabla_{Z_{2}} X\right)+g\left(Z_{1}, \varphi\left(\nabla_{X} Z_{2}\right)\right)-g\left(Z_{1}, \varphi\left(\nabla_{Z_{2}} X\right)\right) \\
& -g\left(\varphi Z_{1}, \nabla_{X} Z_{2}\right)+g\left(\varphi Z_{1}, \nabla_{Z_{2}} X\right) \\
= & (\varphi X) g\left(Z_{1}, Z_{2}\right)-X g\left(\varphi Z_{1}, Z_{2}\right)-g\left(\nabla_{\varphi X} Z_{1}, Z_{2}\right)+g\left(\nabla_{\left.Z_{1} \varphi X, Z_{2}\right)}\right. \\
& -g\left(Z_{1}, \nabla_{\varphi X} Z_{2}\right)+g\left(Z_{1}, \nabla_{\left.Z_{2} \varphi X\right)+g\left(\varphi\left(\nabla_{X} Z_{1}\right), Z_{2}\right)-g\left(\varphi\left(\nabla_{Z_{1}} X\right), Z_{2}\right)}\right. \\
& +g\left(\varphi Z_{1}, \nabla_{X} Z_{2}\right)-g\left(Z_{1}, \varphi\left(\nabla_{Z_{2}} X\right)\right) . \tag{2.3}
\end{align*}
$$

Taking account of (2.2), we find

$$
\begin{align*}
& g\left(\nabla_{Z_{1}} \varphi X, Z_{2}\right)-g\left(\varphi\left(\nabla_{Z_{1}} X\right), Z_{2}\right)+g\left(Z_{1}, \nabla_{Z_{2}} \varphi X\right)-g\left(Z_{1}, \varphi\left(\nabla_{Z_{2}} X\right)\right) \\
& \quad=g\left((\nabla \varphi)\left(X, Z_{1}\right), Z_{2}\right)+g\left(Z_{1},(\nabla \varphi)\left(X, Z_{2}\right)\right) . \tag{2.4}
\end{align*}
$$

Substitution (2.4) into (2.3), (2.3) may be written as

$$
\begin{align*}
\left(\phi_{\varphi} g\right)\left(X, Z_{1}, Z_{2}\right)= & (\varphi X) g\left(Z_{1}, Z_{2}\right)-X g\left(\varphi Z_{1}, Z_{2}\right)+g\left((\nabla \varphi)\left(X, Z_{1}\right), Z_{2}\right) \\
& +g\left(Z_{1},(\nabla \varphi)\left(X, Z_{2}\right)\right)-g\left(\nabla_{\varphi X} Z_{1}, Z_{2}\right)-g\left(Z_{1}, \nabla_{\varphi X} Z_{2}\right) \\
& +g\left(\varphi\left(\nabla_{X} Z_{1}\right), Z_{2}\right)+g\left(\varphi Z_{1}, \nabla_{X} Z_{2}\right) . \tag{2.5}
\end{align*}
$$

On the other hand, with respect to the Levi-Civita connection ∇, we have

$$
\begin{equation*}
(\varphi X) g\left(Z_{1}, Z_{2}\right)-g\left(\nabla_{\varphi X} Z_{1}, Z_{2}\right)-g\left(Z_{1}, \nabla_{\varphi X} Z_{2}\right)=\left(\nabla_{\varphi X} g\right)\left(Z_{1}, Z_{2}\right)=0 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{align*}
& -X g\left(\varphi Z_{1}, Z_{2}\right)+g\left(\varphi\left(\nabla_{X} Z_{1}\right), Z_{2}\right)+g\left(\varphi Z_{1}, \nabla_{X} Z_{2}\right) \\
& \quad=-X g\left(\varphi Z_{1}, Z_{2}\right)+g\left(\left(\nabla_{X} \varphi Z_{1}\right), Z_{2}\right)+g\left(\varphi Z_{1}, \nabla_{X} Z_{2}\right)-g\left(\left(\nabla_{X} \varphi\right) Z_{1}, Z_{2}\right) \\
& \quad=-\left(\nabla_{X} g\right)\left(\varphi Z_{1}, Z_{2}\right)-g\left(\left(\nabla_{X} \varphi\right) Z_{1}, Z_{2}\right)=-g\left(\left(\nabla_{X} \varphi\right) Z_{1}, Z_{2}\right) . \tag{2.7}
\end{align*}
$$

By virtue of (2.6) and (2.7), (2.5) reduces to

$$
\begin{equation*}
\left(\phi_{\varphi} g\right)\left(X, Z_{1}, Z_{2}\right)=-g\left(\left(\nabla_{X} \varphi\right) Z_{1}, Z_{2}\right)+g\left(\left(\nabla_{Z_{1}} \varphi\right) X, Z_{2}\right)+g\left(Z_{1},\left(\nabla_{Z_{2}} \varphi\right) X\right) . \tag{2.8}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left(\phi_{\varphi} g\right)\left(Z_{2}, Z_{1}, X\right)=-g\left(\left(\nabla_{Z_{2}} \varphi\right) Z_{1}, X\right)+g\left(\left(\nabla_{Z_{1}} \varphi\right) Z_{2}, X\right)+g\left(Z_{1},\left(\nabla_{X} \varphi\right) Z_{2}\right) . \tag{2.9}
\end{equation*}
$$

The sufficiency follows easily from (2.8) (or (2.9)).
By virtue of Theorem 1 we find

$$
\begin{equation*}
\left(\phi_{\varphi} g\right)\left(X, Z_{1}, Z_{2}\right)+\left(\phi_{\varphi} g\right)\left(Z_{2}, Z_{1}, X\right)=2 g\left(X,\left(\nabla_{Z_{2}} \varphi\right) Z_{2}\right) \tag{2.10}
\end{equation*}
$$

Now, putting $\phi_{\varphi} g=0$ in (2.10), we find $\nabla \varphi=0$ from which the necessity follows. Thus Theorem 2 is proved.
Corollary. The almost paracomplex structure φ on almost B-manifold is integrable if $\phi_{\varphi} g=0$.
Remark. The leaves of the foliations defined by the paracomplex structure of a paraholomorphic B-manifold are totally geodesic submanifolds (see [6] or the book K. Yano and M. Kon [14, p. 420]). In the paper of A.M. Naveira [6] Riemannian almost product manifolds were classified.

Let $\left(M_{2 k}, \varphi, g\right)$ be an almost B-manifold. The associated B-metric of almost B-manifold is defined by

$$
\begin{equation*}
G(X, Y)=(g \circ \varphi)(X, Y) \tag{2.11}
\end{equation*}
$$

for all vector fields X and Y on $M_{2 k}$. One can easily prove that G is a metric, which is also called the twin metric of g (see [2]) and it plays a role similar to the Kahler form in Hermitian Geometry. We shall now apply the Tachibana operator to the pure Riemannian metric G

$$
\begin{align*}
\left(\phi_{\varphi} G\right)(X, Y, Z)= & \left(L_{\varphi X} G-L_{X}(G \circ \varphi)\right)(Y, Z)+G\left(Y, \varphi L_{X} Z\right)-G\left(\varphi Y, L_{X} Z\right) \\
= & \left(L_{\varphi X}(g \circ \varphi)-L_{X}((g \circ \varphi) \circ \varphi)\right)(Y, Z)+(g \circ \varphi)\left(Y, \varphi L_{X} Z\right)-(g \circ \varphi)\left(\varphi Y, L_{X} Z\right) \\
= & \left(\left(L_{\varphi X} g\right) \circ \varphi+g \circ L_{\varphi X} \varphi-L_{X}(g \circ \varphi) \circ \varphi-(g \circ \varphi) L_{X} \varphi\right)(Y, Z) \\
& +(g \circ \varphi)\left(Y, \varphi L_{X} Z\right)-(g \circ \varphi)\left(\varphi Y, L_{X} Z\right) \\
= & \left(L_{\varphi X} g-L_{X}(g \circ \varphi)\right)(\varphi Y, Z)+g\left(\varphi Y, \varphi L_{X} Z\right) \\
& -g\left(\varphi(\varphi Y), L_{X} Z\right)+\left(g \circ L_{\varphi X} \varphi-(g \circ \varphi) L_{X} \varphi\right)(Y, Z) \\
= & \left(\phi_{\varphi} g\right)(X, \varphi Y, Z)+g\left(\left(L_{\varphi X} \varphi\right) Y, Z\right)-g\left(\varphi\left(\left(L_{X} \varphi\right) Y\right), Z\right) \\
= & \left(\phi_{\varphi} g\right)(X, \varphi Y, Z)+g([\varphi X, \varphi Y]-\varphi[\varphi X, Y], Z)-g\left(\varphi[X, \varphi Y]-\varphi^{2}[X, Y], Z\right) \\
= & \left(\phi_{\varphi} g\right)(X, \varphi Y, Z)+g\left([\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+\varphi^{2}[X, Y], Z\right) \\
= & \left(\phi_{\varphi} g\right)(X, \varphi Y, Z)+g\left(N_{\varphi}(X, Y), Z\right) . \tag{2.12}
\end{align*}
$$

Thus (2.12) implies the following:
Theorem 3. In an almost B-manifold, we have

$$
\phi_{\varphi} G=\left(\phi_{\varphi} g\right) \circ \varphi+g \circ\left(N_{\varphi}\right) .
$$

From Theorems 2 and 3 we have
Theorem 4. Almost B-manifold with condition $\phi_{\varphi} G=0, N_{\varphi} \neq 0$ i.e. analogues of the almost Kahler manifolds, does not exist.

Corollary. The following conditions are equivalent:
(a) $\phi_{\varphi} g=0$;
(b) $\phi_{\varphi} G=0$.

We denote by ∇_{g} the covariant differentiation of Levi-Civita connection of B-metric g. Then, we have

$$
\nabla_{g} G=\left(\nabla_{g} g\right) \circ \varphi+g \circ\left(\nabla_{g} \varphi\right)=g \circ\left(\nabla_{g} \varphi\right)
$$

which implies $\nabla_{g} G=0$ by virtue of Theorem 2. Therefore we have
Theorem 5. Let $\left(M_{2 k}, \varphi, g\right)$ be a paraholomorphic B-manifold. Then the Levi-Civita connection of B-metric g coincides with the Levi-Civita connection of associated B-metric G.

3. Curvature tensors in a paraholomorphic B-manifold

Let R and S be the curvature tensors formed by g and G respectively, then for the paraholomorphic B-manifold we have $R=S$ by means of the Theorem 5 .

Applying the Ricci's identity to φ, we get

$$
\begin{equation*}
\varphi(R(X, Y) Z)=R(X, Y) \varphi Z \tag{3.1}
\end{equation*}
$$

by virtue of $\nabla \varphi=0$. Hence $R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(R\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right)$ is pure with respect to X_{3} and X_{4} and also pure with respect to X_{1} and X_{2} :

$$
\begin{aligned}
R\left(X_{1}, X_{2}, \varphi X_{3}, X_{4}\right) & =g\left(R\left(X_{1}, X_{2}\right) \varphi X_{3}, X_{4}\right) \\
& =g\left(\varphi\left(R\left(X_{1}, X_{2}\right) X_{3}\right), X_{4}\right) \\
& =g\left(R\left(X_{1}, X_{2}\right) X_{3}, \varphi X_{4}\right) \\
& =R\left(X_{1}, X_{2}, X_{3}, \varphi X_{4}\right)
\end{aligned}
$$

On the other hand, S being the curvature tensor formed by associated B-metric G, if we put $S\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=$ $G\left(S\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right)$, then we have

$$
\begin{equation*}
S\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=S\left(X_{3}, X_{4}, X_{1}, X_{2}\right) \tag{3.2}
\end{equation*}
$$

Taking account of (1.1), (2.11), (3.1) and $R=S$, we find that

$$
\begin{aligned}
S\left(X_{1}, X_{2}, X_{3}, X_{4}\right) & =G\left(S\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right) \\
& =g\left(\varphi\left(S\left(X_{1}, X_{2}\right) X_{3}\right), X_{4}\right) \\
& =g\left(S\left(X_{1}, X_{2}\right) X_{3}, \varphi X_{4}\right) \\
& =g\left(R\left(X_{1}, X_{2}\right) X_{3}, \varphi X_{4}\right) \\
& =R\left(X_{1}, X_{2}, X_{3}, \varphi X_{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
S\left(X_{3}, X_{4}, X_{1}, X_{2}\right) & =G\left(S\left(X_{3}, X_{4}\right) X_{1}, X_{2}\right) \\
& =g\left(\varphi\left(S\left(X_{3}, X_{4}\right) X_{1}\right), X_{2}\right) \\
& =g\left(S\left(X_{3}, X_{4}\right) X_{1}, \varphi X_{2}\right) \\
& =g\left(R\left(X_{3}, X_{4}\right) X_{1}, \varphi X_{2}\right) \\
& =R\left(X_{3}, X_{4}, X_{1}, \varphi X_{2}\right) \\
& =R\left(X_{1}, \varphi X_{2}, X_{3}, X_{4}\right)
\end{aligned}
$$

Thus Eq. (3.2) becomes

$$
R\left(X_{1}, X_{2}, X_{3}, \varphi X_{4}\right)=R\left(X_{1}, \varphi X_{2}, X_{3}, X_{4}\right)
$$

which shows that $R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is pure with respect to X_{2} and X_{4}. Therefore $R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is pure.
Thus we get

Theorem 6. In a paraholomorphic B-manifold, the Riemannian curvature tensor of B-metric is pure.

Since the Riemannian curvature tensor R is pure, we can apply the ϕ-operator to R. By similar devices (see proof of Theorem 2), we can prove that

$$
\begin{equation*}
\left(\phi_{\varphi} R\right)\left(X, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)=\left(\nabla_{\varphi X} R\right)\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)-\left(\nabla_{X} R\right)\left(\varphi Y_{1}, Y_{2}, Y_{3}, Y_{4}\right) \tag{3.3}
\end{equation*}
$$

Using (3.1) and applying the Bianchi's 2nd identity to (3.3), we get

$$
\begin{align*}
\left(\phi_{\varphi} R\right)\left(X, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)= & g\left(\left(\nabla_{\varphi X} R\right)\left(Y_{1}, Y_{2}, Y_{3}\right)-\left(\nabla_{X} R\right)\left(\varphi Y_{1}, Y_{2}, Y_{3}\right), Y_{4}\right) \\
= & g\left(\left(\nabla_{\varphi X} R\right)\left(Y_{1}, Y_{2}, Y_{3}\right)-\varphi\left(\left(\nabla_{X} R\right)\left(Y_{1}, Y_{2}, Y_{3}\right)\right), Y_{4}\right) \\
= & g\left(-\left(\nabla_{Y_{1}} R\right)\left(Y_{2}, \varphi X, Y_{3}\right)-\left(\nabla_{Y_{2}} R\right)\left(\varphi X, Y_{1}, Y_{3}\right)\right. \\
& \left.-\varphi\left(\left(\nabla_{X} R\right)\left(Y_{1}, Y_{2}, Y_{3}\right)\right), Y_{4}\right) \tag{3.4}
\end{align*}
$$

On the other hand, using $\nabla \varphi=0$, we find

$$
\begin{align*}
\left(\nabla_{Y_{2}} R\right)\left(\varphi X, Y_{1}, Y_{3}\right)= & \nabla_{Y_{2}}\left(R\left(\varphi X, Y_{1}, Y_{3}\right)\right)-R\left(\nabla_{Y_{2}}(\varphi X), Y_{1}, Y_{3}\right)-R\left(\varphi X, \nabla_{Y_{2}} Y_{1}, Y_{3}\right)-R\left(\varphi X, Y_{1}, \nabla_{Y_{2}} Y_{3}\right) \\
= & \left(\nabla_{Y_{2}} \varphi\right)\left(R\left(X, Y_{1}, Y_{3}\right)\right)+\varphi\left(\nabla_{Y_{2}} R\left(X, Y_{1}, Y_{3}\right)\right) \\
& -R\left(\left(\nabla_{Y_{2}} \varphi\right) X+\varphi\left(\nabla_{Y_{2}} X\right), Y_{1}, Y_{3}\right)-R\left(\varphi X, \nabla_{Y_{2}} Y_{1}, Y_{3}\right)-R\left(\varphi X, Y_{1}, \nabla_{Y_{2}} Y_{3}\right) \\
= & \varphi\left(\nabla_{Y_{2}} R\left(X, Y_{1}, Y_{3}\right)\right)-\varphi\left(R\left(\nabla_{Y_{2}} X, Y_{1}, Y_{3}\right)\right) \\
& -\varphi\left(R\left(X, \nabla_{Y_{2}} Y_{1}, Y_{3}\right)\right)-\varphi\left(R\left(X, Y_{1}, \nabla_{Y_{2}} Y_{3}\right)\right) \\
= & \varphi\left(\left(\nabla_{Y_{2}} R\right)\left(X, Y_{1}, Y_{3}\right)\right) \tag{3.5}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\left(\nabla_{Y_{1}} R\right)\left(Y_{2}, \varphi X, Y_{3}\right)=\varphi\left(\left(\nabla_{Y_{1}} R\right)\left(Y_{2}, X, Y_{3}\right)\right) \tag{3.6}
\end{equation*}
$$

Substituting (3.5) and (3.6) in (3.4) and using again the Bianchi's 2nd identity, we obtain

$$
\begin{aligned}
\left(\phi_{\varphi} R\right)\left(X, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right) & =g\left(-\varphi\left(\left(\nabla_{Y_{1}} R\right)\left(Y_{2}, X, Y_{3}\right)\right)-\varphi\left(\left(\nabla_{Y_{2}} R\right)\left(X, Y_{1}, Y_{3}\right)\right)-\varphi\left(\left(\nabla_{X} R\right)\left(Y_{1}, Y_{2}, Y_{3}\right)\right), Y_{4}\right) \\
& =-g\left(\varphi\left(\sigma\left\{\left(\nabla_{X} R\right)\left(Y_{1}, Y_{2}\right\}, Y_{3}\right)\right), Y_{4}\right) \\
& =0
\end{aligned}
$$

where σ denotes the cyclic sum with respect to X, Y_{1} and Y_{2}. Therefore we have

Theorem 7. In a paraholomorphic B-manifold, the Riemannian curvature tensor field is paraholomorphic tensor field.

4. Examples

Examples 1. We suppose that the manifold $M_{2 n}$ is the tangent bundle $\pi: T\left(V_{n}\right) \rightarrow V_{n}$ of a Riemannian manifold V_{n}. If x^{i} are local coordinates on V_{n}, then x^{i} together with the fibre coordinates $x^{\bar{\imath}}=y^{i}, \bar{\imath}=n+1, \ldots, 2 n$, form local coordinates on $T\left(V_{n}\right)$.

A tensor field of type $(0, q)$ on $T\left(V_{n}\right)$ completely determined by its action on all vector fields $\tilde{X}_{i}, i=1,2, \ldots, q$, which are of the form ${ }^{V} X$ (vertical lift) or ${ }^{H} X$ (horizontal lift) [13, p. 101]:

$$
{ }^{V} X=X^{i} \frac{\partial}{\partial x^{\bar{l}}}, \quad{ }^{H} X=X^{i} \frac{\partial}{\partial x^{i}}-y^{s} \Gamma_{s}^{i}{ }_{h} X^{h} \frac{\partial}{\partial x^{\bar{l}}}
$$

Therefore, we define the Sasakian metric ${ }^{s} g$ on $T\left(V_{n}\right)$ by

$$
\left\{\begin{array}{l}
S_{g(}\left({ }^{H} X,{ }^{H} Y\right)={ }^{V}(g(X, Y)) \tag{4.1}\\
S_{g}\left({ }^{V} X,{ }^{V} Y\right)={ }^{V}(g(X, Y)) \\
S_{g(}\left({ }^{V} X,{ }^{H} Y\right)=0
\end{array}\right.
$$

for any $X, Y \in \mathfrak{J}_{0}^{1}\left(V_{n}\right)$. ${ }^{S} g$ has local components

$$
S_{g}=\left(\begin{array}{cc}
g_{j i}+g_{t s} y^{k} y^{l} \Gamma_{k j}^{t} \Gamma_{l i}^{s} & y^{k} \Gamma_{k j}^{s} g_{s i} \\
y^{k} \Gamma_{k i}^{s} g_{j s} & g_{j i}
\end{array}\right)
$$

with respect to the induced coordinates $\left(x^{i}, x^{\bar{l}}\right)$ in $T\left(V_{n}\right)$, where $\Gamma_{i j}^{k}$ are components of Levi-Civita connection ∇_{g} in V_{n}.

The diagonal lift ${ }^{D} \varphi$ in $T\left(V_{n}\right)$ is defined by

$$
\left\{\begin{array}{l}
{ }^{D} \varphi^{H} X={ }^{H}(\varphi X) \tag{4.2}\\
{ }^{D} \varphi^{V} X=-{ }^{V}(\varphi X)
\end{array}\right.
$$

for any $X \in \mathfrak{J}_{0}^{1}\left(V_{n}\right)$ and $\varphi \in \mathfrak{J}_{1}^{1}\left(M_{n}\right)$. The diagonal lift ${ }^{D} I$ of the identity tensor field $I \in \mathfrak{J}_{1}^{1}\left(M_{n}\right)$ has the components

$$
{ }^{D} I=\left(\begin{array}{cc}
\delta_{i}^{j} & 0 \\
-2 y^{t} \Gamma_{t i}^{j} & -\delta_{i}^{j}
\end{array}\right)
$$

with respect to the induced coordinates and satisfies $\left({ }^{D} I\right)^{2}=I_{T\left(V_{n}\right)}$. Thus ${ }^{D} I$ is an almost paracomplex structure determining the horizontal distribution and the distribution consisting of the tangent planes to fibres.

We put

$$
A(\tilde{X}, \tilde{Y})={ }^{S} g\left({ }^{D} I \tilde{X}, \tilde{Y}\right)-{ }^{S} g\left(\tilde{X},{ }^{D} I \tilde{Y}\right)
$$

If $A(\tilde{X}, \tilde{Y})=0$ for all vector fields \tilde{X} and \tilde{Y} which are of the form ${ }^{V} X,{ }^{V} Y$ or ${ }^{H} X,{ }^{H} Y$, then $A=0$. We have by virtue of ${ }^{D} I^{V} X=-{ }^{V} X,{ }^{D} I^{H} X={ }^{H} X$ (4.1) and (4.2)

$$
\begin{aligned}
& A\left({ }^{V} X,{ }^{V} Y\right)={ }^{S} g\left(-{ }^{V} X,{ }^{V} Y\right)-{ }^{S} g\left({ }^{V} X,-{ }^{V} Y\right)=0, \\
& A\left({ }^{V} X,{ }^{H} Y\right)={ }^{S} g\left(-{ }^{V} X,{ }^{H} Y\right)-{ }^{S} g\left({ }^{V} X,{ }^{H} Y\right)=0, \\
& A\left({ }^{H} X,{ }^{V} Y\right)={ }^{S} g\left({ }^{H} X,{ }^{V} Y\right)-{ }^{S} g\left({ }^{H} X,-{ }^{V} Y\right)=0, \\
& A\left({ }^{H} X,{ }^{H} Y\right)={ }^{S} g\left({ }^{H} X,{ }^{H} Y\right)-{ }^{S} g\left({ }^{H} X,{ }^{H} Y\right)=0,
\end{aligned}
$$

i.e. ${ }^{g}$ is B-metric with respect to ${ }^{D} I$.

We hence have:
Theorem 8. $\left(T\left(V_{n}\right),{ }^{D} I,{ }^{S} g\right)$ is an almost B-manifold.
Using the properties of ${ }^{V} X,{ }^{H} X$ and $\gamma R(X, Y)=y^{s} R_{i j s}^{k} X^{i} Y^{j} \frac{\partial}{\partial x^{k}}$, we have

$$
\begin{aligned}
& \left(\phi_{D_{I}}{ }^{S} g\right)\left({ }^{V} X,{ }^{H} Y,{ }^{H} Z\right)=-2\left({ }^{S} g^{V}\left(\nabla_{Y} X\right),{ }^{H} Z\right)+{ }^{S} g\left({ }^{H} Y,{ }^{V}\left(\nabla_{Z} X\right)\right)=0, \\
& \left(\phi_{D_{I}}{ }^{S} g\right)\left({ }^{V} X,{ }^{H} Y,{ }^{V} Z\right)=-2^{S} g\left({ }^{H} Y,\left[{ }^{V} Z,{ }^{V} X\right]\right)=0, \\
& \left(\phi_{D_{I}}{ }^{S} g\right)\left({ }^{V} X,{ }^{V} Y,{ }^{H} Z\right)=-2^{S} g\left(\left[{ }^{V} Y,{ }^{V} X\right],{ }^{H} Z\right)=0, \\
& \left(\phi_{D_{I}}{ }^{S} g\right)\left({ }^{V} X,{ }^{V} Y,{ }^{V} Z\right)=0, \\
& \left(\phi_{D_{I}}{ }^{S} g\right)\left({ }^{H} X,{ }^{H} Y,{ }^{H} Z\right)=0, \\
& \left(\phi_{D_{I}}{ }^{S} g\right)\left({ }^{H} X,{ }^{H} Y,{ }^{V} Z\right)=2^{V}\left(\left(\nabla_{X} g\right)(Y, Z)\right)=0, \\
& \left(\phi_{D_{I}}{ }^{S} g\right)\left({ }^{H} X,{ }^{H} Y,{ }^{V} Z\right)=-2^{S} g\left(\gamma R(Y, X),{ }^{V} Z\right), \\
& \left(\phi_{D_{I}}{ }^{S} g\right)\left({ }^{H} X,{ }^{H} Y,{ }^{H} Z\right)=-2^{S} g\left({ }^{V} Y, \gamma R(Z, X)\right) .
\end{aligned}
$$

Therefore we have
Theorem 9. The almost B-manifold $\left(T\left(V_{n}\right),{ }^{D} I,{ }^{S} g\right)$ is paraholomorphic if and only if V_{n} is locally Euclidean.
Examples 2. Let now M_{n} be the locally product Riemannian manifold with integrable almost product structure

$$
\varphi=\left(\begin{array}{cc}
\delta_{j}^{i} & 0 \\
0 & -\delta_{\bar{j}}^{\bar{i}}
\end{array}\right), \quad i, j=1, \ldots, k, \bar{i}, \bar{j}=k+1, \ldots, n,
$$

and let $n=2 k$. Then the paracomplex manifold $M_{2 k}$, admit a structure of B-manifold:

$$
g=\left(\begin{array}{cc}
g_{i j} & 0 \\
0 & g_{\bar{i} \bar{j}}
\end{array}\right), \quad g_{i j}=g_{i j}\left(x^{t}, x^{\bar{t}}\right), g_{\bar{i} \bar{j}}=g_{\bar{i} \bar{j}}\left(x^{t}, x^{\bar{t}}\right) .
$$

Suppose that the metric of the locally product Riemannian manifold $M_{2 k}$ has the form

$$
d s^{2}=g_{i j}\left(x^{t}\right) d x^{i} d x^{j}+g_{\bar{i} j}\left(x^{\bar{t}}\right) d x^{\bar{i}} d x^{\bar{j}}, \quad i, j, t=1, \ldots, k, \bar{\imath}, \bar{j}, \bar{t}=k+1, \ldots, 2 k,
$$

that is $g_{i j}(x)$ are functions of x^{t} only, $g_{i \bar{j}}=0$, and $g_{\bar{i} \bar{j}}(x)$ are functions of $x^{\bar{t}}$ only, then we call the manifold a locally decomposable Riemannian manifold. A necessary and sufficient condition for a locally product Riemannian manifold to be a locally decomposable Riemannian manifold is that $\nabla_{g} \varphi=0$ [14, p. 420]. Then from Theorem 2 we have

Theorem 10. A locally decomposable Riemannian manifold $M_{2 k}$ is a paraholomorphic B-manifold.

Examples 3. Let $\left(M_{2 k}, \omega\right)$ be a symplectic manifold and let D be a Lagrangian distribution, which is a k-dimensional distribution having $\omega / D=0$. Then, M may be endowed with an almost B-structure.

First of all, we shall prove that there exist a transversal Lagrangian distribution. Taking into account that (M, ω) is an almost symplectic manifold one can find (see [1] or [7]) an almost Hermitian structure (J, G) on M such that $\omega(X, Y)=G(J X, Y)$. Let D^{\perp} the G-orthogonal distribution to D. Then one has:
(1) If $X, Y \in D$, then $G(J X, Y)=\omega(X, Y)=0$, thus proving that $J(D)=D^{\perp}$.
(2) D^{\perp} is a Lagrangian distribution, because $\omega(J X, J Y)=\omega(X, Y)$, for all $X, Y \in \mathfrak{J}_{0}^{1}\left(M_{n}\right)$.

Let F be the almost product structure defined by D and D^{\perp}, i.e., $F^{+}=D$ and $F^{-}=D^{\perp}$. Then, one easily check that $J \circ F=-F \circ J$. Moreover, one can prove that (M, F, G) is a Riemannian almost product manifold:

If $X \in \mathfrak{\Im}_{0}^{1}\left(M_{n}\right)$, then $X=X_{1}+X_{2}$, where $X_{1} \in F^{+}=D$ and $X_{2} \in F^{-}=D^{\perp}=J(D)$, and one can write $X_{2}=J\left(X_{3}\right)$, with $X_{3} \in F^{+}$. Using this notation we obtain:

$$
G(X, Y)=G\left(X_{1}+J X_{3}, Y_{1}+J Y_{3}\right)=G\left(X_{1}, Y_{1}\right)+G\left(J X_{3}, J Y_{3}\right)=G\left(X_{1}, Y_{1}\right)+G\left(X_{3}, Y_{3}\right)
$$

and

$$
G(F X, F Y)=G\left(X_{1}-J X_{3}, Y_{1}-J Y_{3}\right)=G\left(X_{1}, Y_{1}\right)+G\left(J X_{3}, J Y_{3}\right)=G\left(X_{1}, Y_{1}\right)+G\left(X_{3}, Y_{3}\right)
$$

thus proving $G(X, Y)=G(F X, F Y)$.

Acknowledgements

We are very grateful to Professors V.V. Vishnevskii and P.M. Gadea for their valuable suggestions.

References

[1] R. Abraham, J. Marsden, Foundations of Mechanics, Benjamin Cummings, London, 1978.
[2] A. Borowiec, M. Ferraris, M. Francaviglia, I. Volovich, Almost complex and almost-product Einstein manifolds from a variational principle, J. Math. Phys. 40 (7) (1999) 3446-3464.
[3] V. Cruceanu, P. Fortuny, P.M. Gadea, A survey on paracomplex geometry, Rocky Mountain J. Math. 26 (1995) 83-115.
[4] P.M. Gadea, J. Grifone, J. Munoz Masque, Manifolds modelled over free modules over the double numbers, Acta Math. Hungar. 100 (3) (2003).
[5] G.I. Kruchkovich, Hypercomplex structure on a manifold, I, Tr. Sem. Vect. Tens. Anal., Moscow Univ. 16 (1972) 174-201.
[6] A.M. Naveira, A classification of Riemannian almost product manifolds, Rend. Mat. 3 (1983) 577-592.
[7] W.A. Poor, Differential Geometric Structures, McGraw-Hill, New York, 1981.
[8] A.A. Salimov, Generalized Yano-Ako operator and the complete lift of tensor fields, Tensor (N.S.) 55 (2) (1994) 142-146.
[9] A.A. Salimov, A. Magden, Complete lift of tensor fields on a pure cross-section in the tensor bundle, Note di Matematica 18 (1) (1998) $27-37$.
[10] V.V. Vishnevskii, A.P. Shirokov, V.V. Shurygin, Spaces over Algebras, Kazan Gos. University, Kazan, 1985 (in Russian).
[11] V.V. Vishnevskii, Integrable affinor structures and their plural interpretations, J. Math. Sci. 108 (2) (2002) 151-187.
[12] K. Yano, M. Ako, On certain operators associated with tensor fields, Kodai Math. Sem. Rep. 20 (1968) 414-436.
[13] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973.
[14] K. Yano, M. Kon, Structure on Manifolds, World Scientific, Singapore, 1984.

[^0]: * This paper is supported by The Scientific and Technological Research Council of Turkey with number 105T551(TBAG-HD/112).
 * Corresponding author.

 E-mail addresses: asalimov@atauni.edu.tr, asalimov@hotmail.com (A.A. Salimov), miscan@atauni.edu.tr (M. Iscan), etayof@matesco.unican.es (F. Etayo).
 1 F. Etayo was partially supported by Spanish Grant BFM 2002-00141.

