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SUMMARY

Hematopoietic stem cells (HSCs) are produced
by a small cohort of hemogenic endothelial cells
(ECs) during development through the formation of
intra-aortic hematopoietic cell (HC) clusters. The
Runx1 transcription factor plays a key role in the
EC-to-HC and -HSC transition. We show that Runx1
expression in hemogenic ECs and the subsequent
initiation of HC formation are tightly controlled by
the subaortic mesenchyme, although the mesen-
chyme is not a source of HCs. Runx1 and Notch
signaling are involved in this process, with Notch
signaling decreasing with time in HCs. Inhibiting
Notch signaling readily increases HC production in
mouse and chicken embryos. In the mouse, how-
ever, this increase is transient. Collectively, we
show complementary roles of hemogenic ECs and
mesenchymal compartments in triggering aortic
hematopoiesis. The subaortic mesenchyme induces
Runx1 expression in hemogenic-primed ECs and
collaborates with Notch dynamics to control aortic
hematopoiesis.

INTRODUCTION

In vertebrates, the aorta was shown to autonomously generate

adult-type hematopoietic stem cells (HSCs) during develop-

ment. Aortic hematopoiesis is characterized by the production

of small clusters of hematopoietic cells (HCs) that accumulate

in the lumen, closely associated with the endothelial floor (Diet-

erlen-Lièvre et al., 2006; Dzierzak and Speck, 2008). Polarization

of hematopoiesis to the vessel floor in the avian embryo was

shown to rely on the replacement of the initial aortic roof by

somite-derived endothelial cells (ECs) (Pardanaud et al., 1996;

Pouget et al., 2006). Polarization is under the control of a

reciprocal Hedgehog-BMP molecular gradient in the zebrafish
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embryo (Wilkinson et al., 2009) and/or activated by a somitic

Wnt16/Notch pathway (Clements et al., 2011). In the mouse,

HCs are found both dorsally and ventrally in the aorta (Taoudi

and Medvinsky, 2007; Yokomizo and Dzierzak, 2010), but

HSCs are restricted to the ventral side, suggesting that under-

lying tissues influence hematopoietic production (Taoudi and

Medvinsky, 2007).

Compelling evidence indicates that HCs are derived from

specialized ECs endowed with a hemogenic potential in the

avian (Jaffredo et al., 1998), mouse (de Bruijn et al., 2000; Zovein

et al., 2008), and human (Oberlin et al., 2002) embryos, although

a subaortic origin cannot be completely ruled out (Bertrand et al.,

2005; Rybtsov et al., 2011). Live-imaging techniques showed

that embryonic stem cells generated ECs that, in turn, produced

HCs (Eilken et al., 2009; Lancrin et al., 2009). Finally, time-lapse

approaches showed that this production occurs in vivo in mouse

aortic explants (Boisset et al., 2010) and in whole zebrafish

embryos (Bertrand et al., 2010a; Kissa and Herbomel, 2010;

Lam et al., 2010).

When and how the hemogenic program is induced are yet to

be discovered. Several lines of evidence, however, indicate

that local environmental signals influence hematopoiesis. For

instance, an inductive/trophic effect of endoderm on mesoderm

was shown to confer hemogenic potential to nonhemogenic ECs

(Pardanaud and Dieterlen-Lièvre, 1999) or to influence HSC

number in the aorta (Peeters et al., 2009). The presence of

several molecules involved in hematopoiesis suggests that the

ventral aortic mesenchyme may serve as a hematopoiesis-

promoting microenvironment (Marshall et al., 2000). Moreover,

cell lines isolated from the aortic region are potent supporters

of embryonic and adult hematopoiesis (Oostendorp et al.,

2002). However, the origin and role(s) of the subaortic mesen-

chyme are poorly understood. The problem lays primarily in

the facts that (1) due to specific embryological constraints in

the mouse embryo, endothelium and subaortic mesenchyme

are not amenable to physical separation, and (2) both endothe-

lium and subaortic mesenchyme are reported to express the

key transcription factor Runx1, making the situation difficult to

analyze (Azcoitia et al., 2005; North et al., 1999). Runx1 is

responsible for the production of HCs and HSCs in the aorta
Inc.
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(North et al., 1999, 2002) and seems to be required for the earliest

phases of HC formation from the endothelium but dispensable

for the later ones (Chen et al., 2009). Yet neither the precise

time point at which Runx1 is expressed during aortic hematopoi-

esis nor the developmental events controlling its expression

have been identified.

Considering that aortic hematopoiesis mostly originates from

hemogenic ECs, it can be viewed as a cell fate change in which

ECs lose their characteristics and acquire hematopoietic-

specific markers (Jaffredo et al., 2010). This endothelial-to-

hematopoietic transition is under the control of the Notch

pathway. Notch regulates cell fate decisions in many develop-

mental systems including hematopoiesis. Gene inactivation

experiments showed that Notch signaling and the Notch ligand

Jagged1 are involved in embryonic hematopoiesis (Hadland

et al., 2004; Kumano et al., 2003); Notch signaling activates

Gata2 expression via RBPjk (Robert-Moreno et al., 2005,

2008). The Notch pathway was shown to be upstream of the

genetic cascade driving Runx1 expression during hematopoietic

production in the zebrafish aorta (Burns et al., 2005) and be

specifically required for HSC formation (Bertrand et al., 2010b;

Rowlinson and Gering, 2010) through a Wnt16-dependant

mechanism (Clements et al., 2011).

Here, we show that during aorta formation, Runx1 expression

is a secondary event tightly controlled by the subaortic mesen-

chyme but that mesenchyme is not a source of HCs. Absence of

the subaortic mesenchyme prevents both Runx1 expression

and HC formation, showing the interdependent roles of the

hemogenic EC and mesenchyme. However, the subaortic

mesenchyme has no influence on vessel identity. Neither peri-

aortic smooth muscle cells nor the mesonephros influenced

aortic hematopoiesis. Runx1 expression is accompanied by

downregulation of the Notch pathway in hemogenic ECs,

a prerequisite to initiate hematopoiesis. This mechanism is

conserved, but a few members of the Notch pathway display

species-specific differences. Moreover, blocking Notch sig-

naling results in overproduction of CD45+ cells from the aorta.

Taken together, our work opens the field for the future identifi-

cation of critical regulators of aortic hematopoiesis and points

to a necessary comparison between species for future biomed-

ical applications.

RESULTS

Runx1 Expression Is Spatially and Temporally
Controlled during Formation of the Aorta
We established the expression patterns of runx1, pu-1 (a Runx1

target; Huang et al., 2008), and c-myb (a Runx1 molecular

partner; Hernandez-Munain and Krangel, 1994) by in situ hybrid-

ization on adjacent sections at selected stages of aorta forma-

tion in the chick embryo. Expression was examined at stages

representing prefusion paired aortas, and postfusion aortas

before the HC stage, at 48 hr (Figures 1A and 1A0; Figures

S1A–S1D available online), 55 hr (Figures 1B and 1B0), and

60 hr (Figures 1C, 1C0, and S1E–S1J) of development. Later

stages displayed already-reported runx1 expressions in the

hemogenic endothelium and the hematopoietic clusters and

were not included in the figures. Runx1 expression was found

to initiate in the lateral aspect of the paired aortas 1 day before
Develo
the HC stage and to progressively extend ventrally while remain-

ing confined to the endothelial layer marking the hemogenic

endothelium. Pu-1 and c-myb mRNAs followed runx1 expres-

sion with a slight delay and alsomarked the hemogenic endothe-

lium (Figures S1A–S1J) and HCs (data not shown). Contrary to

the mouse expression pattern (Azcoitia et al., 2005; North

et al., 1999; Zovein et al., 2008), no runx1mesenchymal expres-

sion was found in the chicken embryo. This lateral-to-ventral

pattern strongly suggested that runx1 expression was tightly

controlled. We thus sought tissues or cells whose association

or migration to the floor of the aorta was contemporaneous

with runx1 expression.

Mapping the Origin of the Subaortic Mesenchyme
We focused on the subaortic mesenchyme, whose onset of

formation and subsequent differentiation were coincident with

runx1 expression pattern. Subaortic mesenchyme was recently

shown to originate from the lateral plate mesoderm in mouse

(Wasteson et al., 2008) and chicken embryos (Wiegreffe et al.,

2009), but the precise location of the mesenchymal precursors

was not defined. Based on the observation of E1.5–E2 avian

embryos, a splanchnopleural origin appeared likely.

We performed fate-mapping experiments using DiI labeling

and quail/chicken grafts. In the first series of experiments,

groups of cells in 10–13 somite-stage embryos were labeled

using DiI crystals that were inserted in the splanchnic meso-

derm at the level of the last-formed somite, at different

distances from the midline (n = 22; Figures 1D and 1E). Six

samples, recorded during 24 or 36 hr, showed very dynamic

movements (Movie S1). DiI+ cells that were lateral to the somites

moved to the embryo midline. This movement is due to the

formation of the lateral body folds that raises the embryo

body and, at the same time, allows left and right splanchnic

epithelial sheets to meet. Distance measurements showed

that DiI+ cells moved at a constant speed of 11 mm/hr, covering

about 300 mm to reach the midline (Figure 1F; Movie S1).

Analysis of sections showed that DiI+ cells localized underneath

the aorta (Figure 1G) and never crossed the midline. In most

cases, ECs were not labeled. Placing the crystals more super-

ficially, immediately underneath the endoderm, resulted in

aortic endothelium staining (Figure 1H), demonstrating the

close association between the splanchnic mesoderm and aortic

rudiments and the ventral origin of the primitive aorta. In

a second series of experiments, pieces of chicken splanchnic

mesoderm were replaced by their quail counterparts (17

embryos), and the location of quail cells was monitored

with the quail-specific antibody QCPN (data not shown). DiI

and quail-chicken approaches yielded similar results. These

approaches were completed with scanning electron micros-

copy studies or normal embryos during E2. In Figure S1K (22

somite-stage embryo), the splanchnic epithelium began to

wrap around the aortic rudiment. Slightly later on, cells reached

the aortic floor (Figure S1L).

In conclusion, the subaortic tissue originated from a

splanchnic mesoderm segment localized between 250 and

300 mm from the embryo midline. Labeled cells lateral to this

segment associated with the future gut (data not shown),

revealing a precise dorsoventral allocation of splanchnic meso-

dermal blocks according to their medio-lateral position.
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Figure 1. Runx1 Patterns and Dynamics of Aorta Formation

(A–C0) Aortic runx1 expression. In situ hybridization. (A) Early-paired aortae stage; 48 hr. No conspicuous runx1 expression is present at that stage. Scale bar,

50 mm. (A0) Magnification of the frame in (A). A single runx1+ cell is present in the lateral endothelium (arrowhead). Scale bar, 15 mm. (B) Late-paired aortae stage;

55 hr. Runx1 is barely detectable. Scale bar, 70 mm. (B0) Higher magnification of the frame in (B). Runx1 expression is restricted to a few cells in the ventrolateral

endothelium (arrowheads). Scale bar, 20 mm. (C) Single-aorta stage, immediately after fusion; 60 hr.Runx1 is expressed throughout thewhole ventral endothelium

except in its ventral most part. Scale bar, 80 mm. (C0) Magnification of the frame in (C) showing the endothelial-specific expression of runx1. Frames focus on the

left side of the aorta that are higher magnified in corresponding (A0)–(C0). Scale bar, 25 mm.

(D–G) Fate mapping of the subaortic mesenchyme. (D) Experimental design. The embryo is cultured ventral side up. Endoderm is opened, and a DiI crystal (red

arrow) is deposited on the splanchnopleural mesoderm. (E) Ten somite stage. Bilateral deposition of crystals visible as red spots. (F) Speed measure of a DiI

crystal. Crystal progression is constant over time. (G) Cross-section through a 12 somite-stage embryo bilaterally labeled with DiI after 24 hr of culture. The DiI+

areas are immediately underneath the aorta (white arrow). Scale bar, 70 mm.

(H) Splanchnopleural origin of the primitive aorta. In addition to the splanchnopleural mesoderm, the aorta was sometimes labeled indicating that both tissues

have the same origin. Here, a single DiI crystal was deposited on one side resulting in the staining of the whole hemiaorta and associated mesenchyme.

Ao, aorta; C, coelom; N, notochord; NT, neural tube; S, somite. See also Figure S1 and Movie S1.
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Figure 2. Role of the Subaortic Mesenchyme in Aortic Hemato-

poiesis

(A) Experimental scheme and further development. The cut separates somite

and future kidney from the lateral plate (upper scheme), preventing the

splanchnopleural mesoderm to contribute to the aortic region (lower scheme).

Ectoderm is shown in white, endoderm in green, somites in dark pink, and

lateral plate in light pink.

(B) Schematic representation of normal and operated embryos 48 hr after the

slit. Midtrunk level. Left-hand scheme shows normal embryo. Somite-derived

structures are in dark pink. The aorta (red, median circle) has two rows of

HCs. The gut composed of endoderm (green) surrounded by mesenchyme

(light pink) is appended into the coelomic cavity. Right-hand scheme illus-

trates operated embryo. Symmetry is not affected except in the ventral part

of the embryo. Aortic hematopoiesis pattern is affected. Coelom on the

operated side is lacking, and gut is opened. Endoderm and ectoderm have

fused.

(C–F) Aortic region at 24 hr (C and D) and 48 hr (E and F) after the slit. In situ

hybridization with runx1 (C and E) and ve-cadherin (D and F). (C) Runx1

expression is present on the control side (left) but absent on the operated

side (right). Scale bar, 130 mm. (D) ve-cadherin pattern is normal suggesting

that no major modification of EC identity has occurred. (E) Runx1+ HC clus-

ters are visible on the control side (black arrow) but are lacking on the

operated side. Note the presence of a loose ventral tissue on the operated

side compared to the control side. Scale bar, 150 mm. (F) ve-cadherin

expression is normal. Note the decrease of ve-cadherin expression mRNA

in the HC clusters as reported (Jaffredo et al., 2005). Black arrow points to

a HC cluster.

C, coelom; CV, cardinal vein. See also Figure S2.

Developmental Cell

Mesenchyme Controls Runx1 and Modulates Notch
Preventing Migration of the Subaortic Mesenchyme
Inhibits Runx1 Expression and Initiation of
Hematopoiesis without Impairing Vessel Formation or
Arteriovenous Identity
Fate-mapping experiments prompted us to study the role of

the subaortic mesenchyme in the initiation of hematopoiesis.

Migration of mesenchyme to the midline was prevented by

making a slit on one side of the embryo, either immediately

lateral to the somite or in the intermediate mesoderm, that sepa-

rated the embryo proper from the lateral plate (Figure 2A). The

nonoperated side served as control. Both experiments yielded

similar results. The slit was made at E2 when the embryo was

still flat and no contact between lateral plate and aortic anlagen

had yet occurred (Figure 2A). The slit does not modify the dorso-

ventral allocation of hemogenic and nonhemogenic ECs of the

aorta because (1) it was made when the aortic anlagen was still

formed, and (2) the global shape of the aorta and the presence

and correct position of the segmental arteries, derived from

the somite, are not modified. Lack of lateral plate resulted in

the absence of a coelom, fusion between ectoderm and endo-

derm, and formation of a hemidigestive tube on the operated

side (Figure 2B). One day after the slit was made, the paired

aortas fused, but no conspicuous sign of aortic hematopoiesis

was yet visible (n = 3). Runx1 was expressed by ventral aortic

ECs on the control side but was totally absent on the operated

side (Figure 2C). Vascular endothelial (ve) cadherin was ex-

pressed normally, showing that vascular EC identity was not

impaired by the operation (Figure 2D). Delta-like4 expression

was maintained, demonstrating no change in arteriovenous

identity (Figure S2A). Two days after the slit was made, runx1+

HCs were visible in the control, but not in the operated side (Fig-

ure 2E) (n = 4), consistent with the lack of runx1 endothelial

expression 1 day earlier. Ve-cadherin remained expressed by

ECs, but its expression on the control side was downregulated

in HCs (Figure 2F), in keeping with our previous data (Jaffredo

et al., 2005). Delta-like4 was also maintained in ECs and down-

regulated in HCs (Figure S2B). Formation of the subaortic

mesenchyme thus appeared critical for the initiation of runx1

expression and the production of HCs. However, the absence

of mesenchyme had no influence on the expression of arterial

markers, indicating that the lack of runx1 expression and the

absence of HCs on the operated side were not due to a loss

of arterial identity.

We used the same experimental approach to analyze the

role of smooth muscle cells in the initiation and maintenance

of aortic hematopoiesis. No difference was seen in smooth

muscle actin expression in the control and operated sides (Fig-

ure S2C), demonstrating that this tissue is not sufficient by

itself to induce runx1 expression and cluster formation in the

absence of subaortic mesenchyme. Finally, because a role for

mesonephros and Wolffian duct had been suggested, we

selectively removed the intermediate mesoderm over the length

of four somites on one side, with the nonoperated side serving

as the control. In addition to morphological criteria, cjagged2

was used to confirm the absence of mesonephros. One day

after the ablation, runx1 was found in both the operated and

nonoperated sides, indicating that signaling from the meso-

nephros is not required for hematopoietic specification (Fig-

ure S2D and S2E).
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Figure 3. Tracing Splanchnopleural Meso-

derm Derivatives Using CFDA-SE

(A–C) Twenty-four hours after CFDA-SE labeling.

Same section triple stained with DAPI (A), CFDA-

SE (B), and CD45 (C). The dotted line indicates the

limit between the endothelium and the subaortic

mesenchyme. DAPI staining reveals the topog-

raphy of the tissues. CFDA-SE stains the subaortic

mesenchyme and the coelomic epithelium. CD45

stains the aortic clusters (white arrows).

(D) Merge of DAPI, CFDA-SE, and CD45 signals.

The aortic HC clusters were never green, in

keeping with an endothelial origin of HC clusters

and the complementary roles of aortic endothe-

lium and subaortic mesenchyme in aortic hema-

topoiesis. Scale bar, 80 mm.

DM, dorsal mesentery (of splanchnopleural origin);

M, mesonephros.
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Endothelial, but Not Mesenchymal, Origin of the
Hematopoietic Clusters
The absence of HCs following the block of subaortic mesen-

chyme migration could be due to either a lack of induction on

the hemogenic endothelium or an absence of HCs carried by

the mesenchyme. To discriminate between these possibilities,

we labeled the whole lateral plate mesoderm at the epithelial

stage with the lipophilic dye 5-(and-6)-carboxyfluorescein diac-

etate, succinimidyl ester (CFDA-SE) and followed the labeled

cells until the HC stage. Because the splanchnic epithelium gives

rise to the subaortic mesenchyme, we expected the mesen-

chyme to be fluorescent. If HCs originate from this source,

they should also be labeled. CFDA-SE was inoculated into the

coelom, allowing cells lining the cavity to be labeled. Two-day

embryos received 1–2 ml of 5 mM CFDA-SE and were further

incubated for 24 hr. Seven embryos were analyzed; all displayed

a similar staining. The subaortic mesenchymal cells were CFSE+

(Figures 3A and 3B), but CD45+ HC clusters were free of CFSE

labeling (Figures 3C and 3D), indicating that they did not originate

from the subaortic mesenchyme.

Interplay between Notch Signaling and Runx1
Expression in Aortic Hematopoiesis
We investigated the role of Notch signaling during the early steps

of aortic hematopoiesis. Serrate1 and serrate2 are avian ortho-

logs of mouse Notch ligands Jag1 and Jag2 (and will hereafter

be referred to as cjagged1 and 2, respectively). Both cjagged1

and cjagged2 displayed the same expression pattern by in situ

hybridization during aortic development (data not shown), but

because cjagged2 yielded the better signal, it was chosen for

further analysis. At the 29–32 somite stage, the time of aortic

fusion for the level considered, cjagged2was present throughout

all aortic ECs (Figure S3B), and runx1 expression intensified

(Figure S3A). Immediately after fusion, cjagged2 expression

decreased in the two ventral ridges (Figure 4B) where runx1 dis-
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played the strongest expression (Fig-

ure 4A). At the cluster stage, cjagged2

and runx1 became mutually exclusive

(Figures S3C and S3D). Thus, runx1

expression is associated with downregu-
lation of the cjagged1 and cjagged2 Notch ligands, which

become restricted to ECs.

qPCR Analysis Demonstrates Downregulation of the
Notch Pathway during Aortic Hematopoiesis
Avian andmouse embryos at pre-HC (E2.5 and E9) and HC (E3.5

and E11.5) stages were used to isolate ECs and HCs from the

aortic region by flow cytometry, and expression of members of

the Notch pathway and several Notch targets was probed by

qPCR (Supplemental Experimental Procedures; Table S1).

Both avian and mouse embryos displayed a similar expression

pattern of Notch signaling in ECs at the pre-HC stage (Figures

S3E and S3F). Expression of several Notch pathway members,

including Jag2, Dll4, and Gata2, was enriched in the EC fraction

compared to the nonendothelial fraction, whereas Notch1,

Jagged1, RbpjK, Hes1, and Hey2 displayed weaker levels of

expression relative to the non-EC fraction (Figures S3E and

S3F). The EC-associated expression pattern remained un-

changed at the time of HC production, but there was a strong

decrease in Notch ligand expression (Jag1, Jag2, Dll4) and an

increase in RbpjK expression in the HC as compared to the EC

population (Figures 4C and 4D). Although changes were more

visible in the chicken embryo, both species followed the same

pattern, except for Jag2 in the mouse embryo, which showed

no decrease in HCs relative to ECs (Figure 4D).

We also took advantage of the Runx1-GFP reporter mouse

(Lorsbach et al., 2004) to analyze expression of the Notch tar-

get Hes1 in a purified population of hemogenic endothelium

(Runx1-GFP+CD144+CD41�CD45�), an immature HC popula-

tion (Runx1-GFP+CD144+CD41+CD45�), and two more mature

HC populations (Runx1-GFP+CD144+CD41+CD45+ and Runx1-

GFP+CD144+CD41�CD45+) at the 40–45 somite pair stage

(E11.5). All three HC populations had a reduced level of Hes1

expression relative toECs (Figure 4E). Together, thedata suggest

thatNotch signaling is reduced inHCs relative to hemogenicECs.
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Active Notch1 Is Expressed by Both the Aortic
Endothelium and the Subaortic Mesenchyme
As another approach to identify cells in the aortic region that con-

tained activated Notch, we electroporated the Notch reporter

plasmid pTP1-Venus (Kohyama et al., 2005) into the chick aorta

(Rosselló and Torres, 2010). We found GFP+ cells both in the

endothelium (Figure S3G) and in the subaortic mesenchyme

(Figure S3H) before the HC stage. However, during the HC stage,

Notch signaling remained present in ECs and in tissues sur-

rounding the aorta but disappeared from the HCs (Figures 4F

and 4G) (n = 15). In situ hybridization and immunohistochemistry

demonstrated the presence of Notch1, but not Notch2, in the

aortic region (data not shown), suggesting that the active Notch

signal was derived from Notch1.

Blocking g-Secretase Activity Promotes Hematopoietic
Production in Aorta Organotypic Culture and
Whole-Embryo Culture
In order to evaluate the role of Notch signaling in aortic hemato-

poiesis, we employed the widely used chemical Notch inhibitor,

DAPT, to block g-secretase activity and prevent cleavage of the

Notch intracellular domain. We added 50 mM DAPT to E9.5

(20–25 somite pairs) mouse P-Sp explant cultures. No significant

difference in cell counts was found between control and DAPT-

treated cultures after 7 days (four independent experiments in

the mouse; Figure 4H). We first examined the production of

CD45+ HCs (which includes both committed HCs and progeni-

tors) after 3 and 6 days. Three days after DAPT treatment, mouse

P-Sp explants contained significantly more CD45+ cells com-

pared to vehicle-treated controls (Figure 4I), suggesting that

the downregulation of Notch signaling that accompanies HC

cluster formation augments HC production. After 6 days of

explant culture, the inverse is observed (Figure 4J), indicating

that the enhancing effect of DAPT on CD45+ cell number was

transient. We checked whether this could be related to an

increase of apoptosis or cell death during the culture. Flow cyto-

metric analysis of the CD45+ fraction with annexin V and 7AAD

revealed that DAPT treatment did not alter the percentage of

7AAD+ cells in the CD45+ population of mouse AGM explant

cultures at either 3 or 6 days (Figure 4K). In contrast, during

this time course, the percentage of apoptotic annexin V+

7AAD� cells increased more in the DAPT-treated cultures than

in controls (2- versus 1.7-fold; data not shown). Thus, differences

in the initial phases of CD45+ HC production and response of HC

to apoptosis and cell death explain the differential effects of

DAPT treatment at early and late time points in the explant

culture period. We next quantified the number of hematopoietic

progenitors after 7 days of explant culture with or without 50 mM

DAPT. Clonogenic progenitors were assayed in methylcellulose

and in day 7-cobblestone area-forming cell (D7-CAFC) assays.

Mouse D7-CAFCs, as well as total CFCs (data not shown),

were decreased 2- to 3-fold (p = 0.05) in the presence of DAPT

(Figure 4L), in keeping with previous data by Robert-Moreno

et al. (2008), and consistent with the DAPT-induced decrease

in CD45+ cells after 6 days of explant culture.

When chicken P-Sps at equivalent hematopoietic stages

(26–30 somite pairs) were treated in the same conditions, no

significant difference in cell counts was found between control

and DAPT-treated cultures after 7 days (five independent exper-
Develo
iments; Figure S3I). However, CD45+ HCs produced in DAPT-

treated samples were found to be less sensitive to cell death

than their nontreated counterpart (Figure S3J). Again, hemato-

poietic progenitors were also quantified. Because not all

hematopoietic cytokines for chick progenitors are commercially

available, only D7-CAFC assays were performed for chick aorta

cells by coculturing with MS5 stromal cells. In contrast to the

mouse, the number of D7-CAFCs was increased in chick

cultures in the presence of DAPT (p = 0.016; Figures S3K and

S3L). We also exposed whole chicken embryos to DAPT and

examined CD45+ cells in the aorta. DAPT was delivered to the

endoderm, close to the aortic anlagen. Treatment was per-

formed at the 29–32 somite stage and lasted 24 hr (n = 6). Appli-

cation at earlier stages resulted in abnormalities and death.

DMSO caused hemorrhages in the yolk sac but did not impair

embryo viability (Figure 5A). Sections revealed a large increase

in the number of CD45+ cells after 24 hr of DAPT exposure, in

keeping with the increase seen in short-term mouse P-Sps

explant cultures. In the most dramatic cases, the aorta was filled

with CD45+ cells that formed a giant cluster (Figures 5B and 5C).

In some instances, we found some dorsal ECs expressing CD45,

but the majority of the CD45+ cells remained attached to the

ventral side. No HC cluster was detected in the cardinal veins,

indicating that DAPT treatment did not change the identity

of the vessels, as confirmed by the artery-specific marker

delta-like4 (data not shown). We occasionally observed CD45+

HC clusters in the paired aorta (Figure 5D), which was never

seen in vehicle-treated embryos, indicating that hematopoietic

production was also accelerated. We believe that the difference

in the response of chick and mouse HCs to DAPT is due to

(1) a DAPT-induced increase of apoptosis at 6 days of cul-

ture, leading to a decrease in CD45+ cells in the mouse culture,

and (2) a lower sensitivity to cell death of chick HCs pro-

duced in DAPT-treated samples compared to their nontreated

counterpart.

DISCUSSION

Our study unravels the critical role of the subaortic mesenchyme

in regulating Runx1 expression in the hemogenic endothelium

and the role of the associated Notch pathway in these early

events. Conserved Runx1 regulatory elements from chicken

to human suggested common regulatory pathways between

species (Bee et al., 2009; Ng et al., 2010; Nottingham et al.,

2007). Despite these insights, it was not clear whether Runx1

was constitutively expressed from the onset of aorta formation

or secondarily regulated by developmental events. Here, we

show that ECs of the aortic anlage did not express runx1 nor

pu1 and c-myb. Instead, runx1 and associated genes are

secondarily expressed as aortas matured. In addition, pu1 and

c-myb mRNAs are found expressed in the hemogenic endothe-

lium earlier than expected, further documenting the EC-to-HC

switch.

Before the present study, the subaortic tissue was thought

to originate from the lateral plate mesoderm (Wasteson et al.,

2008; Wiegreffe et al., 2009). Using tracing techniques, we

identified a band of splanchnic mesoderm giving rise to the

subaortic tissue; cells lateral to this band contribute to the gut

mesoderm revealing a specific allocation of splanchnopleural
pmental Cell 24, 600–611, March 25, 2013 ª2013 Elsevier Inc. 605



Figure 4. Analysis of the Notch Pathway during Aortic Hematopoiesis

(A and B) Mutual exclusion between cjagged2 and runx1 during aortic hematopoiesis. In situ hybridization, adjacent sections separated by 7 mm. (A) Runx1

expression extends to the whole floor (arrowheads) except to ECs in the midline. Scale bar, 150 mm. (B) Cjagged2 expression is lost (arrowheads) in cells

upregulating runx1.

(legend continued on next page)
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Figure 5. Effect of Whole-Embryo DAPT

Treatment on Aortic Hematopoiesis

(A) Representative embryo following DAPT treat-

ment. No gross anomaly is visible, but some blood

lacunae have formed. Scale bar, 1 mm.

(B and C) Cross-sections through the aorta of a

treated embryo after 24 hr. CD45 immunohistol-

ogy. Numerous CD45+ cells are present in the

aortic lumen. These structures form a large HC

cluster attached to the ventral aortic side. Scale

bar, 50 mm.

(D) Ectopic hematopoiesis in the paired aortae. A

ventral HC cluster on the left-hand aorta and

a dorsal cluster on the right-hand aorta are clearly

visible. HCs are never seen at this level in normal

embryos. Scale bar, 50 mm.
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cells along the medio-lateral axis. The tracing techniques also

demonstrate the initial splanchnopleural-associated origin of

the aortic rudiments.

The experimental block in the migration of the subaortic

mesenchyme demonstrates the critical role of this tissue for

runx1 expression and aortic hematopoiesis. Whether the

mesenchyme is required for the initiation or also for further

hematopoietic steps needs to be determined. Our data also

suggest that the splanchnopleure-derived aortic hemogenic

endothelium is primed to express runx1 but does not express

it because it receives signal(s) from the mesenchyme that

triggers the hematopoietic program. A supportive role for the

subaortic mesenchyme has been proposed several years ago,

but never experimentally demonstrated, based on the presence
(C and D) qPCR analysis of the Notch pathway in AGM ECs at the hematopoietic stage in chicken (C

respectively. ECs (pink) were sorted on the basis of AcLDL uptake (chicken) and CD144 expression (mo

expression of CD45.

(E) Hes1 expression analysis by qPCR in the E11.5 Runx1+ hemogenic endothelium compared to increasing st

their combinatorial expression of CD41 and CD45. A decrease in Hes1 expression associated with HC matu

(F and G) Detection of active Notch following pTP1-Venus reporter construct electroporation in the aorta. (F

arrows). The green staining (active Notch) is restricted to ECs and absent from the clusters. Scale bar, 40 mm

(green) and CD45 (red) to visualize the clusters.

(H–L) Hematopoietic production analysis of E9.5 mouse P-Sps treated or not with DAPT. (H) Number of cells

coculture on OP9 layer. Differences in cell number are not significant. (I and J) Percentages of CD45+ cells pro

of culture with or without DAPT. A significant increase of CD45+ cell production is visible at 3 days in the DAPT

samples. The inverse is observed at 6 days of culture. Error bars represent the results from four independent

6 (D6) days following mouse P-Sp culture incipience. (L) Percentage of wells positive for D7-CAFCs. A signifi

treated samples, in keeping with previously published data by Robert-Moreno et al. (2008).

The error bars represent SEM. ***p < 0.01, **p < 0.25, *p < 0.5. NS, not significant. See also Figure S3 and T
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of TGF-b family molecules and tenascin,

known to be key factors in hematopoietic

development, thus constituting the

earliest HSC niche (Cortés et al., 1999;

Marshall et al., 2000; Marshall et al.,

1999). Cell lines derived from this region

exhibit a strong hematopoietic support

and are phenotypically characterized as

stromal cells (Durand et al., 2007; Oos-

tendorp et al., 2002). BMP4 is present

in the subaortic mesenchyme and plays

a prominent role in promoting HSC
survival and expansion (Durand et al., 2007). In zebrafish, sub-

aortic BMP would trigger runx1 expression in the ventral aspect

of the aorta (Wilkinson et al., 2009). Although we have not

specifically addressed the molecular nature of the initiating

signal, submesenchymal BMP4 is clearly present in the avian

embryo at the time of hematopoietic emergence and may play

a role in runx1 induction. In the mouse embryo, the positive

role of BMP appears to be precisely regulated by inhibitory

Smads (Pimanda et al., 2007). However, BMP signaling, testified

by the expression of the phosphorylated Smads 1, 5, and 8, is

present from the earliest phases of chicken aorta formation

before runx1 becomes expressed (C.R., C.D., and T.J., unpub-

lished data). Thus, if BMP4 is necessary for runx1 induction, it

does not appear to be sufficient to trigger runx1 expression,
) and mouse (D) embryos, i.e., E3.5 and E11.5,

use). HCs (green) were retrieved by including the

ages of hematopoietic maturation characterized by

ration from the endothelium is clearly visible.

) HC cluster stage. Two clusters are visible (white

. (G) Same section double stained for active Notch

in vehicle- and DAPT-treated aortas after 7 days of

duced by E9.5 mouse P-Sp after 3 (I) and 6 (J) days

-treated samples compared to the vehicle-treated

assays. (K) Percentage of 7AAD+ cells at 3 (D3) and

cant decrease in CAFCs is observed in the DAPT-

able S1.
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and additional signals are required. In these ‘‘slitted’’ embryos,

peri-aortic smooth muscle cells appear normal, suggesting

that this cell type is not involved in aortic hematopoiesis as

previously proposed by Galmiche et al. (1993). This is also the

case for the intermediate mesoderm derivative, the absence of

which has no role in runx1 expression.

Despite convincing reports on the central role of the aortic

endothelium in generating hematopoiesis (Bertrand et al.,

2010a; Boisset et al., 2010; Kissa and Herbomel, 2010; Lam

et al., 2010), it was not clear whether the subaortic mesenchyme

was also able to generate aortic clusters as proposed by

Bertrand et al. (2005). CFDA-SE labeling demonstrates that HC

clusters originate exclusively from the endothelium, whereas

the subaortic mesenchyme is a hematopoietic-supportive tissue

that does not produce HC, hence demonstrating the comple-

mentary roles of these two aortic compartments. This approach

has also been successfully used to study the formation of aortic

vascular smooth muscle cells (Wiegreffe et al., 2009).

Notch expression in aortic ECs and HCs displays a conserved

signature between species. HC cluster production is accompa-

nied by the decrease of Notch ligands. This pattern is, however,

more prominent in the chicken embryo than in themouse embryo

and takes place as early as runx1 expression initiates in the

hemogenic endothelium. This pattern is also prominent as HCs

mature from CD41+ to CD45+ cells. Our functional experiments

also indicate that notch1 signaling is downregulated in HC

clusters. During the early phases of endothelio-mesenchymal

interactions, notch1 is, however, not expressed or expressed

at low levels in the mesenchyme. Ligand expression being

restricted to ECs, this pattern suggests a notch-independent

mechanism of action. A requirement for Notch signaling and in-

traembryonic HSC production has been shown for mouse and

zebrafish embryos. Loss-of-function experiments demonstrate

that ablating Notch signaling suppresses definitive (embryo-

derived), but not primitive (yolk sac-derived), hematopoiesis

(Burns et al., 2005; Kumano et al., 2003; Robert-Moreno et al.,

2005, 2008). Of note, in the mouse embryo, Notch1 and Jag1

are required for aortic hematopoiesis to occur (Robert-Moreno

et al., 2008). Here, we show that suppression of Notch signaling

enhances the production of CD45+ HCs in mouse and chicken

P-Sps. However, this production is transient, and 6 days after

DAPT exposure, mouse P-Sp CD45+ cells are less numerous

in the DAPT-treated samples than in the vehicle-treated sample.

Moreover, chicken CD45+ HCs appear less sensitive to cell

death when treated by DAPT. In keeping with HC production,

CAFC formation in the mouse aorta is strongly reduced in the

mouse P-Sp treated by DAPT as previously reported by Kumano

et al. (2003) and Robert-Moreno et al. (2008) but is enhanced in

chicken P-Sps. This in vitro effect is corroborated by the in vivo

effect of DAPT on chicken embryos. We thus shed light on the

apparent blockade of aorta hematopoiesis in the mouse embryo

following Notch loss of function. Consistent with previous results

by Burns et al. (2005) and Robert-Moreno et al. (2008), manipu-

lating the hematopoietic production in the aorta using the Notch

pathway has no effect on arterial identity because overproduc-

tion of HC clusters remains restricted to the aorta. Downregula-

tion of Notch signaling in the hemogenic endothelium is thus

required for aortic hematopoiesis to occur. Taken together, our

study clearly pleads for a thorough comparison between
608 Developmental Cell 24, 600–611, March 25, 2013 ª2013 Elsevier
models, especially if one aims at exploiting discoveries for future

biomedical applications.

EXPERIMENTAL PROCEDURES

Embryos

Chicken (Gallus gallus JA57 strain) and quail (Coturnix coturnix japonica) eggs

were incubated at 38�C± 1�C in humidified atmosphere until embryos reached

the appropriate stage. Embryos were either operated in ovo or cultured

according to Chapman et al. (2001) and incubated at 37�C/5% CO2.

Pregnant C57Bl6mice were purchased from Janvier (France). Females were

killed by cervical dislocation. Experiments were carried out in accordance with

the guidelines of the French Veterinary Department. Approval was obtained

from the French Ministry of Agriculture institutional review board for these

studies.

Quail-Chicken Transplantations

Quail donor splanchnopleural mesoderm posterior to the last-formed somite

was isolated and transplanted into chicken recipients of the same stage

(10–13 somite) either in ovo or in culture. In ovo grafts were introduced

throughout ectoderm and somatopleural layers into the splanchnopleural

layer. In culture, grafts were inserted into a cut of approximately the same

size performed ventrally. Grafted embryos were incubated for an additional

24–48 hr. Samples were fixed in 3.7% formaldehyde for 1 hr at room temper-

ature (RT), embedded in paraffin, and processed for histochemistry.

In Ovo ‘‘Slits’’

A total of ten embryos ranging from 13 to 17 somite pairs received India ink

(Pelikan)/PBS solution (50:50) into the subgerminal cavity for visualization. A

cut encompassing ten somites and passing through the three germ layers

was made with a microscalpel. The slit lined either immediately lateral to the

paraxial mesoderm or the intermediate mesoderm including the mesonephros

in that latter case. Embryos were sacrificed 24–48 hr later.

Chicken Embryo Cultures and DAPT Treatment

Ten somite-stage embryos were washed in saline and transferred ventral side

up onto a 35 mm dish according to Chapman et al. (2001). A drop of DAPT,

N-(3,5-difluorophenylacetyl-L-alanyl)-S-phenylglycine t-ButylEster (InSolution

g-Secretase Inhibitor IX; Calbiochem), at 2.5 mM in DMSO was applied to the

embryonic endoderm. Embryos were placed back in culture for 24 hr.

Labeling of the Splanchnopleural Mesoderm

Crystals of carbocyanine dye DiI were prepared according to Kimura et al.

(2006). After local endoderm removal, DiI crystals of 5–30 mm in diameter

were deposited with a glass micropipette onto the splanchnopleural meso-

derm lateral to the last-formed somite. Labeled embryos were incubated,

photographed, and processed for histology.

Image Acquisition

Chicken embryos were cultured ventral side up in dishes with a glass bottom in

a humidified atmosphere at 37.5�C. They were observed under an inverted

microscope (Leica; DMIRBE) with a 53 objective. Images were taken over-

night using a CoolSNAP HQ2 camera. Stacks of 12 pictures were taken every

10 min with visible light and fluorescence. Best focus images were compiled

and analyzed with the MetaMorph software.

Histological Procedures

For cryostat and paraplast sections, embryos were fixed, respectively, in 4%

paraformaldehyde or Formoy’s solution and processed as described in Pouget

et al. (2006).

Immunohistology

Antibodies

Sections were stained with QCPN (developed by Carlson and Carlson), which

recognizes all quail cell nuclei, and was obtained from the Developmental

Studies Hybridoma Bank developed under the auspices of the NICHD and

maintained by The University of Iowa, Department of Biological Sciences
Inc.



Developmental Cell

Mesenchyme Controls Runx1 and Modulates Notch
(Iowa City, IA, USA); anti-a-smooth muscle actin (aSMA; Sigma-Aldrich,

clone 1A4); anti-chicken CD45 antibody (HISC7; Cedi-Diagnostics B.V, the

Netherlands); and anti-GFP (Roche Applied Science). Secondary goat

anti-mouse (GAM) antibodies were used coupled to biotin, Horse Radish Per-

oxydase (Southern Biotechnology Associated), and Alexa Fluor 488 (Molecular

Probes). Tyramide Signal Amplification Cyanin 3 (PerkinElmer) was used to

increase the signal. Sections were counterstained with DAPI.

In Situ Hybridization on Sections

Hybridization was performed according to Minko et al. (2003) andWilting et al.

(1997).

RNA Probes

The chicken cjagged1, cjagged2, notch2, and delta1 probes were gifts from

Dr. R. Goitsuka, (Research Institute for Biological Sciences, Chiba, Japan.).

Chicken notch1 extracellular domain was from Dr. M. Marx (Institut Curie,

Orsay, France). Chicken dll4 was kindly provided by Dr. M. Scaal (Freiburg,

Germany). Chicken pu1 probe was from Dr. Z. Kherrouche (Institut de Biologie

de Lille, France). Chicken myb, runx1, and ve-cadherin probes were obtained

as described (Bollerot et al., 2005). Sense and antisense RNA probes were

synthesized using r-UTP-Digoxygenin (Roche).

CFDA-SE Labeling

CFDA-SE (Invitrogen) was used to label the splanchnic mesoderm. A 10 mM

CFDA-SE stock solution in DMSO (Sigma-Aldrich) was diluted in PBS

and inoculated in ovo into the coelomic cavities at the cervical levels of

19–22 somite-stage embryos with a borosilicated glass capillary. Inoculated

embryos were checked under a UV lamp and incubated for an additional

24 hr period.

Aorta and Cell Cultures

In Vitro Aorta Organotypic Culture

E9.5mouse or E3 chicken aortas were dissected out and submitted to organo-

typic cultures on OP9 cells (Nakano et al., 1994) as previously described by

Kumano et al. (2003). Briefly, aorta explants were seeded on OP9 stromal cells

in RPMI 1640 (Invitrogen) with 10% fetal calf serum (FCS) supplemented with

50 ng/ml Stem Cell Factor and 5 ng/ml recombinant mouse Interleukin3

(PromoCell) with or without 50 mM DAPT (Sigma-Aldrich), and incubated at

37�C in 5%CO2 for 7 days. Half of the medium was renewed at days 1 and 4

of culture.

HC Assays

After the 7 days of organotypic culture, aortas and OP9 cells were dissociated

mechanically by pipetting and thereafter by collagenase I treatment for 30 min

at 37�C. After centrifugation, cell pellets were resuspended in RPMI 1640 with

10% FCS and adherent cells allowed to attach on tissue culture plates for

40 min at 37�C. Nonadherent HCs were then recovered, counted, and

submitted to methylcellulose CFC assay (10,000 cells plated) or D7-CAFC

(2,000–20,000 cells plated), as previously described by Petit-Cocault et al.

(2007). Cultures were maintained at 37�C, and colonies or CAFCs were scored

at day 7.

Scanning Electron Microscopy

Avian embryos were fixed in 4% glutararaldehyde/13 PBS for 1 hr at RT.

Embryos were included in 1% lowmelting point agarose (Invitrogen). Sections

of 300 mm thick were obtained on a Leica VT1000S vibratome. Samples were

postfixed in 1% OsO4 in 23 PBS for 1 hr at RT. Samples were dehydrated in

successive ethanol baths from 30% to 95% 10 min each and three baths in

100% ethanol. Samples were dried by hexamethyldisilazane (Sigma-Aldrich),

vacuum desiccated overnight, mounted onto 12 mm SEM stubs (EM

Sciences), and gold-palladium sputter coated. Coverslips were viewed on

a Cambridge S220 scanning electronmicroscope at 12 kV and 15mmworking

distance. Pictures were acquired with the Orion 6.60.4 software and colorized

using Photoshop CS3.

Electroporation of DNA Constructs into the Endothelium of Dorsal

Aorta in the Chicken Embryo

A total of 15 embryos ranging between 26 and 28 somite stage were used and

processed as in Rosselló and Torres (2010). RBPJ-k reporter pTP1-Venus

construct, kind gift from Dr. Okano, Tokyo, Japan (Kohyama et al., 2005;
Develo
Sato et al., 2008) was diluted in RNase-free water (2 mg/ml) alongside with

the construct pECFP-N1 (BD Biosciences) (6:1 ratio). Electroporated embryos

were incubated for an additional 24 hr period and checked under a UV lamp

before collection.

FACS of ECs and HCs and Flow Cytometry Analysis

Chicken ECs were metabolically stained using inoculation of Alexa 488-

coupled acetylated low-density lipoproteins into the heart of E2 or E3 embryos

as described (Jaffredo et al., 1998). HCs were labeled at E3 using the chicken-

specific anti-CD45 (HISC7)-coupled Phycoerythrin (PE) (SouthernBiotech,

Birmingham, AL, USA; clone DT40).

E9 mouse ECs were isolated from their surface expression of CD31

(PECAM). E11.5 mouse ECs and HCs were sorted on the basis of, respec-

tively, CD144+ CD45� and CD144+ CD45+ as described. E11.5 mouse

Runx1gfp/gfp AGM regions (Lorsbach et al., 2004) were sorted into hemo-

genic endothelium, immature, and mature hematopoietic cluster cell frac-

tions via FACS on a low-speed FACSVantage SE. Dead cells were excluded

by 7-Amino-Actinomycin D (BD Biosciences), and populations were

sorted based on expression of GFP, Alexa Fluor 647 anti-mouse CD144

(eBioscience), PE anti-mouse CD41, and APC-Cy7 Rat anti-mouse CD45

(BD Biosciences).

Cell staining of chick and mouse P-Sp cultures was done in PBS with 0.5%

BSA using the following antibodies: allophycocyanin (APC)-coupled anti-chick

or anti-mouse CD45 (Southern Biotech and BioLegend, respectively). For

annexin V analysis, immunostained cells were resuspended in annexin V buffer

and stained with fluorescein isothiocyanate (FITC)-annexin V (BioLegend)

according to the manufacturer’s guidelines. Dead cells were excluded by

7AAD (Beckman Coulter) staining. FACS analysis was performed on a LSRII

flow cytometer (BD Biosciences).
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