Linearity defects of face rings

Ryota Okazaki, Kohji Yanagawa*
Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Received 30 August 2006
Available online 12 March 2007
Communicated by Luchezar L. Avramov
Dedicated to Professor Jürgen Herzog on his 65th birthday

Abstract

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field K, and $E=\bigwedge\left\langle y_{1}, \ldots, y_{n}\right\rangle$ an exterior algebra. The linearity defect $\operatorname{ld}_{E}(N)$ of a finitely generated graded E-module N measures how far N departs from "componentwise linear". It is known that $\operatorname{ld}_{E}(N)<\infty$ for all N. But the value can be arbitrary large, while the similar invariant $\operatorname{ld}_{S}(M)$ for an S-module M is always at most n. We will show that if I_{Δ} (resp. J_{Δ}) is the squarefree monomial ideal of S (resp. E) corresponding to a simplicial complex $\Delta \subset 2^{\{1, \ldots, n\}}$, then $\operatorname{ld}_{E}\left(E / J_{\Delta}\right)=\operatorname{ld}_{S}\left(S / I_{\Delta}\right)$. Moreover, except some extremal cases, $\operatorname{ld}_{E}\left(E / J_{\Delta}\right)$ is a topological invariant of the geometric realization $\left|\Delta^{\vee}\right|$ of the Alexander dual Δ^{\vee} of Δ. We also show that, when $n \geqslant 4$, $\operatorname{ld}_{E}\left(E / J_{\Delta}\right)=n-2$ (this is the largest possible value) if and only if Δ is an n-gon.

© 2007 Elsevier Inc. All rights reserved.
Keywords: Stanley-Reisner ring; Exterior face ring; Linearity defect; Weakly Koszul module; Componentwise linear; Sequentially Cohen-Macaulay; Squarefree module

1. Introduction

Let $A=\bigoplus_{i \in \mathbb{N}} A_{i}$ be a graded (not necessarily commutative) noetherian algebra over a field $K\left(\cong A_{0}\right)$. Let M be a finitely generated graded left A-module, and P_{\bullet} its minimal free resolution. Eisenbud et al. [3] defined the linear part $\operatorname{lin}\left(P_{\bullet}\right)$ of P_{\bullet}, which is the complex obtained by erasing all terms of degree $\geqslant 2$ from the matrices representing the differen-

[^0]tial maps of P_{\bullet} (hence $\operatorname{lin}\left(P_{\bullet}\right)_{i}=P_{i}$ for all i). Following Herzog and Iyengar [6], we call $\operatorname{ld}_{A}(M)=\sup \left\{i \mid H_{i}\left(\operatorname{lin}\left(P_{\mathbf{\bullet}}\right)\right) \neq 0\right\}$ the linearity defect of M. This invariant and related concepts have been studied by several authors (e.g., [3,6,9,12,18]). Following [5], we say a finitely generated graded A-module M is componentwise linear (or (weakly) Koszul in some literature) if $M_{\langle i\rangle}$ has a linear free resolution for all i. Here $M_{\langle i\rangle}$ is the submodule of M generated by its degree i part M_{i}. Then we have
$$
\operatorname{ld}_{A}(M)=\min \{i \mid \text { the } i \text { th syzygy of } M \text { is componentwise linear }\}
$$

For this invariant, a remarkable result holds over an exterior algebra $E=\bigwedge\left\langle y_{1}, \ldots, y_{n}\right\rangle$. In [3, Theorem 3.1], Eisenbud et al. showed that any finitely generated graded E-module N satisfies $\operatorname{ld}_{E}(N)<\infty$ while proj. $\operatorname{dim}_{E}(N)=\infty$ in most cases. (We also remark that Martinez-Villa and Zacharia [9] proved the same result for many selfinjective Koszul algebras.) If $n \geqslant 2$, then we have $\sup \left\{\operatorname{ld}_{E}(N) \mid N\right.$ a finitely generated graded E-module $\}=\infty$. But Herzog and Römer proved that if $J \subset E$ is a monomial ideal then $\operatorname{ld}_{E}(E / J) \leqslant n-1$ (cf. [12]).

A monomial ideal of $E=\bigwedge\left\langle y_{1}, \ldots, y_{n}\right\rangle$ is always of the form $J_{\Delta}:=\left(\prod_{i \in F} y_{i} \mid F \notin \Delta\right)$ for a simplicial complex $\Delta \subset 2^{\{1, \ldots, n\}}$. Similarly, we have the Stanley-Reisner ideal

$$
I_{\Delta}:=\left(\prod_{i \in F} x_{i} \mid F \notin \Delta\right)
$$

of a polynomial ring $S=K\left[x_{1}, \ldots, x_{n}\right]$. In this paper, we will show the following.
Theorem 1.1. With the above notation, we have $\operatorname{ld}_{E}\left(E / J_{\Delta}\right)=\operatorname{ld}_{S}\left(S / I_{\Delta}\right)$. Moreover, if $\operatorname{ld}_{E}\left(E / J_{\Delta}\right)>0$ (equivalently, $\Delta \neq 2^{T}$ for any $T \subset[n]$), then $\operatorname{ld}_{E}\left(E / J_{\Delta}\right)$ is a topological invariant of the geometric realization $\left|\Delta^{\vee}\right|$ of the Alexander dual Δ^{\vee}. $\left(\right.$ But $\operatorname{ld}\left(E / J_{\Delta}\right)$ may depend on $\operatorname{char}(K)$.)

By virtue of the above theorem, we can put $\operatorname{ld}(\Delta):=\operatorname{ld}_{E}\left(E / J_{\Delta}\right)=\operatorname{ld}_{S}\left(S / I_{\Delta}\right)$. If we set $d:=\min \left\{i \mid\left[I_{\Delta}\right]_{i} \neq 0\right\}=\min \left\{i \mid\left[J_{\Delta}\right]_{i} \neq 0\right\}$, then $\operatorname{ld}(\Delta) \leqslant \max \{1, n-d\}$. But, if $d=1$ (i.e., $\{i\} \notin \Delta$ for some $1 \leqslant i \leqslant n)$, then $\operatorname{ld}(\Delta) \leqslant \max \{1, n-3\}$. Hence, if $n \geqslant 3$, we have $\operatorname{ld}(\Delta) \leqslant n-2$ for all Δ.

Theorem 1.2. Assume that $n \geqslant 4$. Then $\operatorname{ld}(\Delta)=n-2$ if and only if Δ is an n-gon.
While we treat S and E in most part of the paper, some results on S can be generalized to a normal semigroup ring, and this generalization makes the topological meaning of $\operatorname{ld}(\Delta)$ clear. So Section 2 concerns a normal semigroup ring. But, in this case, we use an irreducible resolution (something analogous to an injective resolution), not a projective resolution.

2. Linearity defects for irreducible resolutions

Let $C \subset \mathbb{Z}^{n} \subset \mathbb{R}^{n}$ be an affine semigroup (i.e., C is a finitely generated additive submonoid of \mathbb{Z}^{n}), and $R:=K\left[\mathbf{x}^{\mathbf{c}} \mid \mathbf{c} \in C\right] \subset K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ the semigroup ring of C over the field K. Here $\mathbf{x}^{\mathbf{c}}$ for $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in C$ denotes the monomial $\prod_{i=1}^{n} x_{i}^{c_{i}}$. Let $\mathbf{P}:=\mathbb{R}_{\geqslant 0} C \subset \mathbb{R}^{n}$ be the polyhedral cone spanned by C. We always assume that $\mathbb{Z} C=\mathbb{Z}^{n}, \mathbb{Z}^{n} \cap \mathbf{P}=C$ and $C \cap(-C)=$
$\{0\}$. Thus R is a normal Cohen-Macaulay integral domain of dimension n with a maximal ideal $\mathfrak{m}:=\left(\mathbf{x}^{\mathbf{c}} \mid 0 \neq \mathbf{c} \in C\right)$.

Clearly,

$$
R=\bigoplus_{\mathbf{c} \in C} K \mathbf{x}^{\mathbf{c}}
$$

is a \mathbb{Z}^{n}-graded ring. We say a \mathbb{Z}^{n}-graded ideal of R is a monomial ideal. Let ${ }^{*} \bmod R$ be the category of finitely generated \mathbb{Z}^{n}-graded R-modules and degree preserving R-homomorphisms. As usual, for $M \in{ }^{*} \bmod R$ and $\mathbf{a} \in \mathbb{Z}^{n}, M_{\mathbf{a}}$ denotes the degree \mathbf{a} component of M, and $M(\mathbf{a})$ denotes the shifted module of M with $M(\mathbf{a})_{\mathbf{b}}=M_{\mathbf{a}+\mathbf{b}}$.

Let \mathbf{L} be the set of non-empty faces of the polyhedral cone \mathbf{P}. Note that $\{0\}$ and \mathbf{P} itself belong to \mathbf{L}. For $F \in \mathbf{L}, P_{F}:=\left(\mathbf{x}^{\mathbf{c}} \mid \mathbf{c} \in C \backslash F\right)$ is a prime ideal of R. Conversely, any monomial prime ideal is of the form P_{F} for some $F \in \mathbf{L}$. Note that $P_{\{0\}}=\mathfrak{m}$ and $P_{\mathbf{P}}=(0)$. Set $K[F]:=R / P_{F} \cong$ $K\left[\mathbf{x}^{\mathbf{c}} \mid \mathbf{c} \in C \cap F\right]$ for $F \in \mathbf{L}$. The Krull dimension of $K[F]$ equals the dimension $\operatorname{dim} F$ of the polyhedral cone F.

For a point $u \in \mathbf{P}$, we always have a unique face $F \in \mathbf{L}$ whose relative interior contains u. Here we denote $s(u)=F$.

Definition 2.1. (See [16].) We say a module $M \in{ }^{*} \bmod R$ is squarefree, if it is C-graded (i.e., $M_{\mathbf{a}}=0$ for all $\mathbf{a} \notin C$), and the multiplication map $M_{\mathbf{a}} \ni y \mapsto \mathbf{x}^{\mathbf{b}} y \in M_{\mathbf{a}+\mathbf{b}}$ is bijective for all $\mathbf{a}, \mathbf{b} \in C$ with $s(\mathbf{a}+\mathbf{b})=s(\mathbf{a})$.

For a monomial ideal $I, R / I$ is a squarefree R-module if and only if I is a radical ideal (i.e., $\sqrt{I}=I)$. Regarding \mathbf{L} as a partially ordered set by inclusion, we say $\Delta \subset \mathbf{L}$ is an order ideal, if $\Delta \ni F \supset F^{\prime} \in \mathbf{L}$ implies $F^{\prime} \in \Delta$. If Δ is an order ideal, then $I_{\Delta}:=\left(\mathbf{x}^{\mathbf{c}} \mid \mathbf{c} \in C, s(\mathbf{c}) \notin \Delta\right) \subset R$ is a radical ideal. Conversely, any radical monomial ideal is of the form I_{Δ} for some Δ. Set $K[\Delta]:=R / I_{\Delta}$. Clearly,

$$
K[\Delta]_{\mathbf{a}} \cong \begin{cases}K & \text { if } \mathbf{a} \in C \text { and } s(\mathbf{a}) \in \Delta \\ 0 & \text { otherwise }\end{cases}
$$

In particular, if $\Delta=\mathbf{L}$ (resp. $\Delta=\{\{0\}\}$), then $I_{\Delta}=0\left(\right.$ resp. $\left.I_{\Delta}=\mathfrak{m}\right)$ and $K[\Delta]=R$ (resp. $K[\Delta]=K)$. When R is a polynomial ring, $K[\Delta]$ is nothing else than the Stanley-Reisner ring of a simplicial complex Δ. (If R is a polynomial ring, then the partially ordered set \mathbf{L} is isomorphic to the power set $2^{\{1, \ldots, n\}}$, and Δ can be seen as a simplicial complex.)

For each $F \in \mathbf{L}$, take some $\mathbf{c}(F) \in C \cap \operatorname{rel}-\operatorname{int}(F)$ (i.e., $s(\mathbf{c}(F))=F$). For a squarefree R module M and $F, G \in \mathbf{L}$ with $G \supset F,\left[16\right.$, Theorem 3.3] gives a K-linear map $\varphi_{G, F}^{M}: M_{\mathbf{c}(F)} \rightarrow$ $M_{\mathbf{c}(G)}$. They satisfy $\varphi_{F, F}^{M}=\operatorname{Id}$ and $\varphi_{H, G}^{M} \circ \varphi_{G, F}^{M}=\varphi_{H, F}^{M}$ for all $H \supset G \supset F$. We have $M_{\mathbf{c}} \cong M_{\mathbf{c}^{\prime}}$ for $\mathbf{c}, \mathbf{c}^{\prime} \in C$ with $s(\mathbf{c})=s\left(\mathbf{c}^{\prime}\right)$. Under these isomorphisms, the maps $\varphi_{G, F}^{M}$ do not depend on the particular choice of $\mathbf{c}(F)$'s.

Let $\mathrm{Sq}(R)$ be the full subcategory of $* \bmod R$ consisting of squarefree modules. As shown in [16], $\mathrm{Sq}(R)$ is an abelian category with enough injectives. For an indecomposable squarefree module M, it is injective in $\operatorname{Sq}(R)$ if and only if $M \cong K[F]$ for some $F \in \mathbf{L}$. Each $M \in \operatorname{Sq}(R)$ has a minimal injective resolution in $\mathrm{Sq}(R)$, and we call it a minimal irreducible resolution (see $[10,19]$ for further information). A minimal irreducible resolution is unique up to isomorphism, and its length is at most n.

Let ω_{R} be the \mathbb{Z}^{n}-graded canonical module of R. It is well known that ω_{R} is isomorphic to the radical monomial ideal ($\mathbf{x}^{\mathbf{c}} \mid \mathbf{c} \in C, s(c)=\mathbf{P}$). Since we have $\operatorname{Ext}_{R}^{i}\left(M^{\bullet}, \omega_{R}\right) \in \operatorname{Sq}(R)$ for all $M^{\bullet} \in \operatorname{Sq}(R), \mathbf{D}(-):=\operatorname{RHom}_{R}\left(-, \omega_{R}\right)$ gives a duality functor from the derived category $D^{b}(\mathrm{Sq}(R))\left(\cong D_{\mathrm{Sq}(R)}^{b}\left({ }^{*} \bmod R\right)\right)$ to itself.

In the sequel, for a K-vector space V, V^{*} denotes its dual space. But, even if $V=M_{\mathrm{a}}$ for some $M \in{ }^{*} \bmod R$ and $\mathbf{a} \in \mathbb{Z}^{n}$, we set the degree of V^{*} to be 0 .

Lemma 2.2. (See [19, Lemma 3.8].) If $M \in \operatorname{Sq}(R)$, then $\mathbf{D}(M)$ is quasi-isomorphic to the complex $D^{\bullet}: 0 \rightarrow D^{0} \rightarrow D^{1} \rightarrow \cdots \rightarrow D^{n} \rightarrow 0$ with

$$
D^{i}=\bigoplus_{\substack{F \in \mathbf{L} \\ \operatorname{dim} F=n-i}}\left(M_{\mathbf{c}(F)}\right)^{*} \otimes_{K} K[F]
$$

Here the differential is the sum of the maps

$$
\left(\pm \varphi_{F, F^{\prime}}^{M}\right)^{*} \otimes \operatorname{nat}:\left(M_{\mathbf{c}(F)}\right)^{*} \otimes_{K} K[F] \rightarrow\left(M_{\mathbf{c}\left(F^{\prime}\right)}\right)^{*} \otimes_{K} K\left[F^{\prime}\right]
$$

for $F, F^{\prime} \in \mathbf{L}$ with $F \supset F^{\prime}$ and $\operatorname{dim} F=\operatorname{dim} F^{\prime}+1$, and nat denotes the natural surjection $K[F] \rightarrow K\left[F^{\prime}\right]$. We can also describe $\mathbf{D}\left(M^{\bullet}\right)$ for a complex $M^{\bullet} \in D^{b}(\mathrm{Sq}(R))$ in a similar way.

Convention. In the sequel, as an explicit complex, $\mathbf{D}\left(M^{\bullet}\right)$ for $M^{\bullet} \in D^{b}(\mathrm{Sq}(R))$ means the complex described in Lemma 2.2.

Since $\mathbf{D} \circ \mathbf{D} \cong \operatorname{Id}_{D^{b}(\mathrm{Sq}(R))}, \mathbf{D} \circ \mathbf{D}(M)$ is an irreducible resolution of M, but it is far from being minimal. Let $\left(I^{\bullet}, \partial^{\bullet}\right)$ be a minimal irreducible resolution of M. For each $i \in \mathbb{N}$ and $F \in \mathbf{L}$, we have a natural number $\nu_{i}(F, M)$ such that

$$
I^{i} \cong \bigoplus_{F \in \mathbf{L}} K[F]^{v_{i}(F, M)}
$$

Since I^{\bullet} is minimal, $z \in K[F] \subset I^{i}$ with $\operatorname{dim} F=d$ is sent to

$$
\partial^{i}(z) \in \bigoplus_{\substack{G \in \mathbf{L} \\ \operatorname{dim} G<d}} K[G]^{v_{i+1}(G, M)} \subset I^{i+1}
$$

The above observation on $\mathbf{D} \circ \mathbf{D}(M)$ gives the formula [16, Theorem 4.15]

$$
v_{i}(F, M)=\operatorname{dim}_{K}\left[\operatorname{Ext}_{R}^{n-i-\operatorname{dim} F}\left(M, \omega_{R}\right)\right]_{\mathbf{c}(F)}
$$

For each $l \in \mathbb{N}$ with $0 \leqslant l \leqslant n$, we define the l-linear strand $\operatorname{lin}_{l}\left(I^{\bullet}\right)$ of I^{\bullet} as follows: The term $\operatorname{lin}_{l}\left(I^{\bullet}\right)^{i}$ of cohomological degree i is

$$
\bigoplus_{\operatorname{dim} F=l-i} K[F]^{\nu_{i}(F, M)},
$$

which is a direct summand of I^{i}, and the differential $\operatorname{lin}_{l}\left(I^{\bullet}\right)^{i} \rightarrow \operatorname{lin}_{l}\left(I^{\bullet}\right)^{i+1}$ is the corresponding component of the differential $\partial^{i}: I^{i} \rightarrow I^{i+1}$ of I^{\bullet}. By the minimality of I^{\bullet}, we can see that $\operatorname{lin}_{l}\left(I^{\bullet}\right)$ are cochain complexes. Set $\operatorname{lin}\left(I^{\bullet}\right):=\bigoplus_{0 \leqslant l \leqslant n} \operatorname{lin}_{l}\left(I^{\bullet}\right)$. Then we have the following.

For a complex M^{\bullet} and an integer p, let $M^{\bullet}[p]$ be the p th translation of M^{\bullet}. That is, $M^{\bullet}[p]$ is a complex with $M^{i}[p]=M^{i+p}$.

Theorem 2.3. (See [19, Theorem 3.9].) With the above notation, we have

$$
\operatorname{lin}_{l}\left(I^{\bullet}\right) \cong \mathbf{D}\left(\operatorname{Ext}_{R}^{n-l}\left(M, \omega_{R}\right)\right)[n-l]
$$

Hence

$$
\operatorname{lin}\left(I^{\bullet}\right) \cong \bigoplus_{i \in \mathbb{Z}} \mathbf{D}\left(\operatorname{Ext}_{R}^{i}\left(M, \omega_{R}\right)\right)[i]
$$

Definition 2.4. Let I^{\bullet} be a minimal irreducible resolution of $M \in \operatorname{Sq}(R)$. We call max $\{i \mid$ $\left.H^{i}\left(\operatorname{lin}\left(I^{\bullet}\right)\right) \neq 0\right\}$ the linearity defect of the minimal irreducible resolution of M, and denote it by ld.irr ${ }_{R}(M)$.

Corollary 2.5. With the above notation, we have

$$
\max \left\{i \mid H^{i}\left(\operatorname{lin}_{l}\left(I^{\bullet}\right)\right) \neq 0\right\}=l-\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-l}\left(M, \omega_{R}\right)\right)
$$

and hence

$$
\operatorname{ld} . \operatorname{irr}_{R}(M)=\max \left\{i-\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right)\right) \mid 0 \leqslant i \leqslant n\right\} .
$$

Here we set the depth of the 0 module to be $+\infty$.
Proof. By Theorem 2.3, we have $H^{i}\left(\operatorname{lin}_{l}\left(I^{\bullet}\right)\right)=\operatorname{Ext}_{R}^{i+n-l}\left(\operatorname{Ext}_{R}^{n-l}\left(M, \omega_{R}\right), \omega_{R}\right)$. Since depth ${ }_{R} N=$ $\min \left\{i \mid \operatorname{Ext}_{R}^{n-i}\left(N, \omega_{R}\right) \neq 0\right\}$ for a finitely generated graded R-module N, the assertion follows.

Definition 2.6. (See Stanley [14].) Let $M \in{ }^{*} \bmod R$. We say M is sequentially Cohen-Macaulay if there is a finite filtration

$$
0=M_{0} \subset M_{1} \subset \cdots \subset M_{r}=M
$$

of M by graded submodules M_{i} satisfying the following conditions.
(a) Each quotient M_{i} / M_{i-1} is Cohen-Macaulay.
(b) $\operatorname{dim}\left(M_{i} / M_{i-1}\right)<\operatorname{dim}\left(M_{i+1} / M_{i}\right)$ for all i.

Remark that the notion of sequentially Cohen-Macaulay module is also studied under the name of a "Cohen-Macaulay filtered module" [13].

Sequentially Cohen-Macaulay property is getting important in the theory of StanleyReisner rings. It is known that $M \in{ }^{*} \bmod R$ is sequentially Cohen-Macaulay if and only if $\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right)$ is a zero module or a Cohen-Macaulay module of dimension i for all i (cf. [14, III. Theorem 2.11]). Let us go back to Corollary 2.5. If $N:=\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right) \neq 0$, then $\operatorname{depth}_{R} N \leqslant \operatorname{dim}_{R} N \leqslant i$. Hence depth $N=i$ if and only if N is a Cohen-Macaulay module of
dimension i. Thus, as stated in [19, Corollary 3.11], $\operatorname{ld} . \operatorname{irr}_{R}(M)=0$ if and only if M is sequentially Cohen-Macaulay.

Let $I^{\bullet}: 0 \rightarrow I^{0} \xrightarrow{\partial^{0}} I^{1} \xrightarrow{\partial^{1}} I^{2} \rightarrow \cdots$ be an irreducible resolution of $M \in \operatorname{Sq}(R)$. Then it is easy

$$
\text { ld. } \operatorname{irr}_{R}(M)=\min \left\{i \mid \operatorname{ker}\left(\partial^{i}\right) \text { is sequentially Cohen-Macaulay }\right\}
$$

We have a hyperplane $H \subset \mathbb{R}^{n}$ such that $B:=H \cap \mathbf{P}$ is an $(n-1)$-dimensional polytope. Clearly, B is homeomorphic to a closed ball of dimension $n-1$. For a face $F \in \mathbf{L}$, set $|F|$ to be the relative interior of $F \cap H$. If $\Delta \subset \mathbf{L}$ is an order ideal, then $|\Delta|:=\bigcup_{F \in \Delta}|F|$ is a closed subset of B, and $\bigcup_{F \in \Delta}|F|$ is a regular cell decomposition (cf. [1, §6.2]) of $|\Delta|$. Up to homeomorphism, (the regular cell decomposition of) $|\Delta|$ does not depend on the particular choice of the hyperplane H. The dimension $\operatorname{dim}|\Delta|$ of $|\Delta|$ is given by $\max \{\operatorname{dim}|F| \mid F \in \Delta\}$. Here $\operatorname{dim}|F|$ denotes the dimension of $|F|$ as a cell (we set $\operatorname{dim} \emptyset=-1$), that is, $\operatorname{dim}|F|=\operatorname{dim} F-1=\operatorname{dim} K[F]-1$. Hence we have $\operatorname{dim} K[\Delta]=\operatorname{dim}|\Delta|+1$.

If $F \in \Delta$, then $U_{F}:=\bigcup_{F^{\prime} \supset F}\left|F^{\prime}\right|$ is an open set of B. Note that $\left\{U_{F} \mid\{0\} \neq F \in \mathbf{L}\right\}$ is an open covering of B. In [17], from $M \in \operatorname{Sq}(R)$, the second author constructed a sheaf M^{+}on B. (For the sheaf theory used below, consult [7].) More precisely, the assignment

$$
\Gamma\left(U_{F}, M^{+}\right)=M_{\mathbf{c}(F)}
$$

for each $F \neq\{0\}$ and the map

$$
\varphi_{F, F^{\prime}}^{M}: \Gamma\left(U_{F^{\prime}}, M^{+}\right)=M_{\mathbf{c}\left(F^{\prime}\right)} \rightarrow M_{\mathbf{c}(F)}=\Gamma\left(U_{F}, M^{+}\right)
$$

for $F, F^{\prime} \neq\{0\}$ with $F \supset F^{\prime}$ (equivalently, $U_{F^{\prime}} \supset U_{F}$) defines a sheaf. Note that M^{+}is a constructible sheaf with respect to the cell decomposition $B=\bigcup_{F \in \mathbf{L}}|F|$. In fact, for all $\{0\} \neq F \in \mathbf{L}$, the restriction $\left.M^{+}\right|_{|F|}$ of M^{+}to $|F| \subset B$ is a constant sheaf with coefficients in $M_{\mathbf{c}(F)}$. Note that $M_{\mathbf{0}}$ is "irrelevant" to M^{+}, where $\mathbf{0}$ denotes $(0,0, \ldots, 0) \in \mathbb{Z}^{n}$.

It is easy to see that $K[\Delta]^{+} \cong j_{*} \underline{K}_{|\Delta|}$, where $\underline{K}_{|\Delta|}$ is the constant sheaf on $|\Delta|$ with coefficients in K, and j denotes the embedding map $|\Delta| \hookrightarrow B$. Similarly, we have that $\left(\omega_{R}\right)^{+} \cong$ $h!\underline{K}_{B^{\circ}}$, where $\underline{K}_{B^{\circ}}$ is the constant sheaf on the relative interior B° of B, and h denotes the embedding map $B^{\circ} \hookrightarrow B$. Note that $\left(\omega_{R}\right)^{+}$is the orientation sheaf of B over K.

Theorem 2.7. (See [17, Theorem 3.3].) For $M \in \operatorname{Sq}(R)$, we have an isomorphism

$$
H^{i}\left(B ; M^{+}\right) \cong\left[H_{\mathfrak{m}}^{i+1}(M)\right]_{\mathbf{0}} \quad \text { for all } i \geqslant 1
$$

and an exact sequence

$$
0 \rightarrow\left[H_{\mathfrak{m}}^{0}(M)\right]_{\mathbf{0}} \rightarrow M_{\mathbf{0}} \rightarrow H^{0}\left(B ; M^{+}\right) \rightarrow\left[H_{\mathfrak{m}}^{1}(M)\right]_{\mathbf{0}} \rightarrow 0
$$

In particular, we have $\left[H_{\mathfrak{m}}^{i+1}(K[\Delta])\right]_{0} \cong \tilde{H}^{i}(|\Delta| ; K)$ for all $i \geqslant 0$, where $\tilde{H}^{i}(|\Delta| ; K)$ denotes the ith reduced cohomology of $|\Delta|$ with coefficients in K.

Let $\Delta \subset \mathbf{L}$ be an order ideal and $X:=|\Delta|$. Then X admits Verdier's dualizing complex $\mathcal{D}_{X}^{\bullet}$, which is a complex of sheaves of K-vector spaces. For example, $\mathcal{D}_{B}^{\bullet}$ is quasi-isomorphic to $\left(\omega_{R}\right)^{+}[n-1]$.

Theorem 2.8. (See [17, Theorem 4.2].) With the above notation, if $\operatorname{ann}(M) \supset I_{\Delta}$ (equivalently, $\left.\operatorname{supp}\left(M^{+}\right):=\left\{x \in B \mid\left(M^{+}\right)_{x} \neq 0\right\} \subset X\right)$, then we have

$$
\operatorname{supp}\left(\operatorname{Ext}_{R}^{i}\left(M, \omega_{R}\right)^{+}\right) \subset X \quad \text { and }\left.\quad \operatorname{Ext}_{R}^{i}\left(M, \omega_{R}\right)^{+}\right|_{X} \cong \mathcal{E} x t^{i-n+1}\left(\left.M^{+}\right|_{X}, \mathcal{D}_{X}^{\bullet}\right)
$$

Theorem 2.9. Let M be a squarefree R-module with $M \neq 0$ and $\left[H_{\mathfrak{m}}^{1}(M)\right]_{\mathbf{0}}=0$, and X the closure of $\operatorname{supp}\left(M^{+}\right)$. Then $\operatorname{ld} . \operatorname{irr}_{R}(M)$ only depends on the sheaf $\left.M^{+}\right|_{X}$ (also independent from R).

Proof. We use Corollary 2.5. In the notation there, the case when $i=0$ is always unnecessary to check. Moreover, by the present assumption, we have $\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-1}\left(M, \omega_{R}\right)\right) \geqslant 1$ (in fact, $\operatorname{Ext}_{R}^{n-1}\left(M, \omega_{R}\right)$ is either the 0 module, or a 1 -dimensional Cohen-Macaulay module). So we may assume that $i>1$.

Recall that

$$
\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right)\right)=\min \left\{j \mid \operatorname{Ext}_{R}^{n-j}\left(\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right), \omega_{R}\right) \neq 0\right\} .
$$

By Theorem 2.8, $\left[\operatorname{Ext}_{R}^{n-j}\left(\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right), \omega_{R}\right)\right]_{\mathbf{a}}$ can be determined by $\left.M^{+}\right|_{X}$ for all i, j and all $\mathbf{a} \neq 0$. If $j>1$, then $\left[\operatorname{Ext}_{R}^{n-j}\left(\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right), \omega_{R}\right)\right]_{\mathbf{0}}$ is isomorphic to

$$
\begin{aligned}
{\left[H_{\mathfrak{m}}^{j}\left(\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right)\right)\right]_{\mathbf{0}}^{*} } & \cong H^{j-1}\left(B ; \operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right)^{+}\right)^{*} \\
& \cong H^{j-1}\left(X ; \mathcal{E x t} t^{-i-1}\left(\left.M^{+}\right|_{X} ; \mathcal{D}_{X}^{\bullet}\right)\right)^{*}
\end{aligned}
$$

(the first and the second isomorphisms follow from Theorems 2.7 and 2.8, respectively), and determined by $\left.M^{+}\right|_{X}$. So only $\left[\operatorname{Ext}_{R}^{n-j}\left(\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right), \omega_{R}\right)\right]_{\mathbf{0}}$ for $j=0,1$ remain. As above, they are isomorphic to $\left[H_{\mathfrak{m}}^{j}\left(\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right)\right)\right]_{\mathbf{0}}^{*}$. But, by [19, Lemma 5.11], we can compute $\left[H_{\mathfrak{m}}^{j}\left(\operatorname{Ext}_{R}^{n-i}\left(M, \omega_{R}\right)\right)\right]_{\mathbf{0}}$ for $i>1$ and $j=0,1$ from the sheaf $\left.M^{+}\right|_{X}$. So we are done.

Theorem 2.10. For an order ideal $\Delta \subset \mathbf{L}$ with $\Delta \neq \emptyset$, $\operatorname{ld.irr}_{R}(K[\Delta])$ depends only on the topological space $|\Delta|$.

Note that ld.irr ${ }_{R}(K[\Delta])$ may depend on $\operatorname{char}(K)$. For example, if $|\Delta|$ is homeomorphic
 $\operatorname{char}(K)=2$.

Similarly, some other invariants and conditions (e.g., the Cohen-Macaulay property of $K[\Delta]$) studied in this paper depend on $\operatorname{char}(K)$. But, since we fix the base field K, we always omit the phrase "over K ".

Proof. If $|\Delta|$ is not connected, then $\left[H_{\mathfrak{m}}^{1}(K[\Delta])\right]_{\mathbf{0}} \neq 0$ by Theorem 2.7, and we cannot use Theorem 2.9 directly. But even in this case, $\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-i}\left(K[\Delta], \omega_{R}\right)\right)$ can be computed for all $i \neq 1$ by the same way as in Theorem 2.9. In particular, they only depend on $|\Delta|$. So the assertion follows from the next lemma.

Lemma 2.11. We have $\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-1}\left(K[\Delta], \omega_{R}\right)\right) \in\{0,1,+\infty\}$, and $\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-1}\left(K[\Delta], \omega_{R}\right)\right)=0 \quad$ if and only if $\quad\left|\Delta^{\prime}\right|$ is not connected.

Here $\Delta^{\prime}:=\Delta \backslash\{F \mid F$ is a maximal element of Δ and $\operatorname{dim}|F|=0\}$.
Proof. Since $\operatorname{dim}_{R} \operatorname{Ext}_{R}^{n-1}\left(K[\Delta], \omega_{R}\right) \leqslant 1$, the first statement is clear. If $\operatorname{dim}|\Delta| \leqslant 0$, then $\left|\Delta^{\prime}\right|=\emptyset$ and $\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-1}\left(K[\Delta], \omega_{R}\right)\right) \geqslant 1$. So, to see the second statement, we may assume that $\operatorname{dim}|\Delta| \geqslant 1$. Set $J:=I_{\Delta^{\prime}} / I_{\Delta}$ to be an ideal of $K[\Delta]$. Note that either J is a 1-dimensional Cohen-Macaulay module or $J=0$. From the short exact sequence $0 \rightarrow J \rightarrow K[\Delta] \rightarrow K\left[\Delta^{\prime}\right] \rightarrow$ 0 , we have an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{R}^{n-1}\left(K\left[\Delta^{\prime}\right], \omega_{R}\right) \rightarrow \operatorname{Ext}_{R}^{n-1}\left(K[\Delta], \omega_{R}\right) \rightarrow \operatorname{Ext}_{R}^{n-1}\left(J, \omega_{R}\right) \rightarrow 0
$$

Since $\operatorname{Ext}_{R}^{n-1}\left(J, \omega_{R}\right)$ has positive depth,

$$
\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-1}\left(K\left[\Delta^{\prime}\right], \omega_{R}\right)\right)=0
$$

if and only if $\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-1}\left(K[\Delta], \omega_{R}\right)\right)=0$. But, since $K\left[\Delta^{\prime}\right]$ does not have 1-dimensional associated primes, $\operatorname{Ext}_{R}^{n-1}\left(K\left[\Delta^{\prime}\right], \omega_{R}\right)$ is an artinian module. Hence we have the following.

$$
\begin{aligned}
\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-1}\left(K\left[\Delta^{\prime}\right], \omega_{R}\right)\right)=0 & \Longleftrightarrow\left[\operatorname{Ext}_{R}^{n-1}\left(K\left[\Delta^{\prime}\right], \omega_{R}\right)\right]_{\mathbf{0}} \neq 0 \\
& \Longleftrightarrow\left[H_{\mathfrak{m}}^{1}\left(K\left[\Delta^{\prime}\right]\right)\right]_{\mathbf{0}}=\tilde{H}^{0}\left(\left|\Delta^{\prime}\right| ; K\right) \neq 0 \\
& \Longleftrightarrow\left|\Delta^{\prime}\right| \text { is not connected. }
\end{aligned}
$$

3. Linearity defects of symmetric and exterior face rings

Let $S:=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring, and consider its natural \mathbb{Z}^{n}-grading. Since $S=$ $K\left[\mathbb{N}^{n}\right]$ is a normal semigroup ring, we can use the notation and the results in the previous section.

Now we introduce some conventions which are compatible with the previous notation. Let $\mathbf{e}_{i}:=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{n}$ be the i th unit vector, and \mathbf{P} the cone spanned by $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$. We identify a face F of \mathbf{P} with the subset $\left\{i \mid \mathbf{e}_{i} \in F\right\}$ of $[n]:=\{1,2, \ldots, n\}$. Hence the set \mathbf{L} of nonempty faces of \mathbf{P} can be identified with the power set $2^{[n]}$ of $[n]$. We say $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in$ \mathbb{N}^{n} is squarefree, if $a_{i}=0,1$ for all i. A squarefree vector $\mathbf{a} \in \mathbb{N}^{n}$ will be identified with the subset $\left\{i \mid a_{i}=1\right\}$ of $[n]$. Recall that we took a vector $\mathbf{c}(F) \in C$ for each $F \in \mathbf{L}$ in the previous section. Here we assume that $\mathbf{c}(F)$ is the squarefree vector corresponding to $F \in \mathbf{L} \cong 2^{[n]}$. So, for a \mathbb{Z}^{n}-graded S-module M, we simply denote $M_{\mathbf{c}(F)}$ by M_{F}. In the first principle, we regard F as a subset of $[n]$, or a squarefree vector in \mathbb{N}^{n}, rather than the corresponding face of \mathbf{P}. For example, we write $P_{F}=\left(x_{i} \mid i \notin F\right), K[F] \cong K\left[x_{i} \mid i \in F\right]$. And $S(-F)$ denotes the rank 1 free S-module $S(-\mathbf{a})$, where $\mathbf{a} \in \mathbb{N}^{n}$ is the squarefree vector corresponding to F.

Squarefree S-modules are defined by the same way as Definition 2.1. Note that the free module $S(-\mathbf{a}), \mathbf{a} \in \mathbb{Z}^{n}$, is squarefree if and only if \mathbf{a} is squarefree. Let ${ }^{*} \bmod S($ resp. $\mathrm{Sq}(S))$ be the category of finitely generated \mathbb{Z}^{n}-graded S-modules (resp. squarefree S-modules). Let P_{\bullet} be a \mathbb{Z}^{n}-graded minimal free resolution of $M \in{ }^{*} \bmod S$. Then M is squarefree if and only if each P_{i} is a direct sum of copies of $S(-F)$ for various $F \subset[n]$. In the present case, an order ideal Δ of $\mathbf{L}\left(\cong 2^{[n]}\right)$ is essentially a simplicial complex, and the ring $K[\Delta]$ defined in the previous section is nothing other than the Stanley-Reisner ring (cf. [1,14]) of Δ.

Let $E=\bigwedge\left\langle y_{1}, \ldots, y_{n}\right\rangle$ be the exterior algebra over K. Under the Bernstein-Gel'fandGel'fand correspondence (cf. [3]), E is the counter part of S. We regard E as a \mathbb{Z}^{n}-graded ring
by $\operatorname{deg} y_{i}=\mathbf{e}_{i}=\operatorname{deg} x_{i}$ for each i. Clearly, any monomial ideal of E is "squarefree", and of the form

$$
J_{\Delta}:=\left(\prod_{i \in F} y_{i} \mid F \subset[n], F \notin \Delta\right)
$$

for a simplicial complex $\Delta \subset 2^{[n]}$. We say $K\langle\Delta\rangle:=E / J_{\Delta}$ is the exterior face ring of Δ.
Let ${ }^{*} \bmod E$ be the category of finitely generated \mathbb{Z}^{n}-graded E-modules and degree preserving E-homomorphisms. Note that, for graded E-modules, we do not have to distinguish left modules from right ones. Hence

$$
\mathbf{D}_{E}(-):=\bigoplus_{\mathbf{a} \in \mathbb{Z}^{n}} \operatorname{Hom}^{*} \bmod E(-, E(\mathbf{a}))
$$

gives an exact contravariant functor from $* \bmod E$ to itself satisfying $\mathbf{D}_{E} \circ \mathbf{D}_{E}=\mathrm{Id}$.
Definition 3.1. (See Römer [11].) We say $N \in{ }^{*} \bmod E$ is squarefree, if $N=\bigoplus_{F \subset[n]} N_{F}$ (i.e., if $\mathbf{a} \in \mathbb{Z}^{n}$ is not squarefree, then $N_{\mathbf{a}}=0$).

An exterior face ring $K\langle\Delta\rangle$ is a squarefree E-module. But, since a free module $E(\mathbf{a})$ is not squarefree for $\mathbf{a} \neq 0$, the syzygies of a squarefree E-module are not squarefree. Let $\mathrm{Sq}(E)$ be the full subcategory of $* \bmod E$ consisting of squarefree modules. If N is a squarefree E-module, then so is $\mathbf{D}_{E}(N)$. That is, \mathbf{D}_{E} gives a contravariant functor from $\operatorname{Sq}(E)$ to itself.

We have functors $\mathcal{S}: \mathrm{Sq}(E) \rightarrow \mathrm{Sq}(S)$ and $\mathcal{E}: \mathrm{Sq}(S) \rightarrow \mathrm{Sq}(E)$ giving an equivalence $\mathrm{Sq}(S) \cong$ $\operatorname{Sq}(E)$. Here $\mathcal{S}(N)_{F}=N_{F}$ for $N \in \operatorname{Sq}(E)$ and $F \subset[n]$, and the multiplication map $\mathcal{S}(N)_{F} \ni$ $z \mapsto x_{i} z \in \mathcal{S}(N)_{F \cup\{i\}}$ for $i \notin F$ is given by

$$
\mathcal{S}(N)_{F}=N_{F} \ni z \mapsto(-1)^{\alpha(i, F)} y_{i} z \in N_{F \cup\{i\}}=\mathcal{S}(N)_{F \cup\{i\}},
$$

where $\alpha(i, F)=\#\{j \in F \mid j<i\}$. For example, $\mathcal{S}(K\langle\Delta\rangle) \cong K[\Delta]$. See [11] for detail.
Note that $\mathbf{A}:=\mathcal{S} \circ \mathbf{D}_{E} \circ \mathcal{E}$ is an exact contravariant functor from $\mathrm{Sq}(S)$ to itself satisfying $\mathbf{A} \circ$ $\mathbf{A}=$ Id. It is easy to see that $\mathbf{A}(K[F]) \cong S\left(-F^{\mathrm{c}}\right)$, where $F^{\mathrm{c}}:=[n] \backslash F$. We also have $\mathbf{A}(K[\Delta]) \cong$ $I_{\Delta^{\vee}}$, where

$$
\Delta^{\vee}:=\left\{F \subset[n] \mid F^{c} \notin \Delta\right\}
$$

is the Alexander dual complex of Δ. Since \mathbf{A} is exact, it exchanges a (minimal) free resolution with a (minimal) irreducible resolution.

Eisenbud et al. [2,3] introduced the notion of the linear strands and the linear part of a minimal free resolution of a graded S-module. Let $P_{\bullet}: \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0$ be a \mathbb{Z}^{n}-graded minimal S-free resolution of $M \in{ }^{*} \bmod S$. We have natural numbers $\beta_{i, \mathbf{a}}(M)$ for $i \in \mathbb{N}$ and $\mathbf{a} \in \mathbb{Z}^{n}$ such that $P_{i}=\bigoplus_{\mathbf{a} \in \mathbb{Z}^{n}} S(-\mathbf{a})^{\beta_{i, \mathbf{a}}(M)}$. We call $\beta_{i, \mathbf{a}}(M)$ the graded Betti numbers of M. Set $|\mathbf{a}|=\sum_{i=1}^{n} a_{i}$ for $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$. For each $l \in \mathbb{Z}$, we define the l-linear strand $\operatorname{lin}_{l}\left(P_{\bullet}\right)$ of P_{\bullet} as follows: The term $\operatorname{lin}_{l}\left(P_{\bullet}\right)_{i}$ of homological degree i is

$$
\bigoplus_{|\mathbf{a}|=l+i} S(-\mathbf{a})^{\beta_{i, \mathbf{a}}(M)}
$$

which is a direct summand of P_{i}, and the differential $\operatorname{lin}_{l}\left(P_{\bullet}\right)_{i} \rightarrow \operatorname{lin}_{l}\left(P_{\mathbf{\bullet}}\right)_{i-1}$ is the corresponding component of the differential $P_{i} \rightarrow P_{i-1}$ of $P_{\mathbf{\bullet}}$. By the minimality of P_{\bullet}, we can easily verify that $\operatorname{lin}_{l}\left(P_{\bullet}\right)$ are chain complexes (see also [2, §7A]). We call $\operatorname{lin}\left(P_{\bullet}\right):=\bigoplus_{l \in \mathbb{Z}} \operatorname{lin}_{l}\left(P_{\bullet}\right)$ the linear part of P_{\bullet}. Note that the differential maps of $\operatorname{lin}\left(P_{\bullet}\right)$ are represented by matrices of linear forms. We call

$$
\operatorname{ld}_{S}(M):=\max \left\{i \mid H_{i}\left(\operatorname{lin}\left(P_{\bullet}\right)\right) \neq 0\right\}
$$

the linearity defect of M.
Sometimes, we regard $M \in{ }^{*} \bmod S$ as a \mathbb{Z}-graded module by $M_{j}=\bigoplus_{|\mathbf{a}|=j} M_{\mathbf{a}}$. In this case, we set $\beta_{i, j}(M):=\sum_{|\mathbf{a}|=j} \beta_{i, \mathbf{a}}(M)$. Then $\operatorname{lin}_{l}\left(P_{\bullet}\right)_{i}=S(-l-i)^{\beta_{i, l+i}(M)}$.

Remark 3.2. For $M \in * \bmod S$, it is clear that $\operatorname{ld}_{S}(M) \leqslant \operatorname{proj} \cdot \operatorname{dim}_{S}(M) \leqslant n$, and there are many examples attaining the equalities. In fact, $\operatorname{ld}_{S}\left(S /\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)\right)=n$. But if $M \in \operatorname{Sq}(S)$, then we always have $\operatorname{ld}_{S}(M) \leqslant n-1$. In fact, for a squarefree module M, $\operatorname{proj}^{\left(\operatorname{dim}_{S}(M)=n \text {, if and }\right.}$ only if $\operatorname{depth}_{S} M=0$, if and only if $M \cong K \oplus M^{\prime}$ for some $M^{\prime} \in \operatorname{Sq}(S)$. But $\operatorname{ld}_{S}(K)=0$ and $\operatorname{ld}_{S}\left(M^{\prime} \oplus K\right)=\operatorname{ld}_{S}\left(M^{\prime}\right)$. So we may assume that proj. $\operatorname{dim}_{S} M^{\prime} \leqslant n-1$.

Proposition 3.3. Let $M \in \mathrm{Sq}(S)$, and P_{\bullet} its minimal graded free resolution. We have

$$
\max \left\{i \mid H_{i}\left(\operatorname{lin}_{l}\left(P_{\bullet}\right)\right) \neq 0\right\}=n-l-\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{l}(\mathbf{A}(M), S)\right)
$$

and hence

$$
\operatorname{ld}_{S}(M)=\max \left\{i-\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{n-i}(\mathbf{A}(M), S)\right) \mid 0 \leqslant i \leqslant n\right\} .
$$

Proof. Note that $I^{\bullet}:=\mathbf{A}\left(P_{\bullet}\right)$ is a minimal irreducible resolution of $\mathbf{A}(M)$. Moreover, we have $\mathbf{A}\left(\operatorname{lin}_{l}\left(P_{\bullet}\right)\right) \cong \operatorname{lin}_{n-l}\left(I^{\bullet}\right)$. Since \mathbf{A} is exact,

$$
\max \left\{i \mid H_{i}\left(\operatorname{lin}_{l}\left(P_{\bullet}\right)\right) \neq 0\right\}=\max \left\{i \mid H^{i}\left(\operatorname{lin}_{n-l}\left(I^{\bullet}\right)\right) \neq 0\right\}
$$

and hence

$$
\begin{equation*}
\operatorname{ld}_{S}(M)=\operatorname{ld} \cdot \operatorname{irr}_{S}(\mathbf{A}(M)) \tag{3.1}
\end{equation*}
$$

Hence the assertions follow from Corollary 2.5 (note that $S \cong \omega_{S}$ as underlying modules).
For $N \in{ }^{*} \bmod E$, we have a \mathbb{Z}^{n}-graded minimal E-free resolution P_{\bullet} of N. By the similar way to the S-module case, we can define the linear part $\operatorname{lin}\left(P_{\bullet}\right)$ of P_{\bullet}, and set $\operatorname{ld}_{E}(N):=\max \{i \mid$ $\left.H_{i}\left(\operatorname{lin}\left(P_{\bullet}\right)\right) \neq 0\right\}$. ($\operatorname{In}[12,18], \operatorname{ld}_{E}(N)$ is denoted by $\operatorname{lpd}(N)$. "lpd" is an abbreviation for "linear part dominate".) In [3, Theorem 3.1], Eisenbud et al. showed that $\operatorname{ld}_{E}(N)<\infty$ for all $N \in$ ${ }^{*} \bmod E$. Since proj. $\operatorname{dim}_{E}(N)=\infty$ in most cases, this is a strong result. If $n \geqslant 2$, then we have $\sup \left\{\operatorname{ld}_{E}(N) \mid N \in{ }^{*} \bmod E\right\}=\infty$. In fact, since E is selfinjective, we can take "cosyzygies". But, if $N \in \operatorname{Sq}(E)$, then $\operatorname{ld}_{E}(N)$ behaves quite nicely.

Theorem 3.4. For $N \in \operatorname{Sq}(E)$, we have $\operatorname{ld}_{E}(N)=\operatorname{ld}_{S}(\mathcal{S}(N)) \leqslant n-1$. In particular, for a simplicial complex $\Delta \subset 2^{[n]}$, we have $\operatorname{ld}_{E}(K\langle\Delta\rangle)=\operatorname{ld}_{S}(K[\Delta])$.

Proof. Using the Bernstein-Gel'fand-Gel'fand correspondence, the second author described $\operatorname{ld}_{E}(N)$ in [18, Lemma 4.12]. This description is the first equality of the following computation, which proves the assertion.

$$
\begin{aligned}
\operatorname{ld}_{E}(N) & =\max \left\{i-\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{n-i}\left(\mathcal{S} \circ \mathbf{D}_{E}(N), S\right)\right) \mid 0 \leqslant i \leqslant n\right\} \quad(\text { by }[18]) \\
& =\max \left\{i-\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{n-i}(\mathbf{A} \circ \mathcal{S}(N), S)\right) \mid 0 \leqslant i \leqslant n\right\} \quad \text { (see below) } \\
& =\operatorname{ld}_{S}(\mathcal{S}(N)) \quad(\text { by Proposition 3.3). }
\end{aligned}
$$

Here the second equality follows from the isomorphisms $\mathcal{S} \circ \mathbf{D}_{E}(N) \cong \mathcal{S} \circ \mathbf{D}_{E} \circ \mathcal{E} \circ \mathcal{S}(N) \cong$ A $\circ \mathcal{S}(N)$.

Remark 3.5. Herzog and Römer showed that $\operatorname{ld}_{E}(N) \leqslant \operatorname{proj} \cdot \operatorname{dim}_{S}(\mathcal{S}(N))$ for $N \in \operatorname{Sq}(E)$ [12, Corollary 3.3.5]. Since $\operatorname{ld}_{S}(\mathcal{S}(N)) \leqslant \operatorname{proj} \cdot \operatorname{dim}_{S}(\mathcal{S}(N))$ (the inequality is strict quite often), Theorem 3.4 refines their result. Our equality might follow from the argument in [12], which constructs a minimal E-free resolution of N from a minimal S-free resolution of $\mathcal{S}(N)$. But it seems that certain amount of computation will be required.

Theorem 3.4 suggests that we may set

$$
\operatorname{ld}(\Delta):=\operatorname{ld}_{S}(K[\Delta])=\operatorname{ld}_{E}(K\langle\Delta\rangle)
$$

Theorem 3.6. If $I_{\Delta} \neq(0)$ (equivalently, $\Delta \neq 2^{[n]}$), then $\operatorname{ld}_{S}\left(I_{\Delta}\right)$ is a topological invariant of the geometric realization $\left|\Delta^{\vee}\right|$ of the Alexander dual Δ^{\vee} of Δ. If $\Delta \neq 2^{T}$ for any $T \subset[n]$, then $\operatorname{ld}(\Delta)$ is also a topological invariant of $\left|\Delta^{\vee}\right|$ (also independent from the number $n=\operatorname{dim} S$).

Proof. Since $\mathbf{A}\left(I_{\Delta}\right)=K\left[\Delta^{\vee}\right]$ and $\Delta^{\vee} \neq \emptyset$, the first assertion follows from Theorem 2.10 and the equality (3.1) in the proof of Proposition 3.3.

It is easy to see that $\Delta \neq 2^{T}$ for any T if and only if $\operatorname{ld}(\Delta) \geqslant 1$. If this is the case, $\operatorname{ld}(\Delta)=$ $\operatorname{ld}_{S}\left(I_{\Delta}\right)+1$, and the second assertion follows from the first.

Remark 3.7. (1) For the first statement of Theorem 3.6, the assumption that $I_{\Delta} \neq(0)$ is necessary. In fact, if $I_{\Delta}=(0)$, then $\Delta=2^{[n]}$ and $\Delta^{\vee}=\emptyset$. On the other hand, if we set $\Gamma:=2^{[n]} \backslash[n]$, then $\Gamma^{\vee}=\{\emptyset\}$ and $\left|\Gamma^{\vee}\right|=\emptyset=\left|\Delta^{\vee}\right|$. In view of Proposition 3.3, it might be natural to set $\operatorname{ld}_{S}\left(I_{\Delta}\right)=\operatorname{ld}_{S}((0))=-\infty$. But, $I_{\Gamma}=\omega_{S}$ and hence $\operatorname{ld}_{S}\left(I_{\Gamma}\right)=0$. One might think it is better to set $\operatorname{ld}_{S}((0))=0$ to avoid the problem. But this convention does not help so much, if we consider $K[\Delta]$ and $K[\Gamma]$. In fact, $\operatorname{ld}_{S}(K[\Delta])=\operatorname{ld}_{S}(S)=0$ and $\operatorname{ld}_{S}(K[\Gamma])=\operatorname{ld}_{S}\left(S / \omega_{S}\right)=1$.
(2) Let us think about the second statement of the theorem. Even if we forget the assumption that $\Delta \neq 2^{T}, \operatorname{ld}(\Delta)$ is almost a topological invariant. Under the assumption that $I_{\Delta} \neq 0$, we have the following.

- $\operatorname{ld}(\Delta) \leqslant 1$ if and only if $K\left[\Delta^{\vee}\right]$ is sequentially Cohen-Macaulay. Hence we can determine whether $\operatorname{ld}(\Delta) \leqslant 1$ from the topological space $\left|\Delta^{\vee}\right|$.
- $\operatorname{ld}(\Delta)=0$, if and only if all facets of Δ^{\vee} have dimension $n-2$, if and only if $\left|\Delta^{\vee}\right|$ is Cohen-Macaulay and has dimension $n-2$.

Hence, if we forget the number " n ", we cannot determine whether $\operatorname{ld}(\Delta)=0$ from $\left|\Delta^{\vee}\right|$.

4. An upper bound of linearity defects

In the previous section, we have seen that $\operatorname{ld}_{E}(N)=\operatorname{ld}_{S}(\mathcal{S}(N))$ for $N \in \operatorname{Sq}(E)$, in particular $\operatorname{ld}_{E}(K\langle\Delta\rangle)=\operatorname{ld}_{S}(K[\Delta])$ for a simplicial complex Δ. In this section, we will give an upper bound of them, and see that the bound is sharp.

For $0 \neq N \in * \bmod E$, regarding N as a \mathbb{Z}-graded module, we set indeg ${ }_{E}(N):=\min \left\{i \mid N_{i} \neq\right.$ $0\}$, which is called the initial degree of N, and $\operatorname{indeg}_{S}(M)$ is similarly defined as indeg ${ }_{S}(M):=$ $\min \left\{i \mid M_{i} \neq 0\right\}$ for $0 \neq M \in{ }^{*} \bmod S$. If $\Delta \neq 2^{[n]}$ (equivalently $I_{\Delta} \neq 0$ or $J_{\Delta} \neq 0$), then we have $\operatorname{indeg}_{S}\left(I_{\Delta}\right)=\operatorname{indeg}_{E}\left(J_{\Delta}\right)=\min \{\sharp F \mid F \subset[n], F \notin \Delta\}$, where $\sharp F$ denotes the cardinal number of F. So we set

$$
\operatorname{indeg}(\Delta):=\operatorname{indeg}_{S}\left(I_{\Delta}\right)=\operatorname{indeg}_{E}\left(J_{\Delta}\right)
$$

Since $\operatorname{ld}\left(2^{[n]}\right)=\operatorname{ld}_{S}(S)=\operatorname{ld}_{E}(E)=0$ holds, we henceforth exclude this trivial case; we assume that $\Delta \neq 2^{[n]}$.

We often make use of the following facts:
Lemma 4.1. Let $0 \neq M \in * \bmod S$ and let P_{\bullet} be a minimal graded free resolution of M. Then
(1) $\operatorname{lin}_{i}\left(P_{\bullet}\right)=0$ for all $i<\operatorname{indeg}_{S}(M)$, i.e., there are only l-linear strands with $l \geqslant \operatorname{indeg}_{S}(M)$ in P_{\bullet};
(2) $\operatorname{lin}_{\text {indeg }_{S}(M)}\left(P_{\bullet}\right)$ is a subcomplex of P_{\bullet};
(3) if $M \in \operatorname{Sq}(S)$, then $\operatorname{lin}\left(P_{\bullet}\right)=\bigoplus_{0 \leqslant l \leqslant n} \operatorname{lin}_{l}\left(P_{\bullet}\right)$, and $\operatorname{lin}_{l}\left(P_{\bullet}\right)_{i}=0$ for all $i>n-l$ and all $0 \leqslant l \leqslant n$, where the subscript i is a homological degree.

Proof. (1) and (2) are clear. (3) holds from the fact that $P_{i} \cong \bigoplus_{F \subset[n]} S(-F)^{\beta_{i, F}}$.
Theorem 4.2. For $0 \neq N \in \operatorname{Sq}(E)$, it follows that

$$
\operatorname{ld}_{E}(N) \leqslant \max \left\{0, n-\operatorname{indeg}_{E}(N)-1\right\} .
$$

By Theorem 3.4 this is equivalent to say that for $M \in \operatorname{Sq}(S)$,

$$
\operatorname{ld}_{S}(M) \leqslant \max \left\{0, n-\operatorname{indeg}_{S}(M)-1\right\}
$$

Proof. It suffices to show the assertion for $M \in \operatorname{Sq}(S)$. Set $\operatorname{indeg}_{S}(M)=d$ and let P_{\bullet} be a minimal graded free resolution of M. The case $d=n$ is trivial by Lemma 4.1 (1), (3). Assume that $d \leqslant n-1$. Observing that $\operatorname{lin}_{l}\left(P_{\bullet}\right)_{i}=S(-l-i)^{\beta_{i, i+l}}$, where $\beta_{i, i+l}$ are \mathbb{Z}-graded Betti numbers of M, Lemma 4.1 (1), (3) implies that the last few steps of P_{\bullet} are of the form

$$
0 \rightarrow S(-n)^{\beta_{n-d, n}} \rightarrow S(-n)^{\beta_{n-d-1, n}} \oplus S(-n+1)^{\beta_{n-d-1, n-1}} \rightarrow \cdots
$$

Hence $\operatorname{lin}_{d}\left(P_{\bullet}\right)_{n-d}=S(-n)^{\beta_{n-d, n}}=P_{n-d}$. Since $\operatorname{lin}_{d}\left(P_{\bullet}\right)$ is a subcomplex of the acyclic complex P_{\bullet} by Lemma 4.1(2), we have $H_{n-d}\left(\operatorname{lin}_{d}\left(P_{\bullet}\right)\right)=0$, so that $\operatorname{ld}_{S}(M) \leqslant n-d-1$.

Note that $J_{\Delta} \in \operatorname{Sq}(E)$ (resp. $I_{\Delta} \in \operatorname{Sq}(S)$). Since $\operatorname{ld}(\Delta) \leqslant \operatorname{ld}_{E}\left(J_{\Delta}\right)+1$ (resp. $\operatorname{ld}(\Delta) \leqslant$ $\left.\operatorname{ld}_{S}\left(I_{\Delta}\right)+1\right)$ holds, we have a bound for $\operatorname{ld}(\Delta)$, applying Theorem 4.2 to J_{Δ} (resp. $\left.I_{\Delta}\right)$.

Corollary 4.3. For a simplicial complex Δ on $[n]$, we have

$$
\operatorname{ld}(\Delta) \leqslant \max \{1, n-\operatorname{indeg}(\Delta)\}
$$

Let Δ, Γ be simplicial complexes on $[n]$. We denote $\Delta * \Gamma$ for the join

$$
\{F \cup G \mid F \in \Delta, G \in \Gamma\}
$$

of Δ and Γ, and for our convenience, set

$$
\operatorname{ver}(\Delta):=\{v \in[n] \mid\{v\} \in \Delta\} .
$$

Lemma 4.4. Let Δ be a simplicial complex on $[n]$. Assume that $\operatorname{indeg}(\Delta)=1$, or equivalently $\operatorname{ver}(\Delta) \neq[n]$. Then we have

$$
\operatorname{ld}(\Delta)=\operatorname{ld}(\Delta *\{v\})
$$

for $v \in[n] \backslash \operatorname{ver}(\Delta)$.
Proof. We may assume that $v=1$. Let $P_{\mathbf{\bullet}}$ be a minimal graded free resolution of $K[\Delta *\{1\}]$ and $\mathcal{K}\left(x_{1}\right)$ the Koszul complex

$$
0 \rightarrow S(-1) \xrightarrow{x_{1}} S \rightarrow 0
$$

with respect to x_{1}. Consider the mapping cone $P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)$ of the map $P_{\bullet}(-1) \xrightarrow{x_{1}} P_{\bullet}$. There is the short exact sequence

$$
0 \rightarrow P_{\bullet} \rightarrow P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right) \rightarrow P_{\bullet}(-1)[-1] \rightarrow 0,
$$

whence we have $H_{i}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)=0$ for all $i \geqslant 2$ and the exact sequence

$$
0 \rightarrow H_{1}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right) \rightarrow H_{0}\left(P_{\bullet}(-1)\right) \xrightarrow{x_{1}} H_{0}\left(P_{\bullet}\right)
$$

But since $H_{0}\left(P_{\bullet}\right)=K[\Delta *\{1\}]$ and x_{1} is regular on it, we have $H_{1}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)=0$. Thus $P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)$ is acyclic and hence a minimal graded free resolution of $K[\Delta]$. Note that $\operatorname{lin}\left(P_{\bullet} \otimes_{S}\right.$ $\left.\mathcal{K}\left(x_{1}\right)\right)=\operatorname{lin}\left(P_{\bullet}\right) \otimes_{S} \mathcal{K}\left(x_{1}\right)$: in fact, we have

$$
\begin{aligned}
\operatorname{lin}_{l}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)_{i} & =\operatorname{lin}_{l}\left(P_{\bullet} \otimes_{S} S\right)_{i} \oplus \operatorname{lin}_{l}\left(P_{\bullet}[-1] \otimes_{S} S(-1)\right)_{i} \\
& =\left(\operatorname{lin}_{l}\left(P_{\bullet}\right)_{i} \otimes_{S} S\right) \oplus\left(\operatorname{lin}_{l}\left(P_{\bullet}\right)_{i-1} \otimes_{S} S(-1)\right) \\
& =\left(\operatorname{lin}_{l}\left(P_{\bullet}\right) \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)_{i},
\end{aligned}
$$

where the subscripts i denote homological degrees, and the differential map

$$
\operatorname{lin}_{l}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)_{i} \rightarrow \operatorname{lin}_{l}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)_{i-1}
$$

is composed by $\partial_{i}^{\langle l\rangle},-\partial_{i-1}^{\langle l\rangle}$, and the multiplication map by x_{1}, where $\partial_{i}^{\langle l\rangle}$ (resp. $\partial_{i-1}^{\langle l\rangle}$) is the i th (resp. $(i-1)$ st) differential map of the l-linear strand of P_{\bullet}. Hence there is the short exact sequence

$$
0 \rightarrow \operatorname{lin}\left(P_{\bullet}\right) \rightarrow \operatorname{lin}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right) \rightarrow \operatorname{lin}\left(P_{\bullet}\right)(-1)[-1] \rightarrow 0
$$

which yields that $H_{i}\left(\operatorname{lin}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)\right)=0$ for all $i \geqslant \operatorname{ld}(\Delta *\{1\})+2$, and the exact sequence

$$
\begin{aligned}
& 0 \rightarrow H_{\operatorname{ld}(\Delta *\{1\})+1}\left(\operatorname{lin}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)\right) \rightarrow H_{\operatorname{ld}(\Delta *\{1\})}\left(\operatorname{lin}\left(P_{\bullet}\right)(-1)\right) \\
& \xrightarrow{x_{1}} H_{\operatorname{ld}(\Delta *\{1\})}\left(\operatorname{lin}\left(P_{\bullet}\right)\right) \rightarrow H_{\operatorname{ld}(\Delta *\{1\})}\left(\operatorname{lin}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)\right) .
\end{aligned}
$$

Since x_{1} does not appear in any entry of the matrices representing the differentials of $\operatorname{lin}\left(P_{\mathbf{0}}\right)$, it is regular on $H_{\bullet}\left(\operatorname{lin}\left(P_{\bullet}\right)\right)$, and hence we have

$$
H_{\operatorname{ld}(\Delta *\{1\})+1}\left(\operatorname{lin}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)\right)=0
$$

and

$$
H_{\operatorname{ld}(\Delta *\{1\})}\left(\operatorname{lin}\left(P_{\bullet} \otimes_{S} \mathcal{K}\left(x_{1}\right)\right)\right) \neq 0
$$

since $H_{\operatorname{ld}(\Delta *\{1\})}\left(\operatorname{lin}\left(P_{\bullet}\right)\right) \neq 0$. Therefore $\operatorname{ld}(\Delta)=\operatorname{ld}(\Delta *\{1\})$.
Let Δ be a simplicial complex on $[n]$. For $F \subset[n]$, we set

$$
\Delta_{F}:=\{G \in \Delta \mid G \subset F\} .
$$

The following fact, due to Hochster, is well known, but because of our frequent use, we mention it.

Proposition 4.5. (Cf. [1,14].) For a simplicial complex Δ on [n], we have

$$
\beta_{i, j}(K[\Delta])=\sum_{F \subset[n], \sharp F=j} \operatorname{dim}_{K} \tilde{H}_{j-i-1}\left(\Delta_{F} ; K\right),
$$

where $\beta_{i, j}(K[\Delta])$ are the \mathbb{Z}-graded Betti numbers of $K[\Delta]$.
Now we can give a new proof of [18, Proposition 4.15], which is the latter part of the next result.

Proposition 4.6. (Cf. [18, Proposition 4.15].) Let Δ be a simplicial complex on [n]. If indeg $\Delta=$ 1 , then we have

$$
\operatorname{ld}(\Delta) \leqslant \max \{1, n-3\}
$$

Hence, for any Δ, we have

$$
\operatorname{ld}(\Delta) \leqslant \max \{1, n-2\}
$$

Proof. The second inequality follows from the first one and Corollary 4.3. So it suffices to show the first. We set $\mathcal{V}:=[n] \backslash \operatorname{ver}(\Delta)$. Our hypothesis indeg $\Delta=1$ implies that $\mathcal{V} \neq \varnothing$. By Lemma 4.4, the proof can be reduced to the case $\sharp \mathcal{V}=1$. We may then assume that $\mathcal{V}=\{1\}$. Thus we have only to show that $\operatorname{ld}(\Delta *\{1\}) \leqslant \max \{1, n-3\}$. Since we have indeg $(\Delta *\{1\}) \geqslant 2$, we may assume $n \geqslant 4$ by Corollary 4.3 . The length of the 0 -linear strand of $K[\Delta *\{1\}]$ is 0 , and hence we concentrate on the l-linear strands with $l \geqslant 1$. Let P_{\bullet} be a minimal graded free resolution of $K[\Delta *\{1\}]$. Since, as is well known, the cone of a simplicial complex, i.e. the join with a point, is acyclic, we have

$$
\beta_{i, n}(K[\Delta *\{1\}])=\operatorname{dim}_{K} \tilde{H}_{n-i-1}(\Delta *\{1\} ; K)=0
$$

by Proposition 4.5. Thus $\operatorname{lin}_{l}\left(P_{\bullet}\right)_{n-l}=0$ for all $l \geqslant 1$. Now applying the same argument as the last part of the proof of Theorem 4.2 (but we need to replace n by $n-1$), we have

$$
H_{n-2}\left(\operatorname{lin}\left(P_{\bullet}\right)\right)=0,
$$

and so $\operatorname{ld}(\Delta *\{1\}) \leqslant n-3$.
According to [18, Proposition 4.14], we can construct a squarefree module $N \in \operatorname{Sq}(E)$ with $\operatorname{ld}_{E}(N)=$ proj. $\operatorname{dim}_{S}(\mathcal{S}(N))=n-1$. By Theorems 3.4 and $4.2, M:=\mathcal{S}(N)$ satisfies that $\operatorname{indeg}_{S}(M)=0$ and $\operatorname{ld}_{S}(M)=n-1$. For $0 \leqslant i \leqslant n-1$, let $\Omega_{i}(M)$ be the i th syzygy of M. Then $\Omega_{i}(M)$ is squarefree, and we have that $\operatorname{ld}_{S}\left(\Omega_{i}(M)\right)=\operatorname{ld}_{S}(M)-i=n-i-1$ and $\operatorname{indeg}_{S}\left(\Omega_{i}(M)\right) \geqslant \operatorname{indeg}_{S}(M)+i=i$. Thus by Theorem 4.2, we know that indeg ${ }_{S}\left(\Omega_{i}(M)\right)=i$ and $\operatorname{ld}_{S}\left(\Omega_{i}(M)\right)=n-\operatorname{indeg}_{S}\left(\Omega_{i}(M)\right)-1$. So the bound in Theorem 4.2 is optimal.

In the following, we will give an example of a simplicial complex Δ with $\operatorname{ld}(\Delta)=n-$ $\operatorname{indeg}(\Delta)$ for $2 \leqslant \operatorname{indeg}(\Delta) \leqslant n-2$, and so we know the bound in Proposition 4.3 is optimal if $\operatorname{indeg}(\Delta) \geqslant 2$, that is, $\operatorname{ver}(\Delta)=[n]$.

Given a simplicial complex Δ on $[n]$, we denote $\Delta^{(i)}$ for the i th skeleton of Δ, which is defined as

$$
\Delta^{(i)}:=\{F \in \Delta \mid \# F \leqslant i+1\} .
$$

Example 4.7. Set $\Sigma:=2^{[n]}$, and let Γ be a simplicial complex on [n] whose geometric realization $|\Gamma|$ is homeomorphic to the $(d-1)$-dimensional sphere with $2 \leqslant d<n-1$, which we denote by S^{d-1}. (For $m>d$ there exists a triangulation of S^{d-1} with m vertices. See, for example, [1, Proposition 5.2.10].) Consider the simplicial complex $\Delta:=\Gamma \cup \Sigma^{(d-2)}$. We will verify that Δ is a desired complex, that is, $\operatorname{ld}(\Delta)=n-\operatorname{indeg}(\Delta)$. For brief notation, we put $t:=\operatorname{indeg} \Delta$ and $l:=\operatorname{ld}(\Delta)$.

First, from our definition, it is clear that $t \geqslant d$. Thus it is enough to show that $n-d \leqslant l$; in fact we have that $l \leqslant n-t \leqslant n-d \leqslant l$ by Corollary 4.3, and hence that $t=d$ and $l=n-d$. Our aim is to prove that

$$
\beta_{n-d, n}(K[\Delta]) \neq 0 \quad \text { and } \quad \beta_{n-d-1, n-1}(K[\Delta])=0
$$

since, in this case, we have $H_{n-d}\left(\operatorname{lin}_{d}\left(P_{\bullet}\right)\right) \neq 0$, and hence $n-d \leqslant l$.
Now, let $F \subset[n]$, and $\tilde{\mathcal{C}}_{\bullet}\left(\Delta_{F} ; K\right), \tilde{\mathcal{C}}_{\bullet}\left(\Gamma_{F} ; K\right)$ be the augmented chain complexes of Δ_{F} and Γ_{F}, respectively. Since $\Sigma^{(d-2)}$ have no faces of dimension $\geqslant d-1$, we have $\tilde{\mathcal{C}}_{d-1}\left(\Delta_{F} ; K\right)=$
$\tilde{\mathcal{C}}_{d-1}\left(\Gamma_{F} ; K\right)$ and hence $\tilde{H}_{d-1}\left(\Delta_{F} ; K\right)=\tilde{H}_{d-1}\left(\Gamma_{F} ; K\right)$. On the other hand, our assumption that $|\Gamma| \approx S^{d-1}$ implies that Γ is Gorenstein, and hence that

$$
\tilde{H}_{d-1}\left(\Gamma_{F} ; K\right)= \begin{cases}K & \text { if } F=[n] \\ 0 & \text { otherwise }\end{cases}
$$

Therefore, by Proposition 4.5, we have that

$$
\begin{aligned}
& \beta_{n-d, n}(K[\Delta])=\operatorname{dim}_{K} \tilde{H}_{d-1}(\Gamma ; K)=1 \neq 0 ; \\
& \beta_{n-d-1, n-1}(K[\Delta])=\sum_{F \subset[n], \sharp F=n-1} \operatorname{dim}_{K} \tilde{H}_{d-1}\left(\Gamma_{F} ; K\right)=0 .
\end{aligned}
$$

5. A simplicial complex Δ with $\operatorname{ld}(\Delta)=n-2$ is an \boldsymbol{n}-gon

Following the previous section, we assume that $\Delta \neq[n]$, throughout this section. We say a simplicial complex on $[n]$ is an n-gon if its facets are $\{1,2\},\{2,3\}, \ldots,\{n-1, n\}$, and $\{n, 1\}$ after a suitable permutation of vertices. Consider the simplicial complex Δ on $[n]$ given in Example 4.7. If we set $d=2$, then Δ is an n-gon. Thus if a simplicial complex Δ on [n] is an n-gon, we have $\operatorname{ld}(\Delta)=n-2$. Actually, the inverse holds, that is, if $\operatorname{ld}(\Delta)=n-2$ with $n \geqslant 4, \Delta$ is nothing but an n-gon.

Theorem 5.1. Let Δ be a simplicial complex on $[n]$ with $n \geqslant 4$. Then $\operatorname{ld}(\Delta)=n-2$ if and only if Δ is an n-gon.

In the previous section, we introduced Hochster's formula (Proposition 4.5), but in this section, we need explicit correspondence between $\left[\operatorname{Tor}_{\bullet}^{S}(K[\Delta], K)\right]_{F}$ and reduced cohomologies of Δ_{F}, and so we will give it as follows.

Set $V:=\left\langle x_{1}, \ldots, x_{n}\right\rangle=S_{1}$ and let $\mathcal{K}_{\bullet}:=S \otimes_{K} \bigwedge V$ be the Koszul complex of S with respect to x_{1}, \ldots, x_{n}. Then we have

$$
\left[\operatorname{Tor}_{i}^{S}(K[\Delta], K)\right]_{F}=H_{i}\left(\left[K[\Delta] \otimes_{S} \mathcal{K}_{\bullet}\right]_{F}\right)=H_{i}\left(\left[K[\Delta] \otimes_{K} \bigwedge V\right]_{F}\right)
$$

for $F \subset[n]$. Furthermore, the basis of the K-vector space $\left[K[\Delta] \otimes_{K} \wedge V\right]_{F}$ is of the form $\mathbf{x}^{G} \otimes \wedge^{F \backslash G} \mathbf{x}$ with $G \in \Delta_{F}$, where $\mathbf{x}^{G}=\prod_{i \in G} x_{i}$ and $\wedge^{F \backslash G} \mathbf{x}=x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}$ for $\left\{i_{1}, \ldots, i_{k}\right\}=$ $F \backslash G$ with $i_{1}<\cdots<i_{k}$. Thus the assignment

$$
\varphi^{i}: \tilde{\mathcal{C}}^{i-1}\left(\Delta_{F} ; K\right) \ni e_{G}^{*} \mapsto(-1)^{\alpha(G, F)} \mathbf{x}^{G} \otimes \wedge^{F \backslash G} \mathbf{x} \in\left[K[\Delta] \otimes_{K} \bigwedge V\right]_{F}
$$

with $G \in \Delta_{F}$ gives the isomorphism $\varphi^{\bullet}: \tilde{\mathcal{C}}^{\bullet}\left(\Delta_{F} ; K\right)[-1] \rightarrow\left[K[\Delta] \otimes_{K} \bigwedge V\right]_{F}$ of chain complexes, where $\tilde{\mathcal{C}}^{i-1}\left(\Delta_{F} ; K\right)$ (resp. $\left.\tilde{\mathcal{C}}_{i-1}\left(\Delta_{F} ; K\right)\right)$ is the $(i-1)$ st term of the augmented cochain (resp. chain) complex of Δ_{F} over K, e_{G} is the basis element of $\tilde{\mathcal{C}_{i-1}}\left(\Delta_{F} ; K\right)$ corresponding to G, and e_{G}^{*} is the K-dual base of e_{G}. Here we set

$$
\alpha(A, B):=\sharp\{(a, b) \mid a>b, a \in A, b \in B\}
$$

for $A, B \subset[n]$. Thus we have the isomorphism

$$
\begin{equation*}
\bar{\varphi}: \tilde{H}^{i-1}\left(\Delta_{F} ; K\right) \rightarrow\left[\operatorname{Tor}_{\sharp F-i}^{S}(K[\Delta], K)\right]_{F} . \tag{5.1}
\end{equation*}
$$

Lemma 5.2. Let Δ be a simplicial complex on $[n]$ with $\operatorname{indeg}(\Delta) \geqslant 2$, and P_{\bullet} a minimal graded free resolution of $K[\Delta]$. We denote $Q \bullet$ for the subcomplex of P_{\bullet} such that $Q_{i}:=$ $\bigoplus_{j \leqslant i+1} S(-j)^{\beta_{i, j}} \subset \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i, j}}=P_{i}$. Assume $n \geqslant 4$. Then the following are equivalent.
(1) $\operatorname{ld}(\Delta)=n-2$;
(2) $H_{n-2}\left(\operatorname{lin}_{2}\left(P_{\bullet}\right)\right) \neq 0$;
(3) $H_{n-3}\left(Q_{\bullet}\right) \neq 0$.

In the case $n \geqslant 5$, the condition (3) is equivalent to $H_{n-3}\left(\operatorname{lin}_{1}\left(P_{\bullet}\right)\right) \neq 0$.
Proof. Since indeg $(\Delta) \geqslant 2, \operatorname{lin}_{0}\left(P_{\bullet}\right)_{i}=0$ holds for $i \geqslant 1$. Clearly, $H_{i}\left(Q_{\bullet}\right)=H_{i}\left(\operatorname{lin}_{1}\left(P_{\bullet}\right)\right)$ for $i \geqslant 2$. Since $\operatorname{lin}_{l}\left(P_{\bullet}\right)_{i}=0$ for $i \geqslant n-2$ and $l \geqslant 3$ by Lemma 4.1 and that $\operatorname{ld}(\Delta) \leqslant n-2$ by Proposition 4.6, it suffices to show the following.

$$
\begin{equation*}
H_{n-2}\left(\operatorname{lin}_{2}\left(P_{\bullet}\right)\right) \cong H_{n-3}\left(Q_{\bullet}\right) \quad \text { and } \quad H_{i}\left(Q_{\bullet}\right)=0 \quad \text { for } i \geqslant n-2 . \tag{5.2}
\end{equation*}
$$

Since Q_{\bullet} is a subcomplex of P_{\bullet}, there exists the following short exact sequence of complexes.

$$
0 \rightarrow Q_{\bullet} \rightarrow P_{\bullet} \rightarrow \tilde{P}_{\bullet}:=P_{\bullet} / Q_{\bullet} \rightarrow 0
$$

which induces the exact sequence of homology groups

$$
H_{i}\left(P_{\bullet}\right) \rightarrow H_{i}\left(\tilde{P}_{\bullet}\right) \rightarrow H_{i-1}\left(Q_{\bullet}\right) \rightarrow H_{i-1}\left(P_{\bullet}\right) .
$$

Hence the acyclicity of P_{\bullet} implies that $H_{i}\left(\tilde{P}_{\bullet}\right) \cong H_{i-1}\left(Q_{\bullet}\right)$ for all $i \geqslant 2$. Now $H_{i}\left(\tilde{P}_{\mathbf{\bullet}}\right)=0$ for $i \geqslant n-1$ by Lemma 4.1 and the fact that $\tilde{P}_{i}=\bigoplus_{l \geqslant 2} \operatorname{lin}_{l}\left(P_{\bullet}\right)_{i}$. So the latter assertion of (5.2) holds, since $n-2 \geqslant 2$. The former follows from the equality $H_{n-2}\left(\tilde{P}_{\mathbf{\bullet}}\right)=H_{n-2}\left(\operatorname{lin}_{2}\left(P_{\mathbf{\bullet}}\right)\right)$, which is a direct consequence of the fact that $\operatorname{lin}_{2}\left(P_{\bullet}\right)$ is a subcomplex of \tilde{P}_{\bullet}, that $\tilde{P}_{n-2}=\operatorname{lin}_{2}\left(P_{\bullet}\right)_{n-2}$, and that $\tilde{P}_{n-1}=0$.

Let Δ be a 1 -dimensional simplicial complex on [n] (i.e., Δ is essentially a simple graph). A cycle C in Δ of length $t(\geqslant 3)$ is a sequence of edges of Δ of the form $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots$, $\left(v_{t}, v_{1}\right)$ joining distinct vertices v_{1}, \ldots, v_{t}.

Now we are ready for the proof of Theorem 5.1.
Proof of Theorem 5.1. The implication " \Leftarrow " has been already done in the beginning of this section. So we shall show the inverse. By Proposition 4.6, we may assume that indeg $(\Delta) \geqslant 2$. Let P_{\bullet} be a minimal graded free resolution of $K[\Delta]$ and Q_{\bullet} as in Lemma 5.2. Note that Q_{\bullet} is determined only by $\left[I_{\Delta}\right]_{2}$ and that it follows $\left[I_{\Delta}\right]_{2}=\left[I_{\Delta^{(1)}}\right]_{2}$. If the 1 -skeleton $\Delta^{(1)}$ of Δ is an n-gon, then so is Δ itself. Thus by Lemma 5.2, we may assume that $\operatorname{dim} \Delta=1$. Since $\operatorname{ld}(\Delta)=n-2$, by Lemma 5.2 we have

$$
\tilde{H}_{1}(\Delta ; K) \cong \tilde{H}^{1}(\Delta ; K) \cong\left[\operatorname{Tor}_{n-2}^{S}(K[\Delta], K)\right]_{[n]} \neq 0
$$

and hence Δ contains at least one cycle as a subcomplex. So it suffices to show that Δ has no cycles of length $\leqslant n-1$. Suppose not, i.e., Δ has some cycles of length $\leqslant n-1$. To give a contradiction, we shall show

$$
\begin{equation*}
0 \rightarrow \operatorname{lin}_{2}\left(P_{\bullet}\right)_{n-2} \rightarrow \operatorname{lin}_{2}\left(P_{\bullet}\right)_{n-3} \tag{5.3}
\end{equation*}
$$

is exact; in fact it follows $H_{n-2}\left(\operatorname{lin}_{2}\left(P_{\bullet}\right)\right)=0$, which contradicts to Lemma 5.2. For that, we need some observations (this is a similar argument to that done in Theorem 4.1 of [15]). Consider the chain complex $K[\Delta] \otimes_{K} \bigwedge V \otimes_{K} S$ where V is the K-vector space with the basis x_{1}, \ldots, x_{n}. We can define two differential map ϑ, ∂ on it as follows:

$$
\begin{aligned}
& \vartheta\left(f \otimes \wedge^{G} \mathbf{x} \otimes g\right)=\sum_{i \in G}(-1)^{\alpha(i, G)}\left(x_{i} f \otimes \wedge^{G \backslash i\}} \mathbf{x} \otimes g\right) \\
& \partial\left(f \otimes \wedge^{G} \mathbf{x} \otimes g\right)=\sum_{i \in G}(-1)^{\alpha(i, G)}\left(f \otimes \wedge^{G \backslash\{i\}} \mathbf{x} \otimes x_{i} g\right) .
\end{aligned}
$$

By a routine, we have that $\partial \vartheta+\vartheta \partial=0$, and easily we can check that the i th homology group of the chain complex ($K[\Delta] \otimes_{K} \bigwedge V \otimes_{K} S, \vartheta$) is isomorphic to the i th graded free module of a minimal free resolution P_{\bullet} of $K[\Delta]$. Since, moreover, the differential maps of $\operatorname{lin}\left(P_{\boldsymbol{\bullet}}\right)$ is induced by ∂ due to Eisenbud and Goto [4], Herzog, Simis and Vasconcelos [8], $\operatorname{lin}_{l}\left(P_{\bullet}\right)_{i} \rightarrow \operatorname{lin}_{l}\left(P_{\bullet}\right)_{i-1}$ can be identified with

$$
\bigoplus_{F \subset[n], \sharp F=i+l}\left[\operatorname{Tor}_{i}^{S}(K[\Delta], K)\right]_{F} \otimes_{K} S \xrightarrow{\bar{\partial}} \bigoplus_{F \subset[n], \sharp F=i-1+l}\left[\operatorname{Tor}_{i-1}^{S}(K[\Delta], K)\right]_{F} \otimes_{K} S,
$$

where $\bar{\partial}$ is induced by ∂. In the sequel, $-\{i\}$ denotes the subset $[n] \backslash\{i\}$ of $[n]$. Then we may identify the sequence (5.3) with

$$
0 \rightarrow\left[\operatorname{Tor}_{n-2}^{S}(K[\Delta], K)\right]_{[n]} \otimes_{K} S \xrightarrow{\bar{\partial}} \bigoplus_{i \in[n]}\left[\operatorname{Tor}_{n-3}^{S}(K[\Delta], K)\right]_{-\{i\}} \otimes_{K} S
$$

and hence, by the isomorphism (5.1), with

$$
\begin{equation*}
0 \rightarrow \tilde{H}^{1}(\Delta ; K) \otimes_{K} S \xrightarrow{\bar{\varepsilon}} \bigoplus_{i \in[n]} \tilde{H}^{1}\left(\Delta_{-\{i\}} ; K\right) \otimes_{K} S \tag{5.4}
\end{equation*}
$$

Here $\bar{\varepsilon}$ is composed by $\bar{\varepsilon}_{i}: \tilde{H}^{1}(\Delta ; K) \otimes_{K} S \rightarrow \tilde{H}^{1}\left(\Delta_{-\{i\}} ; K\right) \otimes_{K} S$ which is induced by the chain map

$$
\begin{aligned}
& \varepsilon_{i}: \tilde{\mathcal{C}}^{\bullet}(\Delta ; K) \otimes_{K} S \rightarrow \tilde{\mathcal{C}} \bullet\left(\Delta_{-\{i\}} ; K\right) \otimes_{K} S \\
& \varepsilon_{i}\left(e_{G}^{*} \otimes 1\right)= \begin{cases}(-1)^{\alpha(i, G)} e_{G}^{*} \otimes x_{i} & \text { if } i \notin G \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Well, let C be a cycle in Δ of the form $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{t}, v_{1}\right)$ with distinct vertices v_{1}, \ldots, v_{t}. We say C has a chord if there exists an edge $\left(v_{i}, v_{j}\right)$ of G such that $j \not \equiv i+1(\bmod t)$,
and C is said to be minimal if it has no chord. It is easy to see that the 1 st homology of Δ is generated by those of minimal cycles contained in Δ, that is, we have the surjective map:

$$
\bigoplus_{\substack{C \subset \Delta \\ \text { ninimal cycle }}} \tilde{H}_{1}(C ; K) \rightarrow \tilde{H}_{1}(\Delta ; K)
$$

Now by our assumption that Δ contains a cycle of length $\leqslant n-1$ (that is, Δ itself is not a minimal cycle), we have the surjective map

$$
\begin{equation*}
\bigoplus_{i \in[n]} \tilde{H}_{1}\left(\Delta_{-\{i\}} ; K\right) \xrightarrow{\bar{\eta}} \tilde{H}_{1}(\Delta ; K) \tag{5.5}
\end{equation*}
$$

where $\bar{\eta}$ is induced by the chain map $\eta: \bigoplus \tilde{\mathcal{C}}_{\bullet}\left(\Delta_{-\{i\}} ; K\right) \rightarrow \tilde{\mathcal{C}}_{\bullet}(\Delta ; K)$, and η is the sum of

$$
\eta_{i}: \tilde{\mathcal{C}}_{\bullet}\left(\Delta_{-\{i\}} ; K\right) \ni e_{G} \mapsto(-1)^{\alpha(i, G)} e_{G} \in \tilde{\mathcal{C}}_{\bullet}(\Delta ; K)
$$

Taking the K-dual of (5.5), we have the injective map

$$
\tilde{H}^{1}(\Delta ; K) \xrightarrow{\bar{\eta}^{*}} \bigoplus_{i \in[n]} \tilde{H}^{1}\left(\Delta_{-\{i\}} ; K\right)
$$

where $\bar{\eta}^{*}$ is the K-dual map of $\bar{\eta}$, and composed by the K-dual

$$
\bar{\eta}_{i}^{*}: \tilde{H}^{1}(\Delta ; K) \rightarrow \tilde{H}^{1}\left(\Delta_{-\{i\}} ; K\right)
$$

of $\bar{\eta}_{i}$. Then for all $0 \neq z \in \tilde{H}^{1}(\Delta ; K)$, we have $\bar{\eta}_{i}^{*}(z) \neq 0$ for some i. Recalling the map $\bar{\varepsilon}: \tilde{H}^{1}(\Delta ; K) \otimes_{K} S \rightarrow \bigoplus \tilde{H}^{1}\left(\Delta_{-\{i\}} ; K\right) \otimes_{K} S$ in (5.4) and its construction, we know for $z \in \tilde{H}^{1}(\Delta ; K)$,

$$
\bar{\varepsilon}(z \otimes y)=\sum_{i=1}^{n} \bar{\eta}_{i}^{*}(z) \otimes x_{i} y
$$

and hence $\bar{\varepsilon}$ is injective.
Remark 5.3. (1) If Δ is an n-gon, then Δ^{\vee} is an $(n-3)$-dimensional Buchsbaum complex with $\tilde{H}_{n-4}\left(\Delta^{\vee} ; K\right)=K$. If $n=5$, then Δ^{\vee} is a triangulation of the Möbius band. But, for $n \geqslant 6, \Delta^{\vee}$ is not a homology manifold. In fact, let $\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{n, 1\}$ be the facets of Δ, then if $F=[n] \backslash\{1,3,5\}$, easy computation shows that $\mathrm{lk}_{\Delta^{\vee}} F$ is a 0 -dimensional complex with 3 vertices, and hence $\tilde{H}_{0}\left(\mathrm{lk}_{\Delta \vee} F ; K\right)=K^{2}$.
(2) If indeg $\Delta \geqslant 3$, then the simplicial complexes given in Example 4.7 are not the only examples which attain the equality $\operatorname{ld}(\Delta)=n-\operatorname{indeg}(\Delta)$. We shall give two examples of such complexes.

Let Δ be the triangulation of the real projective plane $\mathbb{P}^{2} \mathbb{R}$ with 6 vertices which is given in [1, Fig. 5.8, p. 236]. Since $\mathbb{P}^{2} \mathbb{R}$ is a manifold, $K[\Delta]$ is Buchsbaum. Hence we have

$$
H_{\mathfrak{m}}^{2}(K[\Delta])=\left[H_{\mathfrak{m}}^{2}(K[\Delta])\right]_{0} \cong \tilde{H}_{1}(\Delta ; K)
$$

So, if $\operatorname{char}(K)=2$, then we have $\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{4}\left(K[\Delta], \omega_{S}\right)\right)=0$. Note that we have $\Delta=\Delta^{\vee}$ in this case. Therefore, easy computation shows that

$$
\operatorname{ld}\left(\Delta^{\vee}\right)=\operatorname{ld}(\Delta)=3=6-3=6-\operatorname{indeg}(\Delta)
$$

Next, as is well known, there is a triangulation of the torus with 7 vertices. Let Δ be the triangulation. Since $\operatorname{dim} \Delta=2$, we have $\operatorname{indeg}\left(\Delta^{\vee}\right)=7-\operatorname{dim} \Delta-1=4$. Observing that K [Δ] is Buchsbaum, we have, by easy computation, that

$$
\operatorname{ld}\left(\Delta^{\vee}\right)=3=7-4=7-\operatorname{indeg}\left(\Delta^{\vee}\right)
$$

Thus Δ^{\vee} attains the equality, but is not a simplicial complex given in Example 4.7, since it follows, from Alexander's duality, that

$$
\operatorname{dim}_{K} \tilde{H}_{i}\left(\Delta^{\vee} ; K\right)=\operatorname{dim}_{K} \tilde{H}_{4-i}(\Delta ; K)= \begin{cases}2 \neq 1 & \text { for } i=3 ; \\ 0 & \text { for } i \geqslant 4\end{cases}
$$

More generally, the dual complexes of d-dimensional Buchsbaum complexes Δ with $\tilde{H}_{d-1}(\Delta ; K) \neq 0$ satisfy the equality

$$
\operatorname{ld}\left(\Delta^{\vee}\right)=n-\operatorname{indeg}\left(\Delta^{\vee}\right)
$$

but many of them differ from the examples in Example 4.7, and we can construct such complexes more easily as indeg $\left(\Delta^{\vee}\right)$ is larger.

References

[1] W. Bruns, J. Herzog, Cohen-Macaulay Rings, revised edition, Cambridge University Press, 1998.
[2] D. Eisenbud, The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry, Grad. Texts in Math., vol. 229, Springer, 2005.
[3] D. Eisenbud, G. Fløystad, F.-O. Schreyer, Sheaf cohomology and free resolutions over exterior algebra, Trans. Amer. Math. Soc. 355 (2003) 4397-4426.
[4] D. Eisenbud, S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984) 89-133.
[5] J. Herzog, T. Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999) 141-153.
[6] J. Herzog, S. Iyengar, Koszul modules, J. Pure Appl. Algebra 201 (2005) 154-188.
[7] B. Iversen, Cohomology of Sheaves, Springer-Verlag, 1986.
[8] J. Herzog, A. Simis, W. Vasconcelos, Approximation complexes of blowing-up rings, II, J. Algebra 82 (1983) 5383.
[9] R. Martinez-Villa, D. Zacharia, Approximations with modules having linear resolutions, J. Algebra 266 (2003) 671-697.
[10] E. Miller, Cohen-Macaulay quotients of normal affine semigroup rings via irreducible resolutions, Math. Res. Lett. 9 (2002) 117-128.
[11] T. Römer, Generalized Alexander duality and applications, Osaka J. Math. 38 (2001) 469-485.
[12] T. Römer, On minimal graded free resolutions, Thesis, University of Essen, 2001.
[13] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, in: F. Van Oystaeyen (Ed.), Commutative Algebra and Algebraic Geometry, in: Lecture Notes in Pure and Appl. Math., vol. 206, Dekker, 1999, pp. 245-264.
[14] R. Stanley, Combinatorics and Commutative Algebra, second ed., Birkhäuser, 1996.
[15] K. Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree \mathbb{N}^{n}-graded modules, J. Algebra 225 (2000) 630-645.
[16] K. Yanagawa, Sheaves on finite posets and modules over normal semigroup rings, J. Pure Appl. Algebra 161 (2001) 341-366.
[17] K. Yanagawa, Stanley-Reisner rings, sheaves, and Poincaré-Verdier duality, Math. Res. Lett. 10 (2003) 635-650.
[18] K. Yanagawa, Castelnuovo-Mumford regularity for complexes and weakly Koszul modules, J. Pure Appl. Algebra 207 (2006) 77-97.
[19] K. Yanagawa, Notes on C-graded modules over an affine semigroup ring $K[C]$, Comm. Algebra, in press.

[^0]: * Corresponding author.

 E-mail addresses: smv679or@ecs.cmc.osaka-u.ac.jp (R. Okazaki), yanagawa@ math.sci.osaka-u.ac.jp (K. Yanagawa).

