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Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease. The potential
recurrence of the disease from animal reservoirs highlights the significance of development of safe and
efficient vaccines to prevent a future SARS epidemic. In this study, we expressed the recombinant
receptor-binding domain (rRBD) in mammalian (293T) cells, insect (Sf9) cells, and E. coli, respectively,
and compared their immunogenicity and protection against SARS-CoV infection in an established mouse
model. Our results show that all rRBD proteins expressed in the above systems maintained intact con-
formation, being able to induce highly potent neutralizing antibody responses and complete protective
immunity against SARS-CoV challenge in mice, albeit the rRBD expressed in 293T cells elicited stronger
humoral immune responses with significantly higher neutralizing activity (Pb0.05) than those expressed
in Sf9 and E. coli cells. These results suggest that all three rRBDs are effective in eliciting immune
responses and protection against SARS-CoV and any of the above expression systems can be used for
production of rRBD-based SARS subunit vaccines. Preference will be given to rRBD expressed in
mammalian cells for future evaluation of the vaccine efficacy in a non-human primate model of SARS
because of its ability to refold into a native conformation more readily and to induce higher level of
neutralizing antibody responses than those expressed in E. coli and insect cells.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Severe acute respiratory syndrome (SARS) is a novel emerging
infectious disease that was first identified in late 2002 in Guangdong,
China (Zhong et al., 2003). The worldwide outbreak of the disease in
2003 led to hundreds of deaths among thousands of total infected
individuals (Skowronski et al., 2005). Although no new cases of SARS
have been reported since 2004, the study of SARS and its causative
agent, SARS coronavirus (SARS-CoV), is continuing. SARS is still a
safety concern because of the presence of possible animal reservoirs,
including its natural reservoir bats and intermediate hosts such as
palm civets and raccoon dogs (Guan et al., 2003; Kan et al., 2005; Lau
et al., 2005; Li et al., 2005). Therefore, it is essential to develop
vaccines against SARS for the prevention of future outbreaks.

The genome of SARS-CoV encodes four structural proteins,
including spike (S), membrane (M), envelope (E), and nucleocapsid
(N), and some non-structural proteins (Marra et al., 2003; Rota et al.,
.
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2003). Among all of the SARS-CoV proteins, the S protein plays an
essential role in receptor-binding, virus entry and membrane fusion
(Liu et al., 2004; Tripet et al., 2004; Wong et al., 2004; Xu et al., 2004;
Zhu et al., 2004). SARS-CoV first binds to the host cellular receptor
angiotensin-converting enzyme 2 (ACE2) (Dimitrov, 2003; Kuhn
et al., 2004; Li et al., 2003; Prabakaran et al., 2004), via its receptor-
binding domain (RBD), a 193-amino acid (aa) fragment spanning the
residues 318–510 of the S1 region (Babcock et al., 2004; Wong et al.,
2004; Xiao et al., 2003). The S protein is also the main domain in
inducing neutralizing antibodies against SARS and is thus considered
the main component for developing SARS vaccines (Du et al., 2009a).

The S protein-based vaccines may be developed on the full-length
of S protein or its fragments (Hu et al., 2007b; Zakhartchouk et al.,
2007), or in various vectors encoding S protein, including DNA-based
(Martin et al., 2008; Wang et al., 2008; Yang et al., 2004) and viral
vector-based vaccines (Gao et al., 2003; Liniger et al., 2008). These S
protein-based vaccine candidates may induce humoral immune
responses and/or neutralizing antibodies, as well as cellular immune
responses, in vaccinated animals (Hu et al., 2007a; Huang et al., 2006;
Kobinger et al., 2007). A DNA vaccine encoding the S protein induces
neutralizing antibody and cellular immune responses in healthy
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Fig. 1. Expressed rRBD proteins (RBD-293T, RBD-Sf9 and RBD-Ec) were detected by
Western blot for their reactivity with a panel of mAbs that recognize conformational
and linear epitopes in the SARS-CoV RBD region.
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adults in a phase I clinical trial (Martin et al., 2008). Since the full-
length S protein-based vaccines might induce potential harmful
immune responses (Czub et al., 2005;Weingartl et al., 2004), vaccines
based on the fragments of S protein, such as RBD, have a greater
Fig. 2. Humoral immune responses were detected using sera of mice vaccinated with
rRBD proteins. PBS was used as the negative control. (A) Reactivity of serum antibodies
with rRBDs. RBD-specific IgG was detected by ELISA using sera (1:3000 dilution) from
mice before (pre-immune) and 10 days after each vaccination. The data are presented as
mean A450±standard error (SE) of five mice per group. ⁎ indicates significant
difference (Pb0.05) between RBD-293T or RBD-Sf9, respectively, and RBD-Ec group.
(B) The ability of antibody binding to rRBD was detected by ELISA using serial dilutions
of sera collected from mice 10 days post-last vaccination. The data are presented as
mean A450±SE of five mice per group at various dilution points. RBD-293T, RBD-Sf9
and RBD-Ec indicate rRBD proteins expressed in 293T, Sf9 and E. coli cells, respectively.
potential for developing into effective vaccines against SARS (Lee
et al., 2006; Zhao et al., 2006; Zhou et al., 2006).

We previously showed that a 293T cell-expressing fusion protein
RBD-Fc, which contains RBD of SARS-CoV and Fc fragment of human
IgG, elicited neutralizing antibody response and protection in the
vaccinated animals (Du et al., 2007b; He et al., 2004, 2005), suggesting
a potential of developing RBD-based subunit SARS vaccines. However,
the big molecule Fc in the fusion protein may cause some unwanted
responses when it is used in humans as a SARS vaccine in the future. In
addition, it is unknown whether insect cell and E. coli expression
systems, which are suitable for production of recombinant proteins in
large quantity, can be used for expression of rRBD with functionality,
although it was reported that a truncated antigenic fragment (aa 441–
700) of S protein of SARS-CoV expressed in insect Sf9 cells exhibited
high specificity and sensitivity in detection of anti-SARS-CoV
antibodies in sera of SARS patients and lacked cross-reactivity with
sera of patients with infectious bronchitis virus (IBV) and transmis-
sible gastroenteritis virus (TGEV) infection (Manopo et al., 2005). In
this study, we expressed the rRBD protein without Fc in three diffe-
rent expression systems, including mammalian 293T cells, insect Sf9
cells and E. coli, and compared their immunogenicity and protection
in a mouse model.
Fig. 3. Neutralizing antibody activity was detected using sera of mice vaccinated with
rRBD proteins. PBS was used as the negative control. Sera collected at 10 days post-last
vaccination were used for the detection. (A) neutralizing antibody titers against SARS
pseudovirus infection. The data are presented as mean±SE of 50% neutralizing antibody
titers (NT50) from fivemice per group. ⁎ indicates significant difference (Pb0.05) between
RBD-293T and other groups, or RBD-Sf9 and RBD-Ec groups. (B) neutralizing antibody
titers against live SARS-CoV infection. The titers were determined as the highest dilutions
of sera that could completely prevent CPE in at least 50% of the wells (NT50) and are
presented asmean±SE of fivemice per group. ⁎ indicates significant difference (Pb0.05)
between the RBD-293T vaccination group and other groups.



Fig. 4. Protective immunity was detected in mice vaccinated with rRBD proteins. Mice
respectively vaccinated with RBD-293T, RBD-Sf9 and RBD-Ec were challenged with
SARS-CoV GZ50. The SARS-CoV replication in the challenged mouse lung tissues was
detected and expressed as Log10TCID50/g of tissues. M1–M5 indicates five mice per
group. The limit of detection was 1.5 Log10TCID50/g of lung tissues.
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Results

All rRBD proteins expressed in mammalian cell, insect cell, and E. coli
expression systems maintained intact conformation and authentic
antigenicity

The purified rRBD proteins expressed in the above expression
systems were detected by Western blot using a panel of monoclonal
antibodies (mAbs) that contain different conformational and linear
epitopes in RBD (He et al., 2005, 2006a). As shown in Fig. 1, all rRBD
proteins expressed in mammalian 293T cells (RBD-293T), insect cells
(RBD-Sf9) and E. coli (RBD-Ec) reacted with the majority (5 of 6) of
the conformational epitope-specific mAbs and one linear epitope-
specific mAb, having the strongest reaction with the Conf VmAb 33G4
and the linear mAb 17H9. These results suggest that the rRBD proteins
expressed in mammalian cells, insect cells and E. coli maintain intact
conformation and authentic antigenicity.

The rRBD proteins expressed in 293T and Sf9 cells induced higher level of
RBD-specific antibodies in vaccinated mice than that expressed in E. coli

To evaluate humoral immune responses induced by the rRBD
expressed in three different systems, mice were vaccinated with RBD-
293T, RBD-Sf9 and RBD-Ec, respectively, and sera were tested by
ELISA for RBD-specific IgG. As shown in Fig. 2A, all three rRBD proteins
induced RBD-specific IgG antibody responses with increased antibody
binding after each boost, reaching the highest level after the last boost.
The mean end-point titer of antibodies in the sera, collected 10 days
post-last boost, of the mice immunized with RBD-293T and RBD-Sf9
(1:3.3×106) were significantly higher than that in the sera of themice
vaccinated with RBD-Ec (1:4.1×105) (Fig. 2B). There were no
detectable RBD-specific antibodies in the pre-immune sera of the
vaccinated mice or those frommice injected with PBS control (Fig. 2).
The above results suggest that rRBD proteins expressed inmammalian
Table 1
Measurement of SARS-CoV RNA copies in the lung tissues by Q-RT-PCR and the potential c

Immunogen Neutralizing titer (NT50)

M1 M2 M3 M4 M5 Mean±

RBD-293T 1810 1613 905 1810 1613 1550±1
RBD-Sf9 1280 1280 640 320 320 768±2
RBD-Ec 905 905 905 905 905 905±0
PBS b20 b20 b20 b20 b20 b20

Each group consists of five mice (M1–M5).
⁎ UD indicates undetectable.
cells (293T) and insect cells (Sf9) are able to elicit stronger SARS-CoV
RBD-specific antibody responses than that expressed in E. coli.

All rRBD induced highly potent neutralizing antibody responses, albeit
the neutralizing antibody titer elicited by RBD-293T was significantly
higher than that induced by rRBD expressed in Sf9 and E. coli cells

To assess whether the induced IgG antibody could neutralize
infection of SARS-CoV in cell cultures in vitro, sera from 10 days post-
last boost were detected by neutralization assays using pseudotyped
and live SARS-CoV. As shown in Fig. 3A, sera from all three vaccination
groups effectively neutralized infection of SARS pseudovirus in 293T
cells expressing the receptor ACE2 (ACE2/293T). Particularly, RBD-
293T protein induced a significantly higher titer of neutralizing
antibody than the other two groups, with the mean 50% neutralizing
antibody titer (NT50) about 6.9×105. The neutralization titer against
live SARS-CoV infection in Vero E6 cells is also significantly higher in
the RBD-293T vaccination group (mean NT50=1.6×103) than in the
RBD-Sf9 and RBD-Ec vaccination groups (Fig. 3B), while no neutra-
lizing activity was detected in the PBS control group (Fig. 3). The
above results suggest that the rRBD proteins expressed in mamma-
lian, insect and E. coli cells are able to induce potent neutralizing
antibody responses in the vaccinated mice.

All rRBD proteins expressed in the three expression systems induced
equally effective protection in mice against virus challenge

To evaluate the efficacy of protective immunity induced by rRBD
proteins, vaccinated mice were challenged with SARS-CoV GZ50, and
virus replication was detected by titration of the infectious virus in
mouse lung tissues. As shown in Fig. 4, all mice from three individual
rRBD vaccination groups could be completely protected from SARS-
CoV challenge, with the virus titer below the detection limit of 1.5
Log10 50% tissue-culture infectious dose (TCID50)/g of lung tissues.
However, all five mice from the PBS control group maintained high
titer of virus replication in the lung tissues post SARS-CoV challenge,
with the virus titer highly above the detection limit. These results
suggest that all rRBD proteins elicit protective immunity with the
sufficiency required to prevent vaccinated mice from subsequent
virus challenge.

Suppression of SARS-CoV replication may be associated with the
neutralizing antibodies induced by the rRBD

The rRBD protein-vaccinated mice were sacrificed 5 days post-
challenge with SARS-CoV, and mouse lung tissues were collected to
further investigate the protection. The viral load in the lung tissues
was determined by quantitative reverse-transcriptase polymerase
chain reaction (Q-RT-PCR) and indicated as viral RNA copies/μg of
lung tissues. As shown in Table 1, no RNA copies were detected in the
mice vaccinated with RBD-293T, RBD-Sf9, and RBD-Ec, respectively,
while a high level of RNA copies was detected in the lung tissues of
control mice administrated with PBS. Suppression of virus replication
in the lung tissues may be associated with the high titer of virus-
neutralizing antibodies induced by all three rRBD proteins. The high
orrelation between RNA copies and neutralizing antibody titer.

RNA copies/μg of lung tissues

SE M1 M2 M3 M4 M5 Mean±SE

67 UD⁎ UD UD UD UD UD
17 UD UD UD UD UD UD

UD UD UD UD UD UD
1305 1543 1626 2055 3124 1931±322
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level of RNA copies in the lung tissues of the PBS control mice may
be attributed to the undetectable neutralizing antibody responses in
these mice (Table 1).

Discussion

The main purpose of this study was to determine whether the
rRBD without human IgG Fc could induce effective neutralizing
antibody responses and protective immunity, and if the insect cell and
E. coli expression systems, like themammalian cell expression system,
can also be used for production of functional RBD. As shown in Fig. 1,
rRBD without Fc expressed in mammalian cell 293T (RBD-293T),
insect cell Sf9 (RBD-Sf9) and E. coli (RBD-Ec) were able to react with
majority of a panel of mAbs that recognize different conformational
and linear epitopes in RBD of SARS-CoV S protein, except the mAb
11E12. This Conf III mAb was generated by immunization with
recombinant RBD-Fc fusion protein and characterized to recognize a
specific conformational epitope presented on RBD when fused with
the Fc fragment of human IgG (He et al., 2005), suggesting that this
epitope may not be presented when rRBDs were independently
expressed. The currently expressed three rRBD proteins without Fc
could be obtained at N90% purity (data not shown). In addition, all
three rRBD proteins elicited strong RBD-specific antibody responses in
the vaccinated mice, albeit the titers of antibodies induced by RBD-
293T and RBD-Sf9 were significantly higher than that by RBD-Ec
(Fig. 2). These results suggest that while all the three RBD proteins
retain proper immunogenicity, the RBD expressed in E. coli is less
immunogenic than those expressed in mammalian and insect cells.
Similarly, all three rRBD proteins elicited high titers of neutralizing
antibody that neutralized both SARS pseudovirus and live SARS-CoV
infection in cell cultures in vitro although the titer of neutralizing
antibodies induced by RBD-293T was higher than those by RBD-Sf9
and RBD-Ec (Fig. 3).

Previous study has demonstrated that protection of immunized
animals from virus challenge is mediated by a humoral but not a T-
cell-dependent immune mechanism (Yang et al., 2004). Here we also
evaluated the protective immunity in the vaccinated mice against
SARS-CoV challenge. We found that all rRBD proteins expressed in
mammalian, insect and E. coli cells could induce equally protective
immunity that protected all vaccinated mice from SARS-CoV chal-
lenge, since no RNA copies were detected in the challenged mouse
lung tissues, and the viral replication was significantly below the
detection limit in the vaccination groups (Fig. 4, Table 1). Consistent
with the report by Yang et al. (2004), the protection is mainly
associated with the neutralizing antibodies. These results are also in
agreement with our previous study on RBD-Fc vaccine (Du et al.,
2007b).

The present study provides answers for our first question about
the role of human IgG Fc in the induction of neutralizing antibody
response and protective immunity. Although the Fc fragment in fusion
proteins containing HIV-1 antigen indeed significantly enhances the
immunogenicity of the HIV-1 antigen and increases the production of
neutralizing antibodies through different mechanisms, e.g., assisting
the antigen binding to the FcR (Chen et al., 2007) or prolonging the in
vivo half-life of the antigen (Zhang et al., 2009), Fc seems to be playing
no critical role in enhancing the immunogenicity of rRBD of SARS-CoV.
In the absence of Fc, the rRBD expressed in 293T cells elicited a similar
level of neutralizing antibody responses and protective immunity
in the vaccinated animals as the RBD-Fc expressed in 293T cells (He
et al., 2004, 2005).

The second question that needs to be answered is whether the
insect cell and E. coli expression systems are suitable for producing
functional rRBD as vaccines. For large quantity production of a
recombinant protein-based vaccine, the insect cell and E. coli
expression systems are superior to the mammalian cell expression
system. Both insect Sf9 cells and E. coli can grow at high density at
room temperature without the supply of CO2, and express recombi-
nant proteins in a fast, easy and reliable way, resulting in lower
production cost and higher protein productivity than the mammalian
expression system (Boosani and Sudhakar, 2006; Farinha-Arcieri
et al., 2008; Marblestone et al., 2006; Saitoh et al., 2009). Although the
rRBD expressed in mammalian 293T cells induces stronger RBD-
specific antibody responses and higher titers of neutralizing anti-
bodies than those expressed in insect cell and E. coli expression
systems, RBD-Sf9 and RBD-Ec also maintained intact conformation
and elicited neutralizing antibody responses strong enough to protect
vaccinated hosts against SARS-CoV challenge (Figs. 1–4 and Table 1).
Our previous study also demonstrated that rRBD-immunized aged
mice with serum neutralizing antibody titers ranging from 1:189 to
1:505 had no detectable SARS-CoV in their lungs after virus challenge,
but a marginal level of SARS-CoV replication was detected in one of
the mice with serum neutralizing antibody titer of 1:57 (Du et al.,
2007b). Other groups reported that mice immunized with attenuated
virus or DNA vaccines encoding the SARS-CoV S protein, or with
inactivated virus had serum neutralizing antibody titers ranging from
1:50 to 1:640 and most of these mice were protected from SARS-CoV
challenge (Bisht et al., 2004; Stadler et al., 2005; Yang et al., 2004).
Three patients who failed to respond to the available treatment
recovered from serious SARS after transfusion of SARS convalescent
plasma with neutralizing titerN1:640 (Yeh et al., 2005). Based on
these data, we suggest that any vaccine that induces in immunized
mice the serum neutralizing antibody titers of N1:500 would be
considered as highly effective. According to these criteria, we believe
that either insect cell or E. coli expression system can be used for pro-
duction of RBD-based SARS subunit vaccines on a large scale because
RBD-Sf9 and RBD-Ec could induce high titer (mean valueN1:700) of
neutralizing antibodies and strong protective immunity that protect
all the vaccinated mice from SARS-CoV challenge.

Compared with the insect cell and E. coli expression systems, the
mammalian cell system has relatively higher production cost and
lower productivity. The main advantage of the mammalian cell sys-
tem over the other two expression systems is that there is a far higher
chance of getting correctly folded soluble proteins with proper glyco-
sylation, making the expressed protein maintain native conformation
and keep sufficient bioactivity (Du et al., 2009b; Yin et al., 2007). This
advantage may partially explain why RBD-293T expressed in
mammalian cells induced stronger immune responses, particularly
the neutralizing antibody response, than the rRBD proteins expressed
in insect cells and E. coli (Fig. 3).

To summarize, this comprehensive study compares the immune
response and protective immunity of three SARS subunit vaccines
based on the rRBD proteins respectively expressed in mammalian
293T cells, insect Sf9 cells and E. coli. In the absence of human IgG Fc,
the rRBDs expressed in all three expression systems are effective
in eliciting potent neutralizing antibody responses and protective
immunity. Considering that the rRBD protein expressed in mamma-
lian 293T cells (RBD-293T) induced significantly higher level of
neutralizing antibody responses than those expressed in insect Sf9
cells and E. coli, we will select mammalian cell-expressing rRBD
protein for further evaluation of its in vivo efficacy in a non-human
primate model of SARS before going to clinical trials.

Materials and methods

Construction and expression of rRBD proteins

Genes encoding the fragments containing 193 residues (aa 318–
510) of SARS-CoV S protein RBD with a 6× His tag were amplified by
PCR using the plasmid containing the full-length S protein (Tor2
strain) as the template (Du et al., 2007a; He et al., 2006b) and were
then constructed into the recombinant plasmids named as rRBD-
SUMO, rRBD-Bacul, and rRBD-pcDNA6, respectively.
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The expression of the rRBD protein in the pET SUMO E. coli system
(RBD-Ec) was done following the manufacturer's protocols (Invitro-
gen, Carlsbad, CA). Briefly, rRBD-SUMO E. coli was cultured in LB
medium at 37 °C overnight, which was diluted at 1:100 the next day
and cultured with vigorous shaking until the OD600 reached 0.6–1.0.
Isopropyl-β-D-thiogalactopyranoside (IPTG, Sigma, St. Louis, MO)
was then added at the final concentration of 0.25 mM, followed by a
culture at 28 °C for an additional 5 h and a centrifugation at 6000 rpm
for 15 min at 4 °C. Sonicated E. coli supernatant containing the ex-
pressed rRBD protein was collected and purified using His columns
(Promega, Madison, WI) according to the manufacturers' protocols.

The expression of the rRBD protein in the Baculovirus system
(RBD-Sf9) was conducted according to the manufacturer's protocols
(BD Biosciences, San Jose, CA). In brief, 2 μg rRBD-Bacul plasmid was
mixed with 0.5 μg BD BaculoGold linearized Baculovirus DNA which
sat for 5 min at room temperature before adding 1 ml BD BaculoGold
Transfection Buffer B. The mixture was added dropwisely to Sf9 insect
cells (ATCC, Manassas, VA) pre-covered with 1 ml Transfection Buffer
A, followed by incubation of the cells at 28 °C for 4 h, and further
culture of the transfected cells in fresh SF-900 II SFM (Invitrogen) for
an additional 4 days. Supernatant was collected 4 days later, which
will be used to infect cells with three more 3-day culture cycles for
virus amplification. Cell culture supernatant from the 4th cycle was
collected for purification of rRBD protein.

The transient expression of the rRBD protein in the pcDNA6/His A
vector (RBD-293T) was performed according to the manufacturer's
(Invitrogen) and our previous protocols (Du et al., 2009b). Briefly, the
rRBD-pcDNA6 plasmid was transfected using calcium phosphate
method into HEK293T cells (ATCC). Culture medium was replaced by
fresh OPTI-MEM I Reduced-Serum Medium (Invitrogen) 10 h later.
Supernatant containing expressed rRBD protein was collected 72 h
later and purified for rRBD protein.

Western blot

The purified rRBD proteins were detected by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western
blot as described before (Du et al., 2006). Briefly, 2 μg purified protein
was separated by 10–20% Tricine gels (Invitrogen) and transferred to
nitrocellulose membranes (Bio-Rad Laboratories, Hercules, CA). After
blocking overnight at 4 °C, the blots were incubated with a panel of
RBD-specific mAbs previously produced in our laboratory (He et al.,
2006b) at the final concentration of 0.5 μg/ml for 1 h at room
temperature. The blots were then incubated with horseradish
peroxidase (HRP)-conjugated goat anti-mouse IgG (1:5,000, Zymed,
Carlsbad, CA) for 1 h at room temperature. Signals were visualized
with ECL Western blot substrate reagents and Amersham Hyperfilm
(GE Healthcare, Piscataway, NJ).

Mouse vaccination and sample collection

A group of five female BALB/cmice aged 4–6weekswere vaccinated
subcutaneously (s.c.) with 20 μg/mouse of purified rRBD proteins re-
suspended in PBS in the presence of Sigma Adjuvant System (SAS,
Sigma) and boosted twice with 10 μg/mouse of immunogen containing
SAS at 3-week intervals. Serum samples were collected at 10 days post-
each vaccination and used for detection of IgG and neutralizing
antibody responses. Vaccinated mice were challenged with live SARS-
CoV 10 days post-last vaccination, and viral replication was detected in
challenged mouse lungs 5 days post-challenge. All mouse study was
maintained in accordance with the national animal care protocols.

ELISA

IgG specific for RBD of SARS-CoV S protein in mouse sera was
tested by ELISA using the protocol described previously (Du et al.,
2007b) with some modifications. Briefly, 96-well microtiter plates
were precoated respectively with the recombinant rRBD proteins
overnight at 4 °C and blocked with 2% non-fat milk at 37 °C for 2 h.
Serially diluted mouse sera were added to the plates and incubated at
37 °C for 1 h, followed by four washes. Bound antibodies were then
reacted with HRP-conjugated goat anti-mouse IgG for 1 h at 37 °C.
After four washes, the substrate 3,3′,5,5′-tetramethylbenzidine (TMB)
(Zymed) was added to the plates, and the reaction was stopped by
adding 1 NH2SO4. The absorbance at 450 nm (A450)wasmeasured by
an ELISA plate reader (Tecan, San Jose, CA).

Neutralization assay for SARS pseudovirus infection

The neutralization assay against SARS pseudovirus infection was
done as previously described (He et al., 2005). Briefly, 293T cells were
cotransfected with a plasmid encoding SARS-CoV S protein and a
plasmid encoding Env-defective, luciferase-expressing HIV-1 genome
(pNL4-3.luc.RE) using FuGENE 6 transfection reagents (Roche Applied
Science). Supernatant was harvested 72 h post-transfection and used
for single-cycle infection of ACE2/293T cells. The pseudovirus-
containing supernatant was preincubated with serially diluted
mouse sera at 37 °C for 1 h before adding to the cells. Fresh medium
was added 24 h later, followed by lysing cells using cell lysis buffer
(Promega). After addition of luciferase substrate (Promega), relative
luciferase activity was determined in Ultra 384 luminometer (Tecan).
SARS pseudovirus neutralization was calculated and expressed as 50%
neutralizing antibody titer, NT50 (Chou, 2006).

Neutralization assay for live SARS-CoV infection

The neutralization assay against infection by live SARS-CoV (GZ50
strain, GenBank accession no. AY304495) was performed, and titers of
neutralizing antibody in vaccinated mouse sera were detected in Vero
E6 cells (ATCC) as previously described (Du et al., 2008a, 2008b).
Briefly, serial 2-fold dilutions of sera were mixed with 100 TCID50 of
SARS-CoV, incubated at 37 °C for 1 h, and added to the monolayer of
Vero E6 cells in triplicate. Cytopathic effect (CPE) in each well was
observed daily and recorded on day 3 post-infection. The neutralizing
titers of mouse anti-sera that completely prevented CPE in 50% of the
wells (NT50) were calculated as before (Du et al., 2008a, 2008b).

Live SARS-CoV challenge

The rRBD protein-vaccinated mice were anesthetized with isoflu-
rane and intranasally inoculated with 50 μl of SARS-CoV GZ50 (100
TCID50) according to the National Animal Care and Use Guidelines in an
approved animal BSL-3 laboratory. The mice were sacrificed 5 days
after virus challenge, and the lungs were removed for virological tests.

Q-RT-PCR

The viral RNA copies in lung tissues were determined by Q-RT-PCR
according to our previous protocols (Du et al., 2007b). Briefly, total RNA
was extracted from 20 mg of lung tissues using RNeasy Mini kit
(Qiagen, Valencia, CA). SARS-CoV RNAwas quantified in a 30 μl mixture
containing 10 μl RNA, 15 μl 2× TaqMan® one-step RT-PCR Master Mix
(ABI, Foster, CA), 0.75 μl 40× multiscribe, 0.25 μM each forward primer
Af (Taq-772F 5′-AAG CCT CGC CAA AAA CGT AC-3′), reverse primer Ar
(Taq-1000R 5′-AAG TCA GCC ATG TTC CCG AA-3′) and probe (Taq-955T
5′-FAM-TCA CGC ATT GGC ATG GAA GTC ACA CT-TAMRA) (TIBMolbiol,
Berlin, Germany) using a fluorometric PCR instrument (ABI 7300).

Determination of viral titer and total virus

The viral replication was determined by titration of the inoculated
virus in the lung tissues as previously described (Du et al., 2007b).
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Briefly, the lung tissues were homogenized to a final concentration of
10% (w/v) suspension in DMEM. Tissue homogenates were centri-
fuged, filtrated and inoculated into the monolayer of Vero E6 cells.
Results were evaluated 3 days later under phase-contrast microscopy,
and viral titer using a CPE-based TCID50 test was calculated by the
Reed–Muench method. The total amount of virus was calculated by
multiplying the weight of the lung tissues and the viral titer measured
in 10% tissue homogenates.

Statistical analysis

Values were presented as mean with standard error, SE. Statistical
significance among different vaccination groups was calculated by
Student's t test using Stata statistical software. P values less than 0.05
were considered significant.
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