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1. Introduction

In the paper [5], we investigate a predator–prey model with modified Leslie–Gower and Holling-type II schemes with
stochastic perturbation⎧⎪⎪⎨

⎪⎪⎩
dx(t) = x(t)

(
a − bx(t) − cy(t)

m + x(t)

)
dt + αx(t)dB1(t),

dy(t) = y(t)

(
r − f y(t)

m + x(t)

)
dt + β y(t)dB2(t).

(1.1)

It is well known for the corresponding deterministic system [2], there is an interior equilibrium

x∗ = a

b
− cr

bf
, y∗ = r(x∗ + m)

f
, (1.2)

when r/ f < a/c. While for the stochastic system (1.1), there isn’t a positive time independent equilibrium point. Hence,
in [5], we do not explore the stability of system (1.1), but only give the long time behavior of system (1.1), which reflects
stability in some extent when the intensity of white noise is small. In this paper, we further investigate some stability
properties. By constructing suitable Lyapunov function [7], we show there is a stationary distribution of system (1.1) and it
has ergodic property under some conditions. Ergodic property is one of important properties of Markov processes, and it
has been applied in many areas, such as probability theory, statistics, harmonic analysis, Lie theory. There are lots of studies
on this topic, such as [1,4,6]. In this paper, we obtain ergodic property by the theory in [4]. Then together with the result
in [5], we show
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P

{
lim

t→∞
1

t

t∫
0

x(s)ds =
∫

R2+

z1μ(dz1,dz2) = a − α2/2

b
− c(r − β2/2)

bf

}
= 1,

see Section 2.
Throughout this paper, unless otherwise specified, let (Ω, F , {F t}t�0, P ) be a complete probability space with a filtration

{F t}t�0 satisfying the usual conditions (i.e. it is right continuous and F0 contains all P-null sets). Let B1(t) and B2(t) denote
the independent standard Brownian motions defined on this probability space, and R2+ = {(x, y) ∈ R2, x > 0, y > 0}.

2. Stationary distribution and ergodicity

Before giving the main theorems, we first give a lemma (see [4]).
Let X(t) be a homogeneous Markov process in El (El denotes euclidean l-space) described by the stochastic equation

dX(t) = b(X)dt +
k∑

r=1

σr(X)dBr(t). (2.1)

The diffusion matrix is

A(x) = (
aij(x)

)
, aij(x) =

k∑
r=1

σ i
r (x)σ j

r (x).

Assumption B. There exists a bounded domain U ⊂ El with regular boundary Γ , having the following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix A(x) is bounded
away from zero.

(B.2) If x ∈ El \ U , the mean time τ at which a path issuing from x reaches the set U is finite, and supx∈K Exτ < ∞ for
every compact subset K ⊂ El .

Lemma 2.1. (See [4].) If (B) holds, then the Markov process X(t) has a stationary distribution μ(·). Let f (·) be a function integrable
with respect to the measure μ. Then

P x

{
lim

T →∞
1

T

T∫
0

f
(

X(t)
)

dt =
∫
El

f (x)μ(dx)

}
= 1

for all x ∈ El .

Remark 2.1. The proof can be found in [4]. Exactly, the existence of stationary distribution with density is referred to
Theorem 4.1, p. 119 and Lemma 9.4, p. 138. The weak convergence and the ergodicity is obtained in Theorem 5.1, p. 121
and Theorem 7.1, p. 130.

To validate (B.1), it suffices to prove F is uniformly elliptical in U , where F u = b(x) · ux + [tr(A(x)uxx)]/2, that is, there is
a positive number M such that

k∑
i, j=1

aij(x)ξiξ j � M|ξ |2, x ∈ U , ξ ∈ Rk

(see Chapter 3, p. 103 of [3] and Rayleigh’s principle in [8, Chapter 6, p. 349]). To verify (B.2), it is sufficient to show that
there exists some neighborhood U and a non-negative C2-function such that and for any El \ U , LV is negative (details refer
to [9, p. 1163]).

Remark 2.2. System (1.1) can be written as the form of system (2.1):

d

(
x(t)
y(t)

)
=

(
x(t)(a − bx(t) − cy(t)

m+x(t) )

y(t)(r − f y(t)
m+x(t) )

)
dt +

(
αx(t)

0

)
dB1(t) +

(
0

β y(t)

)
dB2(t).

Here the diffusion matrix is

A(x, y) =
(

α2x2 0
0 β2 y2

)
.
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Based on this lemma, we give out the main theorem in this section as follows.

Theorem 2.1. Assume r/ f < min{a/c,bm/c} and α > 0, β > 0 such that

δ < min

{
bf m − cr

f

[
x∗ + f

4(bf m − cr)

(
x∗α2 + cy∗β2

r

)]2

,
cf

r

(
y∗)2

}
.

Then there is a stationary distribution μ(·) for system (1.1) with initial value (x0, y0) ∈ R2+ and it has ergodic property. Here (x∗, y∗)
is defined as in (1.2) and

δ = f

16(bf m − cr)

(
x∗α2 + cy∗β2

r

)2

+ 1

2

(
x∗ + m

)(
x∗α2 + cy∗β2

r

)
.

Proof. We know there is a solution (x(t), y(t)) ∈ R2+ of (1.1) for any initial value (x0, y0) ∈ R2+ , and for simplicity, we write
x(t) and y(t) as x and y respectively. Define V : El = R2+ → R+ ,

V (x, y) =
[

x − x∗ − x∗ ln
x

x∗

]
+ k

[
y − y∗ − y∗ ln

y

y∗

]
:= V 1 + kV 2,

where k is a positive constant to be determined later. By the Itô formula, we compute

dV 1 =
(

1 − x∗

x

)
dx + 1

2

x∗

x2
(dx)2

= (
x − x∗)[(

a − bx − cy

m + x

)
dt + α dB1(t)

]
+ 1

2
x∗α2 dt

= (
x − x∗)[(

bx∗ + cy∗

m + x∗ − bx − cy

m + x

)
dt + α dB1(t)

]
+ 1

2
x∗α2 dt

=
[
−b

(
x − x∗)2 + cy∗(x − x∗)2

(m + x∗)(m + x)
− c(x − x∗)(y − y∗)

m + x
+ 1

2
x∗α2

]
dt + α

(
x − x∗)dB1(t)

=
[
−b

(
x − x∗)2 + cr(x − x∗)2

f (m + x)
− c(x − x∗)(y − y∗)

m + x
+ 1

2
x∗α2

]
dt + α

(
x − x∗)dB1(t),

and

dV 2 =
(

1 − y∗

y

)
dy + 1

2

y∗

y2
(dy)2

= (
y − y∗)[(

r − f y

m + x

)
dt + β dB2(t)

]
+ 1

2
y∗β2 dt

= (
y − y∗)[(

f y∗

m + x∗ − f y

m + x

)
dt + β dB2(t)

]
+ 1

2
y∗β2 dt

=
[
− f (y − y∗)2

m + x
+ f y∗(x − x∗)(y − y∗)

(m + x∗)(m + x)
+ 1

2
y∗β2

]
dt + β

(
y − y∗)dB2(t)

=
[
− f (y − y∗)2

m + x
+ r(x − x∗)(y − y∗)

m + x
+ 1

2
y∗β2

]
dt + β

(
y − y∗)dB2(t)

according to (1.2). Then

dV = dV 1 + k dV 2

:= LV dt + α
(
x − x∗)dB1(t) + kβ

(
y − y∗)dB2(t),

where

LV = −b
(
x − x∗)2 + cr(x − x∗)2

− k
f (y − y∗)2

− (c − kr)
(x − x∗)(y − y∗) + x∗

α2 + k
y∗

β2.

f (m + x) m + x m + x 2 2
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Choose k = c/r, then

LV = −b
(
x − x∗)2 + cr(x − x∗)2

f (m + x)
− cf (y − y∗)2

r(m + x)
+ x∗

2
α2 + cy∗

2r
β2

= − (bf (m + x) − cr)(x − x∗)2

f (m + x)
− cf (y − y∗)2

r(m + x)
+ x∗

2
α2 + cy∗

2r
β2

� −bf m − cr

f (m + x)

(
x − x∗)2 − cf (y − y∗)2

r(m + x)
+ x∗

2
α2 + cy∗

2r
β2.

Note that

(m + x)LV � −bf m − cr

f

(
x − x∗)2 − cf

r

(
y − y∗)2 +

(
x∗

2
α2 + cy∗

2r
β2

)
(m + x)

= −bf m − cr

f

[
x − x∗ − f

4(bf m − cr)

(
x∗α2 + cy∗β2

r

)]2

− cf

r

(
y − y∗)2

+ f

16(bf m − cr)

(
x∗α2 + cy∗β2

r

)2

+ 1

2

(
x∗ + m

)(
x∗α2 + cy∗β2

r

)

:= −bf m − cr

f

[
x − x∗ − f

4(bf m − cr)

(
x∗α2 + cy∗β2

r

)]2

− cf

r

(
y − y∗)2 + δ,

then when δ < min{ bf m−cr
f [x∗ + f

4(bf m−cr) (x∗α2 + cy∗β2

r )]2,
c f
r (y∗)2}, the ellipsoid

−bf m − cr

f

[
x − x∗ − f

4(bf m − cr)

(
x∗α2 + cy∗β2

r

)]2

− cf

r

(
y − y∗)2 + δ = 0

lies entirely in R2+ . We can take U to be a neighborhood of the ellipsoid with Ū ⊆ El = R2+ , so for x ∈ U \ El , LV < −C (C is
a positive constant), which implies condition (B.2) in Lemma 2.1 is satisfied. Besides, there is M > 0 such that

2∑
i, j=1

aij(x, y)ξiξ j = α2x2ξ2
1 + β2 y2ξ2

2 � M
∣∣ξ2

∣∣ all (x, y) ∈ Ū , ξ ∈ R2,

which implies condition (B.1) is also satisfied. Therefore, the stochastic system (1.1) has a stable stationary distribution μ(·)
and it is ergodic. �
Lemma 2.2. Let (x(t), y(t)) be a solution of system (1.1) for any initial value (x0, y0) ∈ R2+ . Then we have

lim sup
t→∞

E
[
xp(t)

]
� L(p) for all p > 1,

where

L(p) =
[

2a + α2(p − 1)

2b

]p

.

Proof. By the Itô formula, we have

d
(
xp) = pxp−1 dx + 1

2
p(p − 1)xp−2(dx)2

= pxp
[(

a − bx − cy

m + x

)
dt + α dB1(t)

]
+ 1

2
p(p − 1)xpα2 dt

� pxp
(

a + α2

2
(p − 1) − bx

)
dt + αpxp dB1(t),

and

xp(t) � xp
0 +

t∫
pxp(s)

(
a + α2

2
(p − 1) − bx(s)

)
ds +

t∫
αpxp(s)dB1(s). (2.2)
0 0
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Taking the expectation of both sides of (2.2), we have

E
[
xp(t)

]
� xp

0 +
t∫

0

[
p

(
a + α2

2
(p − 1)

)
E
[
xp(s)

] − bpE
[
xp+1(s)

]]
ds,

and

dE[xp]
dt

� p

(
a + α2

2
(p − 1)

)
E
[
xp] − bpE

[
xp+1]

� p

(
a + α2

2
(p − 1)

)
E
[
xp] − bp

{
E
[
xp]}p+1/p

.

Let u(t) = E[xp(t)], and then we have

du(t)

dt
� p

(
a + α2

2
(p − 1)

)
u(t) − bpup+1/p(t).

Note that the solution of equation⎧⎨
⎩

dz(t)

dt
= pz(t)

[(
a + α2

2
(p − 1)

)
− bz1/p(t)

]
,

z(0) = x0

is

z(t) =
{

x−1
0 e−[a+α2(p−1)/2]t + 2b

2a + α2(p − 1)

[
1 − e−[a+α2(p−1)/2]t]}−p

.

Letting t → ∞, yields

z(t) →
[

2a + α2(p − 1)

2b

]p

.

Thus by the comparison argument we get

lim sup
t→∞

u(t) �
[

2a + α2(p − 1)

2b

]p

:= L(p).

Therefore, we obtain

lim sup
t→∞

E
[
xp(t)

]
� L(p). �

Remark 2.3. From Lemma 2.2, there is a T > 0 such that

E
[
xp(t)

]
� 2L(p) for all t � T .

Besides, note that E[xp(t)] is continuous, then there is a L̃(p, T ) > 0 such that

E
[
xp(t)

]
� L̃(p, T ) for t ∈ [0, T ].

Let

K (p) = max
{

2L(p), L̃(p, T )
}
,

and then we have

E
[
xp(t)

]
� K (p) for all t ∈ [0,∞).

In other words, the pth moment of x(t) is bounded.

By the ergodic property, for m > 0, we have

lim
t→∞

1

t

t∫
0

[
xp(s) ∧ m

]
ds =

∫
R2

(
zp

1 ∧ m
)
μ(dz1,dz2) a.s. (2.3)
+
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On the other hand, by dominated convergence theorem, we can get

E

[
lim

t→∞
1

t

t∫
0

[
xp(s) ∧ m

]
ds

]
= lim

t→∞
1

t

t∫
0

E
[
xp(s) ∧ m

]
ds � K (p),

which together with (2.3) implies∫
R2+

(
zp

1 ∧ m
)
μ(dz1,dz2) � K (p).

Letting m → ∞, we get∫
R2+

zp
1μ(dz1,dz2) � K (p),

which implies the function f (x) = xp is integrable with respect to the measure μ. Therefore, these arguments together with
Theorem 2.1 and Theorem 3.2 in [5] imply:

Theorem 2.2. Assume r/ f < min{a/c,bm/c} and a > α2/2 > 0, r > β2/2 > 0, (a − α2/2)/c > (r − β2/2)/ f such that

δ < min

{
bf m − cr

f

[
x∗ + f

4(bf m − cr)

(
x∗α2 + cy∗β2

r

)]2

,
cf

r

(
y∗)2

}
,

where (x∗, y∗) is defined as in (1.2),

δ = f

16(bf m − cr)

(
x∗α2 + cy∗β2

r

)2

+ 1

2

(
x∗ + m

)(
x∗α2 + cy∗β2

r

)
.

Then for any initial value (x0, y0) ∈ R2+ , x(t) has the property

P

{
lim

t→∞
1

t

t∫
0

x(s)ds =
∫

R2+

z1μ(dz1,dz2) = a − α2/2

b
− c(r − β2/2)

bf

}
= 1.
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