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Abstract

This paper is concerned with problem of the geometry of B-manifolds. We give some properties of Riemannian curvature tensors
of paraholomorphic B-manifolds. Finally, we consider some examples of paraholomorphic B-manifolds.
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1. Introduction

Let Mn be a Riemannian manifold with metric g, which is not necessarily positive definite. We denote by �p
q (Mn)

the set of all tensor fields of type (p, q) on Mn. Manifolds, tensor fields and connections are always assumed to be
differentiable and of class C∞.

An almost paracomplex manifold is an almost product manifold (Mn,ϕ), ϕ2 = id, such that the two eigenbundles
T +Mn and T −Mn associated to the two eigenvalues +1 and −1 of ϕ, respectively, have the same rank. Note that the
dimension of an almost paracomplex manifold is necessarily even. Considering the paracomplex structure ϕ, we obtain
the following set of affinors on Mn : {id, ϕ}, ϕ2 = id, which form a bases of a representation of the algebra of order 2
over the field of real numbers R, which is called the algebra of paracomplex (or double) numbers and is denoted by
R(j) = {a0 + a1j | j2 = 1; a0, a1 ∈ R}. Obviously, it is associative, commutative and it admits principal unit 1. The
canonical bases of this algebra has the form {1, j}. Structural constants of an algebra are defined by the multiplication
law of the base units of this algebra: eiej = Ck

ij ek . The components of Ck
ij are given by C1

11 = C2
12 = C2

21 = C1
22 = 1,

all the others being zero, with respect to the canonical bases of R(j).
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Consider R(j) endowed with the usual topology of R2 and a domain U of R(j). Let

X = x1 + jx2

be a variable in R(j), where xi are real coordinates of a point of a certain domain U for i = 1,2. Using two real-valued
functions f i(x1, x2), i = 1,2, we introduce a paracomplex function

F = f 1 + jf 2

of variable X. It is said to be paraholomorphic if we have

dF = F ′(X)dX

for the differentials dX = dx1 + j dx2, dF = df 1 + j df 2 and the derivative F ′(X). The paraholomorphy of the
function F = f 1 + jf 2 in the variable X = x1 + jx2 is equivalent to the fact that the Jacobian matrix D = (∂kf

i)

commutes with the matrix

C2 = (
Ck

2j

) =
(

0 1
1 0

)

(see [10, p. 87]). It follows that F is paraholomorphic if and only if f 1 and f 2 satisfy the para-Cauchy–Riemann
equations:

∂f 1

∂x1
= ∂f 2

∂x2
,

∂f 1

∂x2
= ∂f 2

∂x1
.

For almost paracomplex structure the integrability is equivalent to the vanishing of the Nijenhuis tensor

Nϕ(X,Y ) = [ϕX,ϕY ] − ϕ[ϕX,Y ] − ϕ[X,ϕY ] + [X,Y ].
On the other hand, in order that an almost paracomplex structure be integrable, it is necessary and sufficient that we
can introduce a torsion free linear connection such that ∇ϕ = 0. A paracomplex manifold is an almost paracomplex
manifold (M2k, ϕ) such that the G-structure defined by the affinor field ϕ is integrable. We can give another-equivalent-
definition of paracomplex manifold in terms of local homeomorphisms in the space Rk(j) = {(X1, . . . ,Xk) | Xi ∈
R(j), i = 1, . . . , k} and paraholomorphic changes of charts in a way similar to [3] (for more details see [10] or [4]),
i.e. a manifold M2k with an integrable paracomplex structure ϕ is a real realization of the paraholomorphic manifold

Mk(R(j)) over the algebra R(j). Let
∗
t be a paracomplex tensor field on Mk(R(j)). The real model of such a tensor

field is a tensor field on M2k of the same order that is independent of whether its vector or covector arguments is
subject to the action of the affinor structure ϕ. Such tensor fields are said to be pure with respect to ϕ. They were
studied by many authors (see, e.g., [5,8–10,12]). In particular, being applied to a (0, q)-tensor field ω, the purity
means that for any X1, . . . ,Xq ∈ �1

0(M2k), the following conditions should hold:

ω(ϕX1,X2, . . . ,Xq) = ω(X1, ϕX2, . . . ,Xq) = · · · = ω(X1,X2, . . . , ϕXq).

We define an operator

φϕ :�0
q(M2k) → �0

q+1(M2k)

applied to the pure tensor field ω by [12]

(φϕω)(X,Y1, Y2, . . . , Yq) = (ϕX)
(
ω(Y1, Y2, . . . , Yq)

) − X
(
ω(ϕY1, Y2, . . . , Yq)

)
+ ω

(
(LY1ϕ)X,Y2, . . . , Yq

) + · · · + ω
(
Y1, Y2, . . . , (LYq ϕ)X

)
, (1.1)

where LY denotes the Lie differentiation with respect to Y .

When ϕ is a paracomplex structure on M2k and the tensor field φϕω vanishes, the paracomplex tensor field
∗
ω on

Mk(R(j)) is said to be paraholomorphic [5]. Thus a paraholomorphic tensor field
∗
ω on Mk(R(j)) is realized on M2k

in the form of a pure tensor field ω, such that

(φϕω)(X,Y1, Y2, . . . , Yq) = 0 (1.2)

for any X,Y1, . . . , Yq ∈ �1(Mn). Therefore such a tensor field ω on M2k is also called paraholomorphic tensor field.
0
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The main results of the present paper are the following ones: Almost paracomplex manifolds endowed with a para-
holomorphic Riemannian metric g are the manifolds where the Levi-Civita connection of the metric parallelizes the
almost paracomplex structure (Theorem 2). In that case, the Levi-Civita connection is also the Levi-Civita connection
of the metric G given by G(X,Y ) = g(ϕX,Y ) (Theorem 5). Moreover, in such a manifold, the Riemannian curvature
tensor is pure (Theorem 6).

2. Paraholomorphic B-manifold

A pure metric with respect to the almost paracomplex structure is a Riemannian metric g such that

g(ϕX,Y ) = g(X,ϕY ) (2.1)

for any X,Y ∈ �1
0(Mn). Such Riemannian metrics were studied in [11], where they were said to be B-metrics, since the

metric tensor g with respect to the structure ϕ is B-tensor according to the terminology accepted in [10]. If (M2k, ϕ)

is an almost paracomplex manifold with B-metric, we say that (M2k, ϕ, g) is an almost B-manifold. If ϕ is integrable,
we say that (M2k, ϕ, g) is an B-manifold.

In a B-manifold a B-metric is called a paraholomorphic if

(φϕg)(X,Y,Z) = 0.

If (M2k, ϕ, g) is a B-manifold with paraholomorphic B-metric, we say that (M2k, ϕ, g) is a paraholomorphic B-
manifold (in some papers, (almost) B-manifolds are simply (almost) paracomplex manifolds, as in [4]). Now we
establish a formula for the B-metric for an almost B-manifold.

Theorem 1. Let g be a B-metric of almost B-manifold. Then

g
(
Z, (∇Y ϕ)(X)

) = g
(
(∇Y ϕ)(Z),X

)
,

where ∇ denotes the operator of the Riemannian covariant derivative with respect to g.

Proof. By virtue of (2.1) and

Yg(Z,X) = g(∇Y Z,X) + g(Z,∇Y X),

from Yg(ϕZ,X) = Yg(Z,ϕX), we have

g(∇Y ϕZ,X) + g(ϕZ,∇Y X) = g(∇Y Z,ϕX) + g(Z,∇Y ϕX)

or

g(ϕZ,∇Y X) − g(Z,∇Y ϕX) = g(∇Y Z,ϕX) − g(∇Y ϕZ,X)

and consequently

g
(
Z,ϕ(∇Y X) − ∇Y ϕX

) = g
(
ϕ(∇Y Z) − ∇Y ϕZ,X

)
from which by virtue of formula

(∇Y ϕ)X = (∇ϕ)(X,Y ) = ∇Y ϕX − ϕ(∇Y X) (2.2)

we see that the proof is completed. �
In some aspects, paraholomorphic B-manifolds are similar to Kahler manifolds. The following theorem is analogue

to the next known result: An almost Hermitian manifold is Kahler if and only if the almost complex structure is parallel
with respect to the Levi-Civita connection.

Theorem 2. An almost B-manifold is paraholomorphic B-manifold if and only if the almost paracomplex structure is
parallel with respect to the Levi-Civita connection ∇ .
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Proof. Putting (g ◦ ϕ)(X,Y ) = g(ϕX,Y ), we get from (1.1)

(φϕg)(X,Z1,Z2) = (
LϕXg − LX(g ◦ ϕ)

)
(Z1,Z2) + g(Z1, ϕLXZ2) − g(ϕZ1,LXZ2)

= (ϕX)g(Z1,Z2) − g(∇ϕXZ1 − ∇Z1ϕX,Z2) − g(Z1,∇ϕXZ2 − ∇Z2ϕX)

− Xg(ϕZ1,Z2) + (g ◦ ϕ)(∇XZ1 − ∇Z1X,Z2) − (g ◦ ϕ)(Z1,∇XZ2 − ∇Z2X)

+ g
(
Z1, ϕ(∇XZ2 − ∇Z2X)

) − g(ϕZ1,∇XZ2 − ∇Z2X)

= (ϕX)g(Z1,Z2) − Xg(ϕZ1,Z2) − g(∇ϕXZ1,Z2) + g(∇Z1ϕX,Z2)

− g(Z1,∇ϕXZ2) + g(Z1,∇Z2ϕX) + g
(
ϕ(∇XZ1),Z2

) − g
(
ϕ(∇Z1X),Z2

)
+ g(ϕZ1,∇XZ2) − g(ϕZ1,∇Z2X) + g

(
Z1, ϕ(∇XZ2)

) − g
(
Z1, ϕ(∇Z2X)

)
− g(ϕZ1,∇XZ2) + g(ϕZ1,∇Z2X)

= (ϕX)g(Z1,Z2) − Xg(ϕZ1,Z2) − g(∇ϕXZ1,Z2) + g(∇Z1ϕX,Z2)

− g(Z1,∇ϕXZ2) + g(Z1,∇Z2ϕX) + g
(
ϕ(∇XZ1),Z2

) − g
(
ϕ(∇Z1X),Z2

)
+ g(ϕZ1,∇XZ2) − g

(
Z1, ϕ(∇Z2X)

)
. (2.3)

Taking account of (2.2), we find

g(∇Z1ϕX,Z2) − g
(
ϕ(∇Z1X),Z2

) + g(Z1,∇Z2ϕX) − g
(
Z1, ϕ(∇Z2X)

)
= g

(
(∇ϕ)(X,Z1),Z2

) + g
(
Z1, (∇ϕ)(X,Z2)

)
. (2.4)

Substitution (2.4) into (2.3), (2.3) may be written as

(φϕg)(X,Z1,Z2) = (ϕX)g(Z1,Z2) − Xg(ϕZ1,Z2) + g
(
(∇ϕ)(X,Z1),Z2

)
+ g

(
Z1, (∇ϕ)(X,Z2)

) − g(∇ϕXZ1,Z2) − g(Z1,∇ϕXZ2)

+ g
(
ϕ(∇XZ1),Z2

) + g(ϕZ1,∇XZ2). (2.5)

On the other hand, with respect to the Levi-Civita connection ∇ , we have

(ϕX)g(Z1,Z2) − g(∇ϕXZ1,Z2) − g(Z1,∇ϕXZ2) = (∇ϕXg)(Z1,Z2) = 0 (2.6)

and

−Xg(ϕZ1,Z2) + g
(
ϕ(∇XZ1),Z2

) + g(ϕZ1,∇XZ2)

= −Xg(ϕZ1,Z2) + g
(
(∇XϕZ1),Z2

) + g(ϕZ1,∇XZ2) − g
(
(∇Xϕ)Z1,Z2

)
= −(∇Xg)(ϕZ1,Z2) − g

(
(∇Xϕ)Z1,Z2

) = −g
(
(∇Xϕ)Z1,Z2

)
. (2.7)

By virtue of (2.6) and (2.7), (2.5) reduces to

(φϕg)(X,Z1,Z2) = −g
(
(∇Xϕ)Z1,Z2

) + g
(
(∇Z1ϕ)X,Z2

) + g
(
Z1, (∇Z2ϕ)X

)
. (2.8)

Similarly, we have

(φϕg)(Z2,Z1,X) = −g
(
(∇Z2ϕ)Z1,X

) + g
(
(∇Z1ϕ)Z2,X

) + g
(
Z1, (∇Xϕ)Z2

)
. (2.9)

The sufficiency follows easily from (2.8) (or (2.9)).
By virtue of Theorem 1 we find

(φϕg)(X,Z1,Z2) + (φϕg)(Z2,Z1,X) = 2g
(
X, (∇Z2ϕ)Z2

)
. (2.10)

Now, putting φϕg = 0 in (2.10), we find ∇ϕ = 0 from which the necessity follows. Thus Theorem 2 is proved. �
Corollary. The almost paracomplex structure ϕ on almost B-manifold is integrable if φϕg = 0.

Remark. The leaves of the foliations defined by the paracomplex structure of a paraholomorphic B-manifold are
totally geodesic submanifolds (see [6] or the book K. Yano and M. Kon [14, p. 420]). In the paper of A.M. Naveira
[6] Riemannian almost product manifolds were classified.
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Let (M2k, ϕ, g) be an almost B-manifold. The associated B-metric of almost B-manifold is defined by

G(X,Y ) = (g ◦ ϕ)(X,Y ) (2.11)

for all vector fields X and Y on M2k . One can easily prove that G is a metric, which is also called the twin metric of
g (see [2]) and it plays a role similar to the Kahler form in Hermitian Geometry. We shall now apply the Tachibana
operator to the pure Riemannian metric G

(φϕG)(X,Y,Z) = (
LϕXG − LX(G ◦ ϕ)

)
(Y,Z) + G(Y,ϕLXZ) − G(ϕY,LXZ)

= (
LϕX(g ◦ ϕ) − LX

(
(g ◦ ϕ) ◦ ϕ

))
(Y,Z) + (g ◦ ϕ)(Y,ϕLXZ) − (g ◦ ϕ)(ϕY,LXZ)

= (
(LϕXg) ◦ ϕ + g ◦ LϕXϕ − LX(g ◦ ϕ) ◦ ϕ − (g ◦ ϕ)LXϕ

)
(Y,Z)

+ (g ◦ ϕ)(Y,ϕLXZ) − (g ◦ ϕ)(ϕY,LXZ)

= (
LϕXg − LX(g ◦ ϕ)

)
(ϕY,Z) + g(ϕY,ϕLXZ)

− g
(
ϕ(ϕY ),LXZ

) + (
g ◦ LϕXϕ − (g ◦ ϕ)LXϕ

)
(Y,Z)

= (φϕg)(X,ϕY,Z) + g
(
(LϕXϕ)Y,Z

) − g
(
ϕ
(
(LXϕ)Y

)
,Z

)
= (φϕg)(X,ϕY,Z) + g

([ϕX,ϕY ] − ϕ[ϕX,Y ],Z) − g
(
ϕ[X,ϕY ] − ϕ2[X,Y ],Z)

= (φϕg)(X,ϕY,Z) + g
([ϕX,ϕY ] − ϕ[ϕX,Y ] − ϕ[X,ϕY ] + ϕ2[X,Y ],Z)

= (φϕg)(X,ϕY,Z) + g
(
Nϕ(X,Y ),Z

)
. (2.12)

Thus (2.12) implies the following:

Theorem 3. In an almost B-manifold, we have

φϕG = (φϕg) ◦ ϕ + g ◦ (Nϕ).

From Theorems 2 and 3 we have

Theorem 4. Almost B-manifold with condition φϕG = 0, Nϕ 
= 0 i.e. analogues of the almost Kahler manifolds, does
not exist.

Corollary. The following conditions are equivalent:

(a) φϕg = 0;
(b) φϕG = 0.

We denote by ∇g the covariant differentiation of Levi-Civita connection of B-metric g. Then, we have

∇gG = (∇gg) ◦ ϕ + g ◦ (∇gϕ) = g ◦ (∇gϕ)

which implies ∇gG = 0 by virtue of Theorem 2. Therefore we have

Theorem 5. Let (M2k, ϕ, g) be a paraholomorphic B-manifold. Then the Levi-Civita connection of B-metric g coin-
cides with the Levi-Civita connection of associated B-metric G.

3. Curvature tensors in a paraholomorphic B-manifold

Let R and S be the curvature tensors formed by g and G respectively, then for the paraholomorphic B-manifold
we have R = S by means of the Theorem 5.

Applying the Ricci’s identity to ϕ, we get

ϕ
(
R(X,Y )Z

) = R(X,Y )ϕZ (3.1)

by virtue of ∇ϕ = 0. Hence R(X1,X2,X3,X4) = g(R(X1,X2)X3,X4) is pure with respect to X3 and X4 and also
pure with respect to X1 and X2:
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R(X1,X2, ϕX3,X4) = g
(
R(X1,X2)ϕX3,X4

)
= g

(
ϕ
(
R(X1,X2)X3

)
,X4

)
= g

(
R(X1,X2)X3, ϕX4

)
= R(X1,X2,X3, ϕX4).

On the other hand, S being the curvature tensor formed by associated B-metric G, if we put S(X1,X2,X3,X4) =
G(S(X1,X2)X3,X4), then we have

S(X1,X2,X3,X4) = S(X3,X4,X1,X2). (3.2)

Taking account of (1.1), (2.11), (3.1) and R = S, we find that

S(X1,X2,X3,X4) = G
(
S(X1,X2)X3,X4

)
= g

(
ϕ
(
S(X1,X2)X3

)
,X4

)
= g

(
S(X1,X2)X3, ϕX4

)
= g

(
R(X1,X2)X3, ϕX4

)
= R(X1,X2,X3, ϕX4)

and

S(X3,X4,X1,X2) = G
(
S(X3,X4)X1,X2

)
= g

(
ϕ
(
S(X3,X4)X1

)
,X2

)
= g

(
S(X3,X4)X1, ϕX2

)
= g

(
R(X3,X4)X1, ϕX2

)
= R(X3,X4,X1, ϕX2)

= R(X1, ϕX2,X3,X4).

Thus Eq. (3.2) becomes

R(X1,X2,X3, ϕX4) = R(X1, ϕX2,X3,X4),

which shows that R(X1,X2,X3,X4) is pure with respect to X2 and X4. Therefore R(X1,X2,X3,X4) is pure.
Thus we get

Theorem 6. In a paraholomorphic B-manifold, the Riemannian curvature tensor of B-metric is pure.

Since the Riemannian curvature tensor R is pure, we can apply the φ-operator to R. By similar devices (see proof
of Theorem 2), we can prove that

(φϕR)(X,Y1, Y2, Y3, Y4) = (∇ϕXR)(Y1, Y2, Y3, Y4) − (∇XR)(ϕY1, Y2, Y3, Y4). (3.3)

Using (3.1) and applying the Bianchi’s 2nd identity to (3.3), we get

(φϕR)(X,Y1, Y2, Y3, Y4) = g
(
(∇ϕXR)(Y1, Y2, Y3) − (∇XR)(ϕY1, Y2, Y3), Y4

)
= g

(
(∇ϕXR)(Y1, Y2, Y3) − ϕ

(
(∇XR)(Y1, Y2, Y3)

)
, Y4

)
= g

(−(∇Y1R)(Y2, ϕX,Y3) − (∇Y2R)(ϕX,Y1, Y3)

− ϕ
(
(∇XR)(Y1, Y2, Y3)

)
, Y4

)
. (3.4)

On the other hand, using ∇ϕ = 0, we find
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(∇Y2R)(ϕX,Y1, Y3) = ∇Y2

(
R(ϕX,Y1, Y3)

) − R
(∇Y2(ϕX),Y1, Y3

) − R(ϕX,∇Y2Y1, Y3) − R(ϕX,Y1,∇Y2Y3)

= (∇Y2ϕ)
(
R(X,Y1, Y3)

) + ϕ
(∇Y2R(X,Y1, Y3)

)
− R

(
(∇Y2ϕ)X + ϕ(∇Y2X),Y1, Y3

) − R(ϕX,∇Y2Y1, Y3) − R(ϕX,Y1,∇Y2Y3)

= ϕ
(∇Y2R(X,Y1, Y3)

) − ϕ
(
R(∇Y2X,Y1, Y3)

)
− ϕ

(
R(X,∇Y2Y1, Y3)

) − ϕ
(
R(X,Y1,∇Y2Y3)

)
= ϕ

(
(∇Y2R)(X,Y1, Y3)

)
. (3.5)

Similarly

(∇Y1R)(Y2, ϕX,Y3) = ϕ
(
(∇Y1R)(Y2,X,Y3)

)
. (3.6)

Substituting (3.5) and (3.6) in (3.4) and using again the Bianchi’s 2nd identity, we obtain

(φϕR)(X,Y1, Y2, Y3, Y4) = g
(−ϕ

(
(∇Y1R)(Y2,X,Y3)

) − ϕ
(
(∇Y2R)(X,Y1, Y3)

) − ϕ
(
(∇XR)(Y1, Y2, Y3)

)
, Y4

)
= −g

(
ϕ
(
σ
{
(∇XR)(Y1, Y2

}
, Y3

))
, Y4

)
= 0,

where σ denotes the cyclic sum with respect to X, Y1 and Y2. Therefore we have

Theorem 7. In a paraholomorphic B-manifold, the Riemannian curvature tensor field is paraholomorphic tensor field.

4. Examples

Examples 1. We suppose that the manifold M2n is the tangent bundle π :T (Vn) → Vn of a Riemannian manifold Vn.
If xi are local coordinates on Vn, then xi together with the fibre coordinates xı̄ = yi , ı̄ = n + 1, . . . ,2n, form local
coordinates on T (Vn).

A tensor field of type (0, q) on T (Vn) completely determined by its action on all vector fields X̃i , i = 1,2, . . . , q ,
which are of the form V X (vertical lift) or H X (horizontal lift) [13, p. 101]:

V X = Xi ∂

∂xı̄
, H X = Xi ∂

∂xi
− ysΓ i

s hX
h ∂

∂xı̄
.

Therefore, we define the Sasakian metric sg on T (Vn) by⎧⎨
⎩

Sg(H X,H Y ) = V (g(X,Y )),
Sg(V X,V Y ) = V (g(X,Y )),
Sg(V X,H Y ) = 0,

(4.1)

for any X,Y ∈ �1
0(Vn). Sg has local components

Sg =
(

gji + gtsy
kylΓ t

kjΓ
s
li ykΓ s

kj gsi

ykΓ s
kigjs gji

)

with respect to the induced coordinates (xi, xı̄) in T (Vn), where Γ k
ij are components of Levi-Civita connection ∇g

in Vn.
The diagonal lift Dϕ in T (Vn) is defined by{

DϕH X = H (ϕX),
DϕV X = −V (ϕX),

(4.2)

for any X ∈ �1
0(Vn) and ϕ ∈ �1

1(Mn). The diagonal lift DI of the identity tensor field I ∈ �1
1(Mn) has the components

DI =
(

δ
j
i 0
t j j

)

−2y Γti −δi
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with respect to the induced coordinates and satisfies (DI)2 = IT (Vn). Thus DI is an almost paracomplex structure
determining the horizontal distribution and the distribution consisting of the tangent planes to fibres.

We put

A(X̃, Ỹ ) = Sg
(
DIX̃, Ỹ

) − Sg
(
X̃,DI Ỹ

)
.

If A(X̃, Ỹ ) = 0 for all vector fields X̃ and Ỹ which are of the form V X,V Y or H X, H Y , then A = 0. We have by
virtue of DIV X = −V X,DIH X = H X (4.1) and (4.2)

A
(
V X,V Y

) = Sg
(−V X,V Y

) − Sg
(
V X,−V Y

) = 0,

A
(
V X,H Y

) = Sg
(−V X,H Y

) − Sg
(
V X,H Y

) = 0,

A
(
H X,V Y

) = Sg
(
H X,V Y

) − Sg
(
H X,−V Y

) = 0,

A
(
H X,H Y

) = Sg
(
H X,H Y

) − Sg
(
H X,H Y

) = 0,

i.e. Sg is B-metric with respect to DI .
We hence have:

Theorem 8. (T (Vn),
DI, Sg) is an almost B-manifold.

Using the properties of V X, H X and γR(X,Y ) = ysRk
ijsX

iY j ∂

∂xk̄
, we have

(
φDI

Sg
)(

V X,H Y,H Z
) = −2

(
SgV (∇Y X),H Z

) + Sg
(
H Y, V (∇ZX)

) = 0,(
φDI

Sg
)(

V X,H Y, V Z
) = −2Sg

(
H Y,

[
V Z, V X

]) = 0,(
φDI

Sg
)(

V X,V Y,H Z
) = −2Sg

([
V Y, V X

]
, H Z

) = 0,(
φDI

Sg
)(

V X,V Y, V Z
) = 0,(

φDI
Sg

)(
H X,H Y,H Z

) = 0,(
φDI

Sg
)(

H X,V Y, V Z
) = 2V

(
(∇Xg)(Y,Z)

) = 0,(
φDI

Sg
)(

H X,H Y, V Z
) = −2Sg

(
γR(Y,X), V Z

)
,(

φDI
Sg

)(
H X,V Y,H Z

) = −2Sg
(
V Y, γR(Z,X)

)
.

Therefore we have

Theorem 9. The almost B-manifold (T (Vn),
DI, Sg) is paraholomorphic if and only if Vn is locally Euclidean.

Examples 2. Let now Mn be the locally product Riemannian manifold with integrable almost product structure

ϕ =
(

δi
j 0

0 −δı̄

j̄

)
, i, j = 1, . . . , k, ı̄, j̄ = k + 1, . . . , n,

and let n = 2k. Then the paracomplex manifold M2k , admit a structure of B-manifold:

g =
(

gij 0
0 gīj̄

)
, gij = gij

(
xt , xt̄

)
, gīj̄ = gīj̄

(
xt , xt̄

)
.

Suppose that the metric of the locally product Riemannian manifold M2k has the form

ds2 = gij

(
xt

)
dxi dxj + gı̄j

(
xt̄

)
dxı̄ dxj̄ , i, j, t = 1, . . . , k, ı̄, j̄ , t̄ = k + 1, . . . ,2k,

that is gij (x) are functions of xt only, gij̄ = 0, and gı̄j̄ (x) are functions of xt̄ only, then we call the manifold a locally
decomposable Riemannian manifold. A necessary and sufficient condition for a locally product Riemannian manifold
to be a locally decomposable Riemannian manifold is that ∇gϕ = 0 [14, p. 420]. Then from Theorem 2 we have

Theorem 10. A locally decomposable Riemannian manifold M2k is a paraholomorphic B-manifold.
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Examples 3. Let (M2k,ω) be a symplectic manifold and let D be a Lagrangian distribution, which is a k-dimensional
distribution having ω/D = 0. Then, M may be endowed with an almost B-structure.

First of all, we shall prove that there exist a transversal Lagrangian distribution. Taking into account that (M,ω)

is an almost symplectic manifold one can find (see [1] or [7]) an almost Hermitian structure (J,G) on M such that
ω(X,Y ) = G(JX,Y ). Let D⊥ the G-orthogonal distribution to D. Then one has:

(1) If X,Y ∈ D, then G(JX,Y ) = ω(X,Y ) = 0, thus proving that J (D) = D⊥.
(2) D⊥ is a Lagrangian distribution, because ω(JX,JY ) = ω(X,Y ), for all X,Y ∈ �1

0(Mn).

Let F be the almost product structure defined by D and D⊥, i.e., F+ = D and F− = D⊥. Then, one easily check
that J ◦ F = −F ◦ J . Moreover, one can prove that (M,F,G) is a Riemannian almost product manifold:

If X ∈ �1
0(Mn), then X = X1 + X2, where X1 ∈ F+ = D and X2 ∈ F− = D⊥ = J (D), and one can write

X2 = J (X3), with X3 ∈ F+. Using this notation we obtain:

G(X,Y ) = G(X1 + JX3, Y1 + JY3) = G(X1, Y1) + G(JX3, JY3) = G(X1, Y1) + G(X3, Y3)

and

G(FX,FY) = G(X1 − JX3, Y1 − JY3) = G(X1, Y1) + G(JX3, JY3) = G(X1, Y1) + G(X3, Y3)

thus proving G(X,Y ) = G(FX,FY).
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