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1. INTRODUCTION

Denoting the group operation by the multiplication symbol ‘‘?’’ on a
nonvoid set G, Rosenfeld introduced the fuzzy subgroup of G as a fuzzy

w xsubset of G satisfying two additional conditions 6 . Many authors have
worked to present the fuzzy setting of various algebraic concepts based on

w xhis approach 1, 2, 5 . In Rosenfeld’s work, only the subsets are fuzzy, but
the group operation is crisp. A natural question, how the group structure
on G can be constructed whenever the group operation ‘‘?’’ on G is fuzzy,
arises from the essence of fuzzy logic. The concept of fuzzy equality and

w xfuzzy function given in 3 provides a good tool for fuzzifying the group
operation on a crisp set.

In this paper, taking the group operation on a crisp set as a fuzzy
w xfunction in the sense of 3 , we establish the group structure on a crisp set

and investigate the validity of the classical results in this setting.

2. PRELIMINARIES

The notation n always stands for the minimum operation between two
Ž .real numbers, and X represents a crisp usual and nonempty set in this

paper. For a given fuzzy subset A of X and for a crisp subset H of X, the
Ž . Ž .fuzzy subset B of H, defined by m x s m x for each x g H, is calledB A

<the restriction of A on H, and it will be denoted by A .H
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w x w xA mapping E : X = X ª 0, 1 is called a fuzzy equality on X 3 iff theX
following conditions are satisfied:

Ž . Ž .E.1 E x, y s 1 m x s y, ; x, ; y g X.X

Ž . Ž . Ž .E.2 E x, y s E y, x , ; x, ; y g X.X X

Ž . Ž . Ž . Ž .E.3 E x, y n E y, z F E x, z , ; x, ; y, ;z g X.X X X

Ž .For x, y g X, the real number E x, y shows the degree of the equalityX
of x and y. One can always define a fuzzy equality on X w.r.t. classical

U w xequality of the elements of X. The mapping E : X = X ª 0, 1 , definedX
by

1: x s yUE x , y s for all x , y g X ,Ž .X ½ 50: x / y

is obviously a fuzzy equality on X.
For two nonempty crisp sets X and Y, let E and E be two fuzzyX Y

equalities on X and Y, respectively. Then a fuzzy relation f on X = Y
Ž .a fuzzy subset f of X = Y is called a fuzzy function from X to Y

w xw.r.t. fuzzy equalities E and E 3 , denoted by the usual notationX Y
w xf : X ª Y, iff the characteristic function m : X = Y ª 0, 1 of f holdsF

the following two conditions:

Ž . Ž .F.1 ; x g X, ' y g Y such that m x, y ) 0.f

Ž . Ž . Ž . Ž .F.2 ; x, ; y g X, ;z, ;w g Y, m x, z n m y, w n E x, y Ff f X
Ž .E z, w .Y

A fuzzy function f is called a strong fuzzy function iff it additionally
satisfies

Ž . Ž .F.3 ; x g X, ' y g Y, such that m x, y s 1.f

It is noticed that if E , E , and m are chosen such that E s EU ,X Y f X
U Ž . � 4E s E , and m X = Y : 0, 1 , then the fuzzy function f one-to-oneY Y f

way corresponds to a classical function. In this case, a fuzzy function is
called a crisp function.

Ž .DEFINITION 2.1. i A strong fuzzy function f : X = X ª X w.r.t. a
fuzzy equality E on X = X and a fuzzy equality E on X is said to beX= X X
a vague binary operation on X w.r.t. E and E .X=X X

Ž .ii A vague binary operation f on X w.r.t. E and E is said toX=X X
be transitive of first order iff

Ž . Ž .Ž Ž . Ž . Ž ..T.1 ;a, ;b, ;c, ;d g X m a, b, c n E c, d F m a, b, d .f X f

Ž .iii A vague binary operation f on X w.r.t. E and E is said toX=X X
be transitive of second order iff

Ž . Ž .Ž Ž . Ž . Ž ..T.2 ;a, ;b, ;c, ;d g X m a, b, c n E b, d F m a, d, c .f X f
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It can easily be seen that every crisp function f : X = X ª X is a vague
binary operation on X w.r.t. EU and EU , and it is transitive of both firstX=X X
order and second order.

For a given fuzzy equality E on X and for a crisp subset H of X, theX
restriction of mapping E on H = H, denoted by E H, is obviously a fuzzyX X
equality on H. For a given vague binary operation f on X, we say that a
crisp subset B of X is vague closed under f iff

Ž . Ž .VGC m a, b, c s 1 « c g B, ;a, ;b g B, ;c g X.f

For a given vague binary operation f on X w.r.t. E and E , if aX=X X
crisp subset H of X is vague closed under f , then it is not difficult to

< <observe that f is a vague binary operation on H and fH= H=H H=H=H

preserves the transitivity properties of f.

3. DEFINITION OF VAGUE GROUPS AND THE
PROPERTIES OF VAGUE GROUPS

For the construction of vague groups, we first need to introduce the
w xfollowing well-known definition in classical group theory 4 .

DEFINITION 3.1. X together with a binary operation (, denoted by
Ž .X, ( , is a semigroup iff the following associative property is satisfied:

Ž . Ž . Ž .G.1 a( b(c s a( b (c, ;a, ;b, ;c g X.

Ž .A semigroup X, ( is a monoid iff

Ž . Ž .G.2 There exists an element e g X, called the two-sided identity
Ž .element of X, ( , such that e( a s a and a( e s a for each a g X.

Ž .A monoid X, ( is a group iff

Ž . y1G.3 For each a g X, there exists an element of X, denoted by a
Ž . y1and called the two-sided inverse element of a, such that a ( a s e and

a( ay1 s e.

Ž . Ž .A semigroup X, ( is said to be abelian commutative iff the binary
operation ( has the following property:

Ž .G.4 a( b s b( a, ;a, ;b g X.

Ž . Ž .The conditions G.1 and G.4 can be written in the following equiva-
lent statements, respectively:

Ž . Ž .ŽŽŽ . ŽG.19 ;a, ;b, ;c, ;d, ;m, ;q, ;w g X b(c s d and a( d
. Ž . Ž .. Ž ..s m and a( b s q and q(c s w « m s w .
Ž . Ž .ŽŽŽ . Ž ..G.49 ;a, ;b, ;m, ;w g X a( b s m and b( a s w «

Ž ..m s w .



VAGUE GROUPS 145

The binary operation ( can be conceivable as a special vague binary
U U Žoperation ( on X w.r.t. E and E satisfying the condition m X =X=X X (

. � 4X = X : 0, 1 . Then, for a, b, m g X, the classical notation a( b s m
Ž . Ž .means that m a, b, m s 1, or equivalently, m a, b, m ) 0. Therefore,( (

Ž . Ž . Ž . Ž .regarding G.19 and G.49 instead of G.1 and G.4 , respectively, we
Ž .observe that G.1]G.4 can be respectively represented in the following

statements:

Ž . Ž .ŽŽ Ž . Ž .VG.1 ;a, ;b, ;c, ;d, ;m, ;q, ;w m b, c, d n m a, d, m n( (
Ž . Ž .. Ž ..m a, b, q n m q, c, w F E m, w .( ( X

Ž . Ž .VG.2 There exists an two sided identity element e g X such that
Ž . Ž .m e, a, a n m a, e, a s 1 for each a g X.( (

Ž . Ž .VG.3 For each a g X, there exists an two-sided inverse element
y1 Ž y1 . Ž y1 .a g X such that m a , a, e n m a, a , e s 1.( (

Ž . Ž .ŽŽ Ž . Ž ..VG.4 ;a, ;b, ;m, ;w g X m a, b, m n m b, a, w F( (
Ž ..E m, w .X

This motivation leads us to the following definition.

DEFINITION 3.2. Let ( be a vague binary operation on X w.r.t. a fuzzy
equality E on X = X and a fuzzy equality E on X. ThenX= X X

Ž . Ž .i X together with (, denoted by X, ( , is called a vague semi-
w xgroup iff the characteristic function m : X = X = X ª 0, 1 of ( fulfills(

Ž .the condition VG.1 .

Ž . Ž .ii A vague semigroup X, ( is a vague monoid iff the condition
Ž .VG.2 is satisfied by (.

Ž . Ž .iii A vague monoid X, ( is a vague group iff ( holds the condi-
Ž .tion VG.3 .

Ž . Ž . Ž .iv A vague semigroup X, ( is said to be abelian commutative iff
Ž .the condition VG.4 is satisfied by (.

In particular, if ( is a vague binary operation on X w.r.t. EU onX=X
U Ž . � 4X = X and E on X such that m X = X = X : 0, 1 , then a vagueX (

Ž .group X, ( one-to-one way corresponds to a group in the classical sense.
In this case, a vague group is simply called a crisp group. In the following

Ž .example, for a given classical group X, ? , it is shown that an infinite
number of nontrivial vague groups can be defined on X.

Ž .EXAMPLE 3.3. For a classical group X, ? , for fixed real numbers
a , b ,u satisfying 0 - u F a F b - 1 and for x, y, z, w g X, defining the
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fuzzy equalities on X and X = X such that

1: x s y
E x , y s ,Ž .X ½ 5b : x / y

1: x , y s z , wŽ . Ž .
E x , y , z , w s ,Ž . Ž .Ž .X= X ½ 5a : x , y / z , wŽ . Ž .

and considering the fuzzy relation ) on X = X = X given by

1: z s x ? y
m# x , y , z s ,Ž . ½ 5u : z / x ? y

Ž .it is easily checked that X, ) is a vague semigroup. Furthermore, the
Ž . Ž .identity element of X, ) and the inverse of an element a of X, ) are,

Ž .respectively, the identity element of X, ? and the inverse of that element
Ž . Ž . Ž .a of X, ? . Thus, X, ) is a vague group. If X, ? is commutative, so is

Ž .X, ) . It should also be noticed that ) is neither transitive of first order
nor transitive of second order for the case of u - b , and that when
u s b s a , ) is both transitive of first and second order w.r.t. EX=X
and E .X

Ž . Ž .For a vague semigroup X, ( , if there exists e g X e g X such thatL R

m e , a, a s 1 m a, e , a s 1 for all a g X ,Ž . Ž .Ž .( L ( R

Ž . Ž . Ž .then we say that e e is a left right identity element of X, ( .L R
Ž . Ž .Furthermore, for a vague semigroup X, ( with the left right identity

Ž . y1element e e and for each a g X, if there exists an element a g XL R L
Ž y1 .a g X such thatR

m ay1 , a, e s 1 m a, ay1 , e s 1 ,Ž . Ž .Ž .( L L ( R R

y1 Ž y1 . Ž .then it is said that a a is a left right inverse of a.L R
Ž .For a given vague group X, ( , the uniqueness of the identity and the

Ž .inverse of an element of X, ( can be easily seen, and it can be also easily
Ž y1 .y1verified that, for each a g X, a s a.

Ž .PROPOSITION 3.4. For a gï en ¨ague group X, ( , there exists a binary
Ž .operation in the classical sense, denoted by s , on X such that X, s is a( (

group in the classical sense.

Ž .Proof. For a given vague group X, ( , denoting the crisp subset
�Ž . Ž . 4a, b, c g X = X = X : m a, b, c s 1 of X = X = X by the notation(
s , one can easily check that s is a binary operation on X in the( (
classical sense. Considering the definition of s and using the condition(
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Ž . Ž . Ž .VG.1]VG.3 , we easily see that X, s holds G.1 , and the identity of(
Ž .X, s and the inverse of a g X w.r.t. s are, respectively, the identity( (

Ž .of X, ( and the inverse of a g X w.r.t. (.
Ž . Ž .For a given vague group X, ( , we call the group X, s occurring in(

Ž .Proposition 3.4 an induced classical group of X, ( .

Ž .PROPOSITION 3.5. Let X, ( w.r.t. fuzzy equalities E on X = X andX=X
Ž . Ž .E on X be a ¨ague semigroup. If X, ( has a left right identity element eX L

Ž . Ž . y1 Ž y1 .e and, for each a g X, there exists a left right in¨erse a a of a,R L R
Ž . Ž Ž ..then, for each c g X, m c, c, c F E c, e e .( X L R

Ž .Proof. Let us suppose that X, ( has a left identity element e , and,L
for each a g X, there exists a left inverse ay1 of a. For c g X, sinceL

Ž y1 . Ž . Ž .m c , c, e s m e , c, c s 1, and using VG.1 , we observe that( L L ( L

m c, c, c s m c, c, c n m cy1 , c, eŽ . Ž . Ž .( ( ( L L

n m cy1 , c, e n m e , c, c FE c, e .Ž . Ž .Ž .( L L ( L X L

For the case of e and the right inverse, the required inequality isR
similarly obtained.

Ž . Ž .THEOREM 3.6 Vague Cancellation Law . Let X, ( w.r.t. fuzzy equali-
ties E onX = X and E on X be a ¨ague group. ThenX=X X

Ž . Ž . Ž . Ž .i m a, b, u n m a, c, u F E b, c , ;a, ;b, ;c, ;u g X.( ( X

Ž . Ž . Ž . Ž .ii m b, a, u n m c, a, u F E b, c , ;a, ;b, ;c, ;u g X.( ( X

Ž .Proof. i Let a, b, c, u g X. Since (: X = X ª X is a strong fuzzy
Ž y1 . Ž .function, '¨ g X such that m a , u, ¨ s 1. From VG.1]VG.3 we(

have

m a, b , u s m a, b , u n m ay1 , u , ¨ n m ay1 , a, eŽ . Ž . Ž . Ž .( ( ( (

n m e, b , b FE ¨ , bŽ . Ž .( X

and

m a, c, u s m a, c, u n m ay1 , u , ¨ n m ay1 , a, eŽ . Ž . Ž . Ž .( ( ( (

n m e, c, c FE ¨ , c .Ž . Ž .( X

Thus

m a, b , u n m a, c, u F E b , ¨ n E ¨ , c F E b , c .Ž . Ž . Ž . Ž . Ž .( ( X X X

Ž .ii is similarly proved.
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Ž .THEOREM 3.7. Let X, ( w.r.t. fuzzy equalities E on X = X and EX=X X
on X be a ¨ague group. Then

Ž .i If the ¨ague binary operation ( is transitï e of first order, then

m by1 , ay1 , u n m a, b , ¨ F E u , ¨y1 n E ¨ , uy1 ,Ž . Ž . Ž . Ž .( ( X X

;a, ;b , ;u , ;¨ g X .

Ž .ii If the ¨ague binary operation ( is transitï e of second order, then

E a, b s E ay1 , by1 , ;a, ;b g X .Ž . Ž .X X

Ž .Proof. i Let us assume that ( is transitive of first order and a, b,
u, ¨ g X. Since ( is a fuzzy function, 'k, 'w, ' r, ' t g X such that

Ž . Ž y1 . Ž . Ž .m u, a, k s m ¨ , b , w s m ¨ , u, r s m u, ¨ , t s 1. Then consid-( ( ( (
Ž .ering the conditions VG.1]VG.3 , we may write

m by1 , ay1 , u s m ay1 , a, e n m by1 , e, by1Ž . Ž . Ž .( ( (

n m by1 , ay1 , u n m u , a, kŽ . Ž .( (

F E k , by1Ž .X

and

m a, b , ¨ s m b , by1 , e n m a, e, aŽ . Ž . Ž .( ( (

n m a, b , ¨ n m ¨ , by1 , w FE a, w .Ž . Ž . Ž .( ( X

By the first-order transitivity of ( we also have

E k , by1 s m u , a, k n E k , by1 F m u , a, by1Ž . Ž . Ž . Ž .X ( X (

and

E a, w s m ¨ , by1 , w n E a, w F m ¨ , by1 , aŽ . Ž . Ž . Ž .X ( X (

Therefore we find that

m by1 , ay1 , u F m u , a, by1 and m a, b , ¨ F m ¨ , by1 , a .Ž . Ž . Ž . Ž .( ( ( (

1Ž .

On the other hand,

m by1 , ay1 , u n m ¨ , by1 , aŽ . Ž .( (

s m by1 , ay1 , u n m ¨ , u , r n m ¨ , by1 , a n m a, ay1 , eŽ . Ž . Ž . Ž .( ( ( (

F E r , eŽ .X
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and

m a, b , ¨ n m u , a, by1 s m a, b , ¨ n m u , ¨ , tŽ . Ž . Ž . Ž .( ( ( (

n m u , a, by1 n m by1 , b , eŽ . Ž .( (

F E t , e .Ž .X

Furthermore, the first-order transitivity of ( yields

E r , e s m ¨ , u , r n E r , e F m ¨ , u , eŽ . Ž . Ž . Ž .X ( X (

and

E t , e s m u , ¨ , t n E t , e F m u , ¨ , e .Ž . Ž . Ž . Ž .X ( X (

Thus we get

m by1 , ay1 , u n m ¨ , by1 , a F m ¨ , u , e andŽ . Ž . Ž .( ( (

m a, b , ¨ n m u , a, by1 F m u , ¨ , e . 2Ž . Ž . Ž . Ž .( ( (

Ž . Ž .Combining 1 and 2 we see that

m by1 , ay1 , u n m a, b , ¨ s m by1 , ay1 , u n m u , a, by1Ž . Ž . Ž . Ž .Ž .( ( ( (

n m a, b , ¨ n m ¨ , by1 , aŽ . Ž .Ž .( (

F m u , ¨ , e n m ¨ , u , e . 3Ž . Ž . Ž .( (

Ž .By Theorem 3.6 i , we possess the inequalities

m u , ¨ , e s m u , ¨ , e n m u , uy1 , e F E uy1 , ¨Ž . Ž . Ž . Ž .( ( ( X

and

m ¨ , u , , e s m ¨ , u , e n m ¨ , ¨y1 , e F E u , ¨y1 , i.e.,Ž . Ž . Ž . Ž .( ( ( X

m u , ¨ , e n m ¨ , u , e F E uy1 , ¨ n E u , ¨y1 .Ž . Ž . Ž . Ž .( ( X X

4Ž .

Ž . Ž .Hence the required inequality immediately is deduced form 3 and 4 .
Ž .ii Let ( be transitive of second order, and a, b g X. By the

Ž .assumption on ( and Theorem 3.6 ii , it can easily be written that

E a, b s m ay1 , a, e n E a, b F m ay1 , b , eŽ . Ž . Ž . Ž .X ( X (

s m ay1 , b , e n m by1 , b , eŽ . Ž .( (

F E ay1 , by1Ž .X
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and

E ay1 , by1 s m a, ay1 , e n E ay1 , by1Ž . Ž . Ž .X ( X

F m a, by1 , e s m a, by1 , e n m b , by1 , eŽ . Ž . Ž .( ( (

F E a, b , i.e.,Ž .X

E a, b s E ay1 , by1 .Ž . Ž .X X

Ž .THEOREM 3.8. Let X, ( w.r.t. a fuzzy equality E on X = X and aX=X
Ž .fuzzy equality E on X be a ¨ague semigroup. Then X, ( is a ¨ague groupX

Ž . Ž . Ž .m X, ( has a left right identity element e e and, for each a g X,L R
Ž . y1 Ž y1 .there exists a left right in¨erse a a of a.L R

Proof. We shall give the proof of the required equivalency for only the
Ž .case where X, ( has a left identity e and, for each a g X, there exists aL

left inverse ay1 of a. In a fashion similar to that of this proof, the proof ofL
the required equivalency for other case can easily be constructed.

Ž .The implication « is obvious. To confirm the converse implication
Ž . Ž .¥ , let us suppose that the vague semigroup X, ( w.r.t. fuzzy equalities
E on X = X and E on X possesses a left identity element e , and,X=X X L
for each a g X, there exists a left inverse ay1 of a. Since ( is a fuzzyL
function, for a g X, 'u, '¨ , 'w, ' r, ' t g X, such that

m a, ay1 , u s m u , u , ¨ s m a, e , w s m u , a, rŽ . Ž . Ž .Ž .( L ( ( L (

s m w , ay1 , t s 1.Ž .( L

Ž .Then using the hypothesis and VG.1 we observe that

m ay1 , a, e n m a, e , w n m a, ay1 , u n m u , a, rŽ . Ž .Ž . Ž .( L L ( L ( L (

s 1 F E r , w , i.e.,Ž .X

r s w , i.e., m u , a, w s 1Ž .(

and

m e , ay1 , ay1 n m a, ay1 , u n m a, e , w n m w , ay1 , tŽ .Ž . Ž . Ž .( L L L ( L ( L ( L

s 1 F E t , u , i.e.,Ž .X

t s u , i.e. m w , ay1 , u s 1.Ž .( L

Therefore,

m a, ay1 , u n m u , u , ¨ n m u , a, w n m w , ay1 , uŽ . Ž .Ž . Ž .( L ( ( ( L

s 1 F E ¨ , u , i.e.,Ž .X

m u , u , u s 1.Ž .(
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From Proposition 3.5 it follows that u s e . ThusL

m a,ay1 , e s 1. 5Ž .Ž .( L L

Ž .Now let us confirm that m a, e , a s 1 for each a g X, i.e., e is also( L L
Ž .a right identity element of the vague semigroup X, ( , i.e., e is aL

Ž . Ž . Ž .two-sided identity element of X, ( , i.e., VG.2 is satisfied by X, ( . For
Ž .a g X, it is obvious that 'u g X such that m a, e , u s 1. Then consid-( L

Ž .ering the hypothesis and 5 we see that

m ay1 , a, e n m a, e , u n m a, ay1 , e n m e , a, aŽ . Ž .Ž . Ž .( L L ( L ( L L ( L

s 1 F E u , a , i.e.,Ž .X

u s a, i.e. m a, e , a s 1.Ž .( L

Ž .Since e is a two-sided identity element of X, ( , considering theL
Ž . Ž .hypothesis and 5 , it is straightforward that VG.3 is satisfied. Hence

Ž .X, ( is a vague group.

Ž .THEOREM 3.9. Let X, ( w.r.t a fuzzy equality E on X = X and aX=X
fuzzy equality E on X be a ¨ague semigroup. ThenX

X , ( is a ¨ague groupŽ .
m ;a, ;b g X ' x g X m a, x , b s 1 andŽ . Ž . Ž .Ž .Ž (

;a, ;b g X ' y g X m y , a, b s 1 .Ž . Ž . Ž .Ž . .(

Ž . Ž .Proof. « Let X, ( w.r.t. E and E be a vague group. Then,X=X X
Ž y1 . Ž .for a, b g X, ' x, 'u g X such that m a , b, x s m a, x, u s 1. Now( (

we may write

m ay1 , b , x n m a, x , u n m a, ay1 , e n m e, b , bŽ . Ž . Ž . Ž .( ( ( (

s 1 F E u , b , i.e., u s b ,Ž .X

i.e., m a, x , b s 1.Ž .(

Ž y1 .On the other hand, for a, b g X, ' y, '¨ g X such that m b, a , y s(
Ž .m y, a, ¨ s 1. Thus(

m ay1 , a, e n m b , e, b n m b , ay1 , y n m y , a, ¨Ž . Ž . Ž .Ž .( ( ( (

s 1 F E ¨ , b , i.e., v s b, i .e.,Ž .X

m y , a, b s 1.Ž .(



MUSTAFA DEMIRCI152

Ž . Ž .¥ For a given vague semigroup X, ( w.r.t. E and E ,X=X X
Ž .suppose that ;a, ;b g X, ' x g X, such that m a, x, b s 1 and ;a,(

Ž .;b g X, ' y g X such that m y, a, b s 1. Then, by this assumption, for(
a fixed m g X and for an arbitrary a g X, there exist e*, x g X such that

m e*, m , m s m m , x , a s 1.Ž . Ž .( (

Furthermore, since ( is a fuzzy function, it is obvious that, for a g X,
Ž .there exists u g X such that m e*, a, u s 1. Therefore we obtain the(

following inequality:

m m , x , a n m e*, a, u n m e*, m , m n m m , x , aŽ . Ž . Ž . Ž .( ( ( (

s 1 F E u , a , i.e., u s a,Ž .X

i.e., m e*, a, a s 1,Ž .(

Ž .i.e., e* is a left identity element of X, ( .
On the other hand, by the hypothesis, for each a g X, there exists

Ž .w g X such that m w, a, e* s 1, i.e., w is a left inverse of a. Hence the(
required result immediately follows from Theorem 3.8.

4. VAGUE SUBGROUPS AND VAGUE
HOMOMORPHISMS

Ž .DEFINITION 4.1. Let X, ( w.r.t. a fuzzy equality E on X = X andX=X
a fuzzy equality E on X be a vague group, and let H be a nonempty andX
crisp subset of X that is vague closed under (. Then H is said to be a

Ž < .vague subgroup of X iff H, ( is itself a vague group.H= H=H

Ž .THEOREM 4.2. Let X, ( w.r.t. a fuzzy equality E on X = X and aX=X
fuzzy equality E on X be a ¨ague group. Then, a nonempty and crisp subsetX

Ž .Ž .Ž Ž y1 .H of X is a ¨ague subgroup of Xm ;a, ;bgH ;cgX m a, b , c s(
.1 « c g H .

Ž .Proof. « Let H be a vague subgroup of X. Denoting an identity of
Ž . Ž < .the vague groups X, ( and H, ( by e and e , respectively, itH= H=H X H

is obvious that, for a g H,

m a, e , a s m a, e , a s m a, e , a s 1.Ž . Ž . Ž .( < H=H=H H ( H ( X

From Theorem 3.6 we may write

m a, e , a n m a, e , a s 1 F E e , e , i.e., e s e .Ž . Ž . Ž .( H ( X X H X H X
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<Similarly, for b g H, denoting the inverse of b in H w.r.t. ( byH= H=H

by1, it is obvious thatH

m b , by1 , e s m b , by1 , e s m b , by1 , e s 1Ž . Ž . Ž .( < H=H=H H H ( H H 0 H

and

m b , by1 , e n m b , by1 , e s 1 F E by1 , by1 , i.e., by1 s by1 .Ž . Ž . Ž .( H H ( H X H H

Ž y1 . y1Now, for a, b g H and c g X, if m a, b , c s 1, then since a, b g(
H and H is vague closed under (, we directly get c g H.

Ž . Ž .Ž .Ž Ž y1 .¥ Suppose that ;a, ;b g H ;c g X m a, b , c s 1 «(
. Ž y1 .c g H . Since H / B, there exists u g H. Since m u, u , e s 1, and( X

by the hypothesis, we have e g H. Then, for a, e g H, sinceX X
Ž y1 y1. y1m e , a , a s 1, and by the hypothesis, we directly get a g H.( X

Now we prove that the nonempty subset H of X is vague closed under (.
Ž .For a, b g H, c g X, let m a, b, c s 1. Considering the equality(

Ž . Ž Ž y1 .y1 . y1m a, b, c s m a, b , c and since b g H, the hypothesis directly( (
implies c g H. Thus H is vague closed under (.

Ž . Ž .Since X, ( is a vague group, it can easily be seen that VG.1]VG.3
Ž < . H= Hare satisfied by H, ( w.r.t. the fuzzy equalities E on H = HH= H=H X=X

and E H on H. Hence H is a vague subgroup of X.X

Ž .THEOREM 4.3. Let X, ( w.r.t. a fuzzy equality E on X = X and aX=X
fuzzy equality E on X be a ¨ague group. Then, a nonempty and crisp subsetX
H of X is a ¨ague subgroup of X iff

Ž .i H is ¨ague closed under (.
Ž . y1ii For each a g H, a g H.

Proof. The proof of this result can be obtained in a manner similar to
w xthat of the classical case 4 . For this reason, it is omitted here.

Ž .COROLLARY 4.4. Let X, ( w.r.t. a fuzzy equality E on X = X andX=X
� 4a fuzzy equality E on X be a ¨ague group. If H : i g I is a nonemptyX i

family of ¨ague subgroups of X such that F H / B, then F H is aig I i ig I i
¨ague subgroup of X.

Ž .DEFINITION 4.5. Let X, ( be a vague group and let H be a crisp and
� 4nonempty subset of X. Let H : i g I be the family of all vague subgroupsi

of X containing H. Then F H is called the vague subgroup of Xig I i
² :generated by the set H, and it is denoted by H .

Ž . Ž .DEFINITION 4.6. Let X, ( and Y, ( be two vague semigroups. A
Ž .function in the classical sense F: X ª Y is called a ¨ague homomor-

phism iff

m a, b , c F m F a , F b , F c , ;a, ;b , ;c g X .Ž . Ž . Ž . Ž .Ž .( (
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Ž .PROPOSITION 4.7. Let X, ( w.r.t. fuzzy equalities E on X = X, EX= X X
Ž .on X and Y, ( w.r.t. fuzzy equalities E on Y = Y, E on Y, be twoY=Y Y

¨ague groups, and F: X ª Y a ¨ague homomorphism. Then

Ž . Ž . Ž .i If e and e are identities of X, ( and Y, ( , respectï ely, thenX Y
Ž .F e s e .X Y

Ž . Ž .y1 Ž y1 .ii For each a g X, F a s F a .

Ž . Ž . Ž .Proof. i Let e and e be identities of X, ( and Y, ( , respec-X Y
Ž .tively. For a g X, since m a, e , a s 1 and F: X ª Y is a vague0 X

Ž Ž . Ž . Ž ..homomorphism, we have m F a , F e , F a s 1. Furthermore,( X
Ž Ž . Ž ..m F a , e , F a s 1 and, by Theorem 3.6,( Y

m F a , F e , F a n m F a , e , F a s 1 F E F e , e ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .( X ( Y Y X Y

i.e., F e s e .Ž .X Y

Ž . Ž y1 .ii For each a g X, since m a, a , e s 1 and F: X ª Y is a( X
Ž Ž . Ž y1 . Ž .. Ž .vague homomorphism, we have m F a , F a , F e s 1. From i we( X

Ž Ž . Ž y1 . .may write m F a , F a , e s 1. Applying Theorem 3.6 we find( Y

y1y1m F a , F a , e n m F a , F a , eŽ . Ž . Ž . Ž .Ž . Ž .( Y ( Y

y1 y1s 1 F E F a , F a , i.e.,Ž . Ž .Ž .Y

y1 y1F a s F a .Ž . Ž .

Ž .DEFINITION 4.8. Let X, ( w.r.t. fuzzy equalities E on X = X, EX=X X
Ž .on X and Y, ( w.r.t. fuzzy equalities E on Y = Y, E on Y be twoY=Y Y

vague groups, and let F: X ª Y be a vague homomorphism. The crisp set
� Ž . 4a g X : F a s e is called a ¨ague kernel of F, and it is denoted byY
V ker F.

DEFINITION 4.9. Let E and E be, respectively, fuzzy equalities on XX Y
and Y. A function g : X ª Y is said to be vague injective w.r.t. E and EX Y
if

E g a , g b F E a, b , ;a, ;b g X .Ž . Ž . Ž .Ž .Y X

It can be noted that a vague injective function is obviously injective in the
classical sense.

Ž .PROPOSITION 4.10. Let X, ( w.r.t. fuzzy equalities E on X = X,X=X
Ž .E on X and Y, ( w.r.t. fuzzy equalities E on Y = Y, E on Y be twoX Y=Y Y

¨ague groups, and let F: X ª Y be a ¨ague homomorphism. Let e be theX
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Ž .identity of the ¨ague group X, ( . Then

Ž . � 4i F is injectï e m V ker F s e .X

Ž .ii If ( is transitï e of first order and F is ¨ague injectï e and
surjectï e, then the function Fy1 : Y ª X is a ¨ague homomorphism.

Ž . w xProof. The proof of i is the analogue of classical case 4 .

Ž .ii Let F be a vague injective and surjective function, i.e., F is
bijective and vague injective. Furthermore, let us suppose that ( is transi-

Ž .tive of first order. For u, ¨ , w g Y, our aim is to show that m u, ¨ , w F(

Ž y1Ž . y1Ž . y1Ž ..m F u , F ¨ , F w .(
y1Ž . y1Ž .For u, ¨ , w g Y, 'a, 'b, 'c g X such that a s F u , b s F ¨ ,

Ž .and m a, b, c s 1. Since F is a vague homomorphism we may write(

m F a , F b , F c s m u , ¨ , F c s 1.Ž . Ž . Ž . Ž .Ž . Ž .( (

Ž .Then since ( is a fuzzy function and applying the condition F.2 we may
write

m u , ¨ , w s m u , ¨ , w n m u , ¨ , F c F E w , F c . 6Ž . Ž . Ž . Ž . Ž .Ž . Ž .( ( ( Y

Using the bijectivity and vague injectivity of F and considering the
first-order transitivity of (, we observe that

E w , F c s E F Fy1 w , F c F E Fy1 w , cŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ž .Y Y X

s m Fy1 u , Fy1 ¨ , c n E Fy1 w , cŽ . Ž . Ž .Ž . Ž .( X 7Ž .

F m Fy1 u , Fy1 ¨ , Fy1 w .Ž . Ž . Ž .Ž .(

Ž . Ž .The required inequality is acquired directly from 6 and 7 .

Ž .THEOREM 4.11. Let X, ( w.r.t. fuzzy equalities E on X = X, EX=X X
Ž .on X and Y, ( w.r.t. fuzzy equalities E on Y = Y, E on Y be twoY=Y Y

¨ague groups, and let F: X ª Y be a ¨ague homomorphism. Then

Ž .i V ker F is a ¨ague subgroup of X.
Ž . Ž .ii For a ¨ague subgroup A of X, F A is a ¨ague subgroup of Y.
Ž . y1Ž .iii For a ¨ague subgroup B of Y, F B is a ¨ague subgroup of X.

Ž . Ž y1 .Proof. i For a, b g V ker F, c g X, let m a, b , c s 1. Then(

y1 y1
F a s F b , i.e., F a s F b , i.e.,Ž . Ž . Ž . Ž .

y1 y1
m F a , F a , e s m F a , F b , e s 1.Ž . Ž . Ž . Ž .Ž . Ž .( Y ( Y
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Ž .Since F is a vague homomorphism and using Proposition 4.7 ii , the
Ž y1 .assumption m a, b , c s 1 implies(

y1y1m F a , F b , F c s m F a , F b , F c s 1.Ž . Ž . Ž . Ž . Ž . Ž .Ž .( (

Therefore,

y1 y1
m F a , F b , e n m F a , F b , F cŽ . Ž . Ž . Ž . Ž .Ž .Ž .( Y (

s 1 F E F c , e , i.e.,Ž .Ž .X Y

F c s e , i.e., c g V ker F .Ž . Y

Hence the required result is straightforward from Theorem 4.2.
Ž . Ž .ii Let A be a vague subgroup of X. For a, b g F A , c g Y, let

Ž y1 . Ž . Ž .m a, b , c s 1. Then, 'u, '¨ g A, 'w g X, such that F u s a, F ¨(

Ž y1 .s b, and m u, ¨ , w s 1. A is a vague subgroup of X and, by Theorem(
Ž . Ž .4.2, we have w g A, i.e., F w g F A . Furthermore, since F is a vague

Ž .homomorphism and considering Proposition 4.7 ii , we may write

y1y1m F u , F ¨ , F w s m F u , F ¨ , F wŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .( (

s m a, by1 , F w s 1.Ž .Ž .(

Therefore we get

m a, by1 , F w n m a, by1 , c s 1 F E F w , c s 1,Ž . Ž . Ž .Ž .Ž .( ( Y

i.e., c s F w g F A .Ž . Ž .

Hence the required result follows from Theorem 4.2 at once.
Ž . Ž .iii This can be verified in a fashion similar to the proof of ii .
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