

Available online at www.sciencedirect.com

JOURNAL OF Algebra

Journal of Algebra 314 (2007) 362-382

www.elsevier.com/locate/jalgebra

Linearity defects of face rings

Ryota Okazaki, Kohji Yanagawa*

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Received 30 August 2006

Available online 12 March 2007

Communicated by Luchezar L. Avramov

Dedicated to Professor Jürgen Herzog on his 65th birthday

Abstract

Let $S = K[x_1, ..., x_n]$ be a polynomial ring over a field K, and $E = \bigwedge \langle y_1, ..., y_n \rangle$ an exterior algebra. The *linearity defect* $\operatorname{ld}_E(N)$ of a finitely generated graded E-module N measures how far N departs from "componentwise linear". It is known that $\operatorname{ld}_E(N) < \infty$ for all N. But the value can be arbitrary large, while the similar invariant $\operatorname{ld}_S(M)$ for an S-module M is always at most n. We will show that if I_Δ (resp. J_Δ) is the squarefree monomial ideal of S (resp. E) corresponding to a simplicial complex $\Delta \subset 2^{\{1,...,n\}}$, then $\operatorname{ld}_E(E/J_\Delta) = \operatorname{ld}_S(S/I_\Delta)$. Moreover, except some extremal cases, $\operatorname{ld}_E(E/J_\Delta)$ is a topological invariant of the geometric realization $|\Delta^{\vee}|$ of the Alexander dual Δ^{\vee} of Δ . We also show that, when $n \ge 4$, $\operatorname{ld}_E(E/J_\Delta) = n - 2$ (this is the largest possible value) if and only if Δ is an n-gon.

Keywords: Stanley-Reisner ring; Exterior face ring; Linearity defect; Weakly Koszul module; Componentwise linear; Sequentially Cohen-Macaulay; Squarefree module

1. Introduction

Let $A = \bigoplus_{i \in \mathbb{N}} A_i$ be a graded (not necessarily commutative) noetherian algebra over a field $K \cong A_0$. Let M be a finitely generated graded left A-module, and P_{\bullet} its minimal free resolution. Eisenbud et al. [3] defined the *linear part* $\ln(P_{\bullet})$ of P_{\bullet} , which is the complex obtained by erasing all terms of degree ≥ 2 from the matrices representing the differen-

* Corresponding author.

E-mail addresses: smv679or@ecs.cmc.osaka-u.ac.jp (R. Okazaki), yanagawa@math.sci.osaka-u.ac.jp (K. Yanagawa).

0021-8693/\$ – see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2007.02.049

tial maps of P_{\bullet} (hence $\lim(P_{\bullet})_i = P_i$ for all *i*). Following Herzog and Iyengar [6], we call $\operatorname{ld}_A(M) = \sup\{i \mid H_i(\operatorname{lin}(P_{\bullet})) \neq 0\}$ the *linearity defect* of *M*. This invariant and related concepts have been studied by several authors (e.g., [3,6,9,12,18]). Following [5], we say a finitely generated graded *A*-module *M* is *componentwise linear* (or (*weakly*) *Koszul* in some literature) if $M_{\langle i \rangle}$ has a linear free resolution for all *i*. Here $M_{\langle i \rangle}$ is the submodule of *M* generated by its degree *i* part M_i . Then we have

$$ld_A(M) = min\{i \mid \text{the } i\text{ th syzygy of } M \text{ is componentwise linear}\}$$

For this invariant, a remarkable result holds over an exterior algebra $E = \bigwedge \langle y_1, \ldots, y_n \rangle$. In [3, Theorem 3.1], Eisenbud et al. showed that any finitely generated graded *E*-module *N* satisfies $ld_E(N) < \infty$ while proj.dim_{*E*}(*N*) = ∞ in most cases. (We also remark that Martinez-Villa and Zacharia [9] proved the same result for many selfinjective Koszul algebras.) If $n \ge 2$, then we have $sup\{ld_E(N) \mid N \text{ a finitely generated graded } E$ -module} = ∞ . But Herzog and Römer proved that if $J \subset E$ is a *monomial* ideal then $ld_E(E/J) \le n - 1$ (cf. [12]).

A monomial ideal of $E = \bigwedge \langle y_1, \dots, y_n \rangle$ is always of the form $J_\Delta := (\prod_{i \in F} y_i | F \notin \Delta)$ for a simplicial complex $\Delta \subset 2^{\{1,\dots,n\}}$. Similarly, we have the *Stanley–Reisner ideal*

$$I_{\Delta} := \left(\prod_{i \in F} x_i \mid F \notin \Delta\right)$$

of a polynomial ring $S = K[x_1, ..., x_n]$. In this paper, we will show the following.

Theorem 1.1. With the above notation, we have $\operatorname{ld}_E(E/J_\Delta) = \operatorname{ld}_S(S/I_\Delta)$. Moreover, if $\operatorname{ld}_E(E/J_\Delta) > 0$ (equivalently, $\Delta \neq 2^T$ for any $T \subset [n]$), then $\operatorname{ld}_E(E/J_\Delta)$ is a topological invariant of the geometric realization $|\Delta^{\vee}|$ of the Alexander dual Δ^{\vee} . (But $\operatorname{ld}(E/J_\Delta)$ may depend on char(K).)

By virtue of the above theorem, we can put $ld(\Delta) := ld_E(E/J_\Delta) = ld_S(S/I_\Delta)$. If we set $d := \min\{i \mid [I_\Delta]_i \neq 0\} = \min\{i \mid [J_\Delta]_i \neq 0\}$, then $ld(\Delta) \leq \max\{1, n - d\}$. But, if d = 1 (i.e., $\{i\} \notin \Delta$ for some $1 \leq i \leq n$), then $ld(\Delta) \leq \max\{1, n - 3\}$. Hence, if $n \geq 3$, we have $ld(\Delta) \leq n - 2$ for all Δ .

Theorem 1.2. Assume that $n \ge 4$. Then $ld(\Delta) = n - 2$ if and only if Δ is an n-gon.

While we treat S and E in most part of the paper, some results on S can be generalized to a normal semigroup ring, and this generalization makes the topological meaning of $Id(\Delta)$ clear. So Section 2 concerns a normal semigroup ring. But, in this case, we use an irreducible resolution (something analogous to an injective resolution), not a projective resolution.

2. Linearity defects for irreducible resolutions

Let $C \subset \mathbb{Z}^n \subset \mathbb{R}^n$ be an affine semigroup (i.e., *C* is a finitely generated additive submonoid of \mathbb{Z}^n), and $R := K[\mathbf{x}^c | \mathbf{c} \in C] \subset K[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ the semigroup ring of *C* over the field *K*. Here \mathbf{x}^c for $\mathbf{c} = (c_1, \dots, c_n) \in C$ denotes the monomial $\prod_{i=1}^n x_i^{c_i}$. Let $\mathbf{P} := \mathbb{R}_{\geq 0}C \subset \mathbb{R}^n$ be the polyhedral cone spanned by *C*. We always assume that $\mathbb{Z}C = \mathbb{Z}^n, \mathbb{Z}^n \cap \mathbf{P} = C$ and $C \cap (-C) =$ {0}. Thus *R* is a normal Cohen–Macaulay integral domain of dimension *n* with a maximal ideal $\mathfrak{m} := (\mathbf{x}^{\mathbf{c}} \mid 0 \neq \mathbf{c} \in C).$

Clearly,

$$R = \bigoplus_{\mathbf{c} \in C} K \mathbf{x}^{\mathbf{c}}$$

is a \mathbb{Z}^n -graded ring. We say a \mathbb{Z}^n -graded ideal of R is a *monomial ideal*. Let *mod R be the category of finitely generated \mathbb{Z}^n -graded R-modules and degree preserving R-homomorphisms. As usual, for $M \in \text{*mod } R$ and $\mathbf{a} \in \mathbb{Z}^n$, $M_{\mathbf{a}}$ denotes the degree \mathbf{a} component of M, and $M(\mathbf{a})$ denotes the shifted module of M with $M(\mathbf{a})_{\mathbf{b}} = M_{\mathbf{a}+\mathbf{b}}$.

Let **L** be the set of non-empty faces of the polyhedral cone **P**. Note that {0} and **P** itself belong to **L**. For $F \in \mathbf{L}$, $P_F := (\mathbf{x}^c | \mathbf{c} \in C \setminus F)$ is a prime ideal of *R*. Conversely, any monomial prime ideal is of the form P_F for some $F \in \mathbf{L}$. Note that $P_{\{0\}} = \mathfrak{m}$ and $P_{\mathbf{P}} = (0)$. Set $K[F] := R/P_F \cong$ $K[\mathbf{x}^c | \mathbf{c} \in C \cap F]$ for $F \in \mathbf{L}$. The Krull dimension of K[F] equals the dimension dim *F* of the polyhedral cone *F*.

For a point $u \in \mathbf{P}$, we always have a unique face $F \in \mathbf{L}$ whose relative interior contains u. Here we denote s(u) = F.

Definition 2.1. (See [16].) We say a module $M \in \text{*mod } R$ is squarefree, if it is C-graded (i.e., $M_{\mathbf{a}} = 0$ for all $\mathbf{a} \notin C$), and the multiplication map $M_{\mathbf{a}} \ni y \mapsto \mathbf{x}^{\mathbf{b}} y \in M_{\mathbf{a}+\mathbf{b}}$ is bijective for all $\mathbf{a}, \mathbf{b} \in C$ with $s(\mathbf{a} + \mathbf{b}) = s(\mathbf{a})$.

For a monomial ideal I, R/I is a squarefree R-module if and only if I is a radical ideal (i.e., $\sqrt{I} = I$). Regarding \mathbf{L} as a partially ordered set by inclusion, we say $\Delta \subset \mathbf{L}$ is an *order ideal*, if $\Delta \ni F \supset F' \in \mathbf{L}$ implies $F' \in \Delta$. If Δ is an order ideal, then $I_{\Delta} := (\mathbf{x}^{\mathbf{c}} | \mathbf{c} \in C, s(\mathbf{c}) \notin \Delta) \subset R$ is a radical ideal. Conversely, any radical monomial ideal is of the form I_{Δ} for some Δ . Set $K[\Delta] := R/I_{\Delta}$. Clearly,

$$K[\Delta]_{\mathbf{a}} \cong \begin{cases} K & \text{if } \mathbf{a} \in C \text{ and } s(\mathbf{a}) \in \Delta, \\ 0 & \text{otherwise.} \end{cases}$$

In particular, if $\Delta = \mathbf{L}$ (resp. $\Delta = \{\{0\}\}\)$, then $I_{\Delta} = 0$ (resp. $I_{\Delta} = \mathfrak{m}$) and $K[\Delta] = R$ (resp. $K[\Delta] = K$). When *R* is a polynomial ring, $K[\Delta]$ is nothing else than the Stanley–Reisner ring of a simplicial complex Δ . (If *R* is a polynomial ring, then the partially ordered set **L** is isomorphic to the power set $2^{\{1,\ldots,n\}}$, and Δ can be seen as a simplicial complex.)

For each $F \in \mathbf{L}$, take some $\mathbf{c}(F) \in C \cap \operatorname{rel} - \operatorname{int}(F)$ (i.e., $s(\mathbf{c}(F)) = F$). For a squarefree *R*-module *M* and *F*, $G \in \mathbf{L}$ with $G \supset F$, [16, Theorem 3.3] gives a *K*-linear map $\varphi_{G,F}^M : M_{\mathbf{c}(F)} \rightarrow M_{\mathbf{c}(G)}$. They satisfy $\varphi_{F,F}^M = \operatorname{Id}$ and $\varphi_{H,G}^M \circ \varphi_{G,F}^M = \varphi_{H,F}^M$ for all $H \supset G \supset F$. We have $M_{\mathbf{c}} \cong M_{\mathbf{c}'}$ for $\mathbf{c}, \mathbf{c}' \in C$ with $s(\mathbf{c}) = s(\mathbf{c}')$. Under these isomorphisms, the maps $\varphi_{G,F}^M$ do not depend on the particular choice of $\mathbf{c}(F)$'s.

Let Sq(R) be the full subcategory of *mod *R* consisting of squarefree modules. As shown in [16], Sq(R) is an abelian category with enough injectives. For an indecomposable squarefree module *M*, it is injective in Sq(R) if and only if $M \cong K[F]$ for some $F \in L$. Each $M \in Sq(R)$ has a minimal injective resolution in Sq(R), and we call it a *minimal irreducible resolution* (see [10,19] for further information). A minimal irreducible resolution is unique up to isomorphism, and its length is at most *n*. Let ω_R be the \mathbb{Z}^n -graded canonical module of R. It is well known that ω_R is isomorphic to the radical monomial ideal ($\mathbf{x}^c \mid c \in C, s(c) = \mathbf{P}$). Since we have $\operatorname{Ext}^i_R(M^\bullet, \omega_R) \in \operatorname{Sq}(R)$ for all $M^\bullet \in \operatorname{Sq}(R)$, $\mathbf{D}(-) := \operatorname{RHom}_R(-, \omega_R)$ gives a duality functor from the derived category $D^b(\operatorname{Sq}(R)) \cong \operatorname{Dsa}^b_{\operatorname{Sa}(R)}(\operatorname{*mod} R)$ to itself.

In the sequel, for a K-vector space V, V^{*} denotes its dual space. But, even if $V = M_a$ for some $M \in \operatorname{*mod} R$ and $a \in \mathbb{Z}^n$, we set the degree of V^{*} to be 0.

Lemma 2.2. (See [19, Lemma 3.8].) If $M \in Sq(R)$, then D(M) is quasi-isomorphic to the complex $D^{\bullet}: 0 \to D^{0} \to D^{1} \to \cdots \to D^{n} \to 0$ with

$$D^{i} = \bigoplus_{\substack{F \in \mathbf{L} \\ \dim F = n - i}} (M_{\mathbf{c}(F)})^{*} \otimes_{K} K[F].$$

Here the differential is the sum of the maps

$$\left(\pm\varphi_{F,F'}^{M}\right)^*\otimes \operatorname{nat}: (M_{\mathbf{c}(F)})^*\otimes_K K[F] \to (M_{\mathbf{c}(F')})^*\otimes_K K[F']$$

for $F, F' \in \mathbf{L}$ with $F \supset F'$ and dim $F = \dim F' + 1$, and nat denotes the natural surjection $K[F] \rightarrow K[F']$. We can also describe $\mathbf{D}(M^{\bullet})$ for a complex $M^{\bullet} \in D^b(\operatorname{Sq}(R))$ in a similar way.

Convention. In the sequel, as an explicit complex, $\mathbf{D}(M^{\bullet})$ for $M^{\bullet} \in D^b(\mathrm{Sq}(R))$ means the complex described in Lemma 2.2.

Since $\mathbf{D} \circ \mathbf{D} \cong \mathrm{Id}_{D^b(\mathrm{Sq}(R))}$, $\mathbf{D} \circ \mathbf{D}(M)$ is an irreducible resolution of M, but it is far from being minimal. Let $(I^{\bullet}, \partial^{\bullet})$ be a minimal irreducible resolution of M. For each $i \in \mathbb{N}$ and $F \in \mathbf{L}$, we have a natural number $v_i(F, M)$ such that

$$I^{i} \cong \bigoplus_{F \in \mathbf{L}} K[F]^{\nu_{i}(F,M)}$$

Since I^{\bullet} is minimal, $z \in K[F] \subset I^i$ with dim F = d is sent to

$$\partial^i(z) \in \bigoplus_{\substack{G \in \mathbf{L} \\ \dim G < d}} K[G]^{\nu_{i+1}(G,M)} \subset I^{i+1}.$$

The above observation on $\mathbf{D} \circ \mathbf{D}(M)$ gives the formula [16, Theorem 4.15]

$$\nu_i(F, M) = \dim_K \left[\operatorname{Ext}_R^{n-i-\dim F}(M, \omega_R) \right]_{\mathbf{c}(F)}$$

For each $l \in \mathbb{N}$ with $0 \leq l \leq n$, we define the *l*-linear strand $\lim_{l \to 0} (I^{\bullet})$ of I^{\bullet} as follows: The term $\lim_{l \to 0} (I^{\bullet})^{i}$ of cohomological degree *i* is

$$\bigoplus_{\dim F=l-i} K[F]^{\nu_i(F,M)},$$

which is a direct summand of I^i , and the differential $\lim_l (I^{\bullet})^i \to \lim_l (I^{\bullet})^{i+1}$ is the corresponding component of the differential $\partial^i : I^i \to I^{i+1}$ of I^{\bullet} . By the minimality of I^{\bullet} , we can see that $\lim_l (I^{\bullet})$ are cochain complexes. Set $\lim_l (I^{\bullet}) := \bigoplus_{0 \le l \le n} \lim_l (I^{\bullet})$. Then we have the following.

For a complex M^{\bullet} and an integer p, let $M^{\bullet}[p]$ be the pth translation of M^{\bullet} . That is, $M^{\bullet}[p]$ is a complex with $M^{i}[p] = M^{i+p}$.

Theorem 2.3. (See [19, Theorem 3.9].) With the above notation, we have

$$\ln_l(I^{\bullet}) \cong \mathbf{D}\big(\mathrm{Ext}_R^{n-l}(M,\omega_R)\big)[n-l].$$

Hence

$$\ln(I^{\bullet}) \cong \bigoplus_{i \in \mathbb{Z}} \mathbf{D}(\operatorname{Ext}^{i}_{R}(M, \omega_{R}))[i].$$

Definition 2.4. Let I^{\bullet} be a minimal irreducible resolution of $M \in Sq(R)$. We call $\max\{i \mid H^{i}(\ln(I^{\bullet})) \neq 0\}$ the *linearity defect of the minimal irreducible resolution* of M, and denote it by $\operatorname{ld.irr}_{R}(M)$.

Corollary 2.5. With the above notation, we have

$$\max\{i \mid H^{i}(\operatorname{lin}_{l}(I^{\bullet})) \neq 0\} = l - \operatorname{depth}_{R}(\operatorname{Ext}_{R}^{n-l}(M, \omega_{R})),$$

and hence

$$\mathrm{ld.irr}_R(M) = \max\{i - \mathrm{depth}_R(\mathrm{Ext}_R^{n-i}(M,\omega_R)) \mid 0 \leqslant i \leqslant n\}.$$

Here we set the depth of the 0 *module to be* $+\infty$ *.*

Proof. By Theorem 2.3, we have $H^i(\lim_l (I^{\bullet})) = \operatorname{Ext}_R^{i+n-l}(\operatorname{Ext}_R^{n-l}(M, \omega_R), \omega_R)$. Since depth_R $N = \min\{i \mid \operatorname{Ext}_R^{n-i}(N, \omega_R) \neq 0\}$ for a finitely generated graded *R*-module *N*, the assertion follows. \Box

Definition 2.6. (See Stanley [14].) Let $M \in \text{*mod } R$. We say M is sequentially Cohen–Macaulay if there is a finite filtration

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

of M by graded submodules M_i satisfying the following conditions.

- (a) Each quotient M_i/M_{i-1} is Cohen–Macaulay.
- (b) $\dim(M_i/M_{i-1}) < \dim(M_{i+1}/M_i)$ for all *i*.

Remark that the notion of sequentially Cohen–Macaulay module is also studied under the name of a "Cohen–Macaulay filtered module" [13].

Sequentially Cohen–Macaulay property is getting important in the theory of Stanley– Reisner rings. It is known that $M \in * \mod R$ is sequentially Cohen–Macaulay if and only if $\operatorname{Ext}_R^{n-i}(M, \omega_R)$ is a zero module or a Cohen–Macaulay module of dimension *i* for all *i* (cf. [14, III. Theorem 2.11]). Let us go back to Corollary 2.5. If $N := \operatorname{Ext}_R^{n-i}(M, \omega_R) \neq 0$, then depth_R $N \leq \dim_R N \leq i$. Hence depth_R N = i if and only if N is a Cohen–Macaulay module of dimension *i*. Thus, as stated in [19, Corollary 3.11], $\operatorname{ld.irr}_R(M) = 0$ if and only if *M* is sequentially Cohen–Macaulay.

Let $I^{\bullet}: 0 \to I^{0} \xrightarrow{\partial^{0}} I^{1} \xrightarrow{\partial^{1}} I^{2} \to \cdots$ be an irreducible resolution of $M \in Sq(R)$. Then it is easy to see that $ker(\partial^{i})$ is sequentially Cohen–Macaulay if and only if $i \ge ld.irr_{R}(M)$. In particular,

 $\mathrm{ld.irr}_{R}(M) = \min\{i \mid \mathrm{ker}(\partial^{i}) \text{ is sequentially Cohen-Macaulay}\}.$

We have a hyperplane $H \subset \mathbb{R}^n$ such that $B := H \cap \mathbf{P}$ is an (n-1)-dimensional polytope. Clearly, B is homeomorphic to a closed ball of dimension n-1. For a face $F \in \mathbf{L}$, set |F| to be the relative interior of $F \cap H$. If $\Delta \subset \mathbf{L}$ is an order ideal, then $|\Delta| := \bigcup_{F \in \Delta} |F|$ is a closed subset of B, and $\bigcup_{F \in \Delta} |F|$ is a *regular cell decomposition* (cf. [1, §6.2]) of $|\Delta|$. Up to homeomorphism, (the regular cell decomposition of) $|\Delta|$ does not depend on the particular choice of the hyperplane H. The dimension dim $|\Delta|$ of $|\Delta|$ is given by max{dim $|F| | F \in \Delta$ }. Here dim |F| denotes the dimension of |F| as a cell (we set dim $\emptyset = -1$), that is, dim $|F| = \dim F - 1 = \dim K[F] - 1$. Hence we have dim $K[\Delta] = \dim |\Delta| + 1$.

If $F \in \Delta$, then $U_F := \bigcup_{F' \supset F} |F'|$ is an open set of *B*. Note that $\{U_F \mid \{0\} \neq F \in \mathbf{L}\}$ is an open covering of *B*. In [17], from $M \in \operatorname{Sq}(R)$, the second author constructed a sheaf M^+ on *B*. (For the sheaf theory used below, consult [7].) More precisely, the assignment

$$\Gamma(U_F, M^+) = M_{\mathbf{c}(F)}$$

for each $F \neq \{0\}$ and the map

$$\varphi_{F,F'}^{M}: \Gamma\left(U_{F'}, M^{+}\right) = M_{\mathbf{c}(F')} \to M_{\mathbf{c}(F)} = \Gamma\left(U_{F}, M^{+}\right)$$

for $F, F' \neq \{0\}$ with $F \supset F'$ (equivalently, $U_{F'} \supset U_F$) defines a sheaf. Note that M^+ is a *constructible sheaf* with respect to the cell decomposition $B = \bigcup_{F \in \mathbf{L}} |F|$. In fact, for all $\{0\} \neq F \in \mathbf{L}$, the restriction $M^+|_{|F|}$ of M^+ to $|F| \subset B$ is a constant sheaf with coefficients in $M_{\mathbf{c}(F)}$. Note that $M_{\mathbf{0}}$ is "irrelevant" to M^+ , where **0** denotes $(0, 0, \dots, 0) \in \mathbb{Z}^n$.

It is easy to see that $K[\Delta]^+ \cong j_*\underline{K}_{|\Delta|}$, where $\underline{K}_{|\Delta|}$ is the constant sheaf on $|\Delta|$ with coefficients in K, and j denotes the embedding map $|\Delta| \hookrightarrow B$. Similarly, we have that $(\omega_R)^+ \cong h_!\underline{K}_{B^\circ}$, where \underline{K}_{B° is the constant sheaf on the relative interior B° of B, and h denotes the embedding map $B^\circ \hookrightarrow B$. Note that $(\omega_R)^+$ is the orientation sheaf of B over K.

Theorem 2.7. (See [17, Theorem 3.3].) For $M \in Sq(R)$, we have an isomorphism

$$H^i(B; M^+) \cong \left[H^{i+1}_{\mathfrak{m}}(M)\right]_{\mathbf{0}} \text{ for all } i \ge 1,$$

and an exact sequence

$$0 \to \left[H^0_{\mathfrak{m}}(M)\right]_{\mathbf{0}} \to M_{\mathbf{0}} \to H^0(B; M^+) \to \left[H^1_{\mathfrak{m}}(M)\right]_{\mathbf{0}} \to 0.$$

In particular, we have $[H^{i+1}_{\mathfrak{m}}(K[\Delta])]_{\mathbf{0}} \cong \tilde{H}^{i}(|\Delta|; K)$ for all $i \ge 0$, where $\tilde{H}^{i}(|\Delta|; K)$ denotes the *i*th reduced cohomology of $|\Delta|$ with coefficients in K.

Let $\Delta \subset \mathbf{L}$ be an order ideal and $X := |\Delta|$. Then X admits Verdier's dualizing complex \mathcal{D}_X^{\bullet} , which is a complex of sheaves of K-vector spaces. For example, \mathcal{D}_B^{\bullet} is quasi-isomorphic to $(\omega_R)^+[n-1]$.

Theorem 2.8. (See [17, Theorem 4.2].) With the above notation, if $\operatorname{ann}(M) \supset I_{\Delta}$ (equivalently, $\operatorname{supp}(M^+) := \{x \in B \mid (M^+)_x \neq 0\} \subset X$), then we have

 $\operatorname{supp}(\operatorname{Ext}^{i}_{R}(M,\omega_{R})^{+}) \subset X \quad and \quad \operatorname{Ext}^{i}_{R}(M,\omega_{R})^{+}|_{X} \cong \mathcal{E}xt^{i-n+1}(M^{+}|_{X},\mathcal{D}^{\bullet}_{X}).$

Theorem 2.9. Let M be a squarefree R-module with $M \neq 0$ and $[H^1_{\mathfrak{m}}(M)]_{\mathbf{0}} = 0$, and X the closure of $\operatorname{supp}(M^+)$. Then $\operatorname{ld.irr}_R(M)$ only depends on the sheaf $M^+|_X$ (also independent from R).

Proof. We use Corollary 2.5. In the notation there, the case when i = 0 is always unnecessary to check. Moreover, by the present assumption, we have depth_R($\operatorname{Ext}_{R}^{n-1}(M, \omega_{R})$) ≥ 1 (in fact, $\operatorname{Ext}_{R}^{n-1}(M, \omega_{R})$) is either the 0 module, or a 1-dimensional Cohen–Macaulay module). So we may assume that i > 1.

Recall that

$$\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-i}(M,\omega_{R})\right) = \min\left\{j \mid \operatorname{Ext}_{R}^{n-j}\left(\operatorname{Ext}_{R}^{n-i}(M,\omega_{R}),\omega_{R}\right) \neq 0\right\}$$

By Theorem 2.8, $[\text{Ext}_R^{n-j}(\text{Ext}_R^{n-i}(M,\omega_R),\omega_R)]_{\mathbf{a}}$ can be determined by $M^+|_X$ for all i, j and all $\mathbf{a} \neq 0$. If j > 1, then $[\text{Ext}_R^{n-j}(\text{Ext}_R^{n-i}(M,\omega_R),\omega_R)]_{\mathbf{0}}$ is isomorphic to

$$\begin{bmatrix} H^{j}_{\mathfrak{m}}(\operatorname{Ext}_{R}^{n-i}(M,\omega_{R})) \end{bmatrix}_{\mathbf{0}}^{*} \cong H^{j-1}(B; \operatorname{Ext}_{R}^{n-i}(M,\omega_{R})^{+})^{*}$$
$$\cong H^{j-1}(X; \mathcal{E}xt^{-i-1}(M^{+}|_{X}; \mathcal{D}_{X}^{\bullet}))^{*}$$

(the first and the second isomorphisms follow from Theorems 2.7 and 2.8, respectively), and determined by $M^+|_X$. So only $[\operatorname{Ext}_R^{n-j}(\operatorname{Ext}_R^{n-i}(M,\omega_R),\omega_R)]_0$ for j = 0, 1 remain. As above, they are isomorphic to $[H^j_{\mathfrak{m}}(\operatorname{Ext}_R^{n-i}(M,\omega_R))]_0^*$. But, by [19, Lemma 5.11], we can compute $[H^j_{\mathfrak{m}}(\operatorname{Ext}_R^{n-i}(M,\omega_R))]_0$ for i > 1 and j = 0, 1 from the sheaf $M^+|_X$. So we are done. \Box

Theorem 2.10. For an order ideal $\Delta \subset \mathbf{L}$ with $\Delta \neq \emptyset$, $\operatorname{ld.irr}_R(K[\Delta])$ depends only on the topological space $|\Delta|$.

Note that $\operatorname{ld.irr}_R(K[\Delta])$ may depend on $\operatorname{char}(K)$. For example, if $|\Delta|$ is homeomorphic to a real projective plane, then $\operatorname{ld.irr}_R(K[\Delta]) = 0$ if $\operatorname{char}(K) \neq 2$, but $\operatorname{ld.irr}_R(K[\Delta]) = 2$ if $\operatorname{char}(K) = 2$.

Similarly, some other invariants and conditions (e.g., the Cohen–Macaulay property of $K[\Delta]$) studied in this paper depend on char(K). But, since we fix the base field K, we always omit the phrase "over K".

Proof. If $|\Delta|$ is not connected, then $[H^1_{\mathfrak{m}}(K[\Delta])]_{\mathbf{0}} \neq 0$ by Theorem 2.7, and we cannot use Theorem 2.9 directly. But even in this case, depth_R($\operatorname{Ext}_{R}^{n-i}(K[\Delta], \omega_{R}))$ can be computed for all $i \neq 1$ by the same way as in Theorem 2.9. In particular, they only depend on $|\Delta|$. So the assertion follows from the next lemma. \Box

Lemma 2.11. We have depth_R($\operatorname{Ext}_{R}^{n-1}(K[\Delta], \omega_{R})) \in \{0, 1, +\infty\}$, and

depth_R(Ext_Rⁿ⁻¹($K[\Delta], \omega_R$)) = 0 if and only if $|\Delta'|$ is not connected.

Here $\Delta' := \Delta \setminus \{F \mid F \text{ is a maximal element of } \Delta \text{ and } \dim |F| = 0\}.$

Proof. Since dim_{*R*} Ext^{*n*-1}_{*R*}($K[\Delta], \omega_R$) ≤ 1 , the first statement is clear. If dim $|\Delta| \leq 0$, then $|\Delta'| = \emptyset$ and depth_{*R*}(Ext^{*n*-1}_{*R*}($K[\Delta], \omega_R$)) ≥ 1 . So, to see the second statement, we may assume that dim $|\Delta| \geq 1$. Set $J := I_{\Delta'}/I_{\Delta}$ to be an ideal of $K[\Delta]$. Note that either *J* is a 1-dimensional Cohen–Macaulay module or J = 0. From the short exact sequence $0 \to J \to K[\Delta] \to K[\Delta'] \to 0$, we have an exact sequence

$$0 \to \operatorname{Ext}_{R}^{n-1}(K[\Delta'], \omega_{R}) \to \operatorname{Ext}_{R}^{n-1}(K[\Delta], \omega_{R}) \to \operatorname{Ext}_{R}^{n-1}(J, \omega_{R}) \to 0.$$

Since $\operatorname{Ext}_{R}^{n-1}(J, \omega_{R})$ has positive depth,

$$\operatorname{depth}_{R}\left(\operatorname{Ext}_{R}^{n-1}\left(K[\Delta'],\omega_{R}\right)\right)=0$$

if and only if depth_R(Ext_Rⁿ⁻¹($K[\Delta], \omega_R$)) = 0. But, since $K[\Delta']$ does not have 1-dimensional associated primes, Ext_Rⁿ⁻¹($K[\Delta'], \omega_R$) is an artinian module. Hence we have the following.

$$depth_{R}\left(\operatorname{Ext}_{R}^{n-1}\left(K[\Delta'], \omega_{R}\right)\right) = 0 \iff \left[\operatorname{Ext}_{R}^{n-1}\left(K[\Delta'], \omega_{R}\right)\right]_{\mathbf{0}} \neq 0$$
$$\iff \left[H_{\mathfrak{m}}^{1}\left(K[\Delta']\right)\right]_{\mathbf{0}} = \tilde{H}^{0}\left(|\Delta'|; K\right) \neq 0$$
$$\iff |\Delta'| \text{ is not connected.} \qquad \Box$$

3. Linearity defects of symmetric and exterior face rings

Let $S := K[x_1, ..., x_n]$ be a polynomial ring, and consider its natural \mathbb{Z}^n -grading. Since $S = K[\mathbb{N}^n]$ is a normal semigroup ring, we can use the notation and the results in the previous section.

Now we introduce some conventions which are compatible with the previous notation. Let $\mathbf{e}_i := (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{R}^n$ be the *i*th unit vector, and **P** the cone spanned by $\mathbf{e}_1, \ldots, \mathbf{e}_n$. We identify a face *F* of **P** with the subset $\{i \mid \mathbf{e}_i \in F\}$ of $[n] := \{1, 2, \ldots, n\}$. Hence the set **L** of nonempty faces of **P** can be identified with the power set $2^{[n]}$ of [n]. We say $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$ is *squarefree*, if $a_i = 0, 1$ for all *i*. A squarefree vector $\mathbf{a} \in \mathbb{N}^n$ will be identified with the subset $\{i \mid a_i = 1\}$ of [n]. Recall that we took a vector $\mathbf{c}(F) \in C$ for each $F \in \mathbf{L}$ in the previous section. Here we assume that $\mathbf{c}(F)$ is the squarefree vector corresponding to $F \in \mathbf{L} \cong 2^{[n]}$. So, for a \mathbb{Z}^n -graded *S*-module *M*, we simply denote $M_{\mathbf{c}(F)}$ by M_F . In the first principle, we regard *F* as a subset of [n], or a squarefree vector in \mathbb{N}^n , rather than the corresponding face of **P**. For example, we write $P_F = (x_i \mid i \notin F), K[F] \cong K[x_i \mid i \in F]$. And S(-F) denotes the rank 1 free *S*-module $S(-\mathbf{a})$, where $\mathbf{a} \in \mathbb{N}^n$ is the squarefree vector corresponding to *F*.

Squarefree S-modules are defined by the same way as Definition 2.1. Note that the free module $S(-\mathbf{a})$, $\mathbf{a} \in \mathbb{Z}^n$, is squarefree if and only if \mathbf{a} is squarefree. Let *mod S (resp. Sq(S)) be the category of finitely generated \mathbb{Z}^n -graded S-modules (resp. squarefree S-modules). Let P_{\bullet} be a \mathbb{Z}^n -graded minimal free resolution of $M \in \text{*mod } S$. Then M is squarefree if and only if each P_i is a direct sum of copies of S(-F) for various $F \subset [n]$. In the present case, an order ideal Δ of $\mathbf{L} (\cong 2^{[n]})$ is essentially a simplicial complex, and the ring $K[\Delta]$ defined in the previous section is nothing other than the *Stanley–Reisner ring* (cf. [1,14]) of Δ .

Let $E = \bigwedge \langle y_1, \dots, y_n \rangle$ be the exterior algebra over K. Under the *Bernstein–Gel'fand–Gel'fand correspondence* (cf. [3]), E is the counter part of S. We regard E as a \mathbb{Z}^n -graded ring

by deg $y_i = \mathbf{e}_i = \deg x_i$ for each *i*. Clearly, any monomial ideal of *E* is "squarefree", and of the form

$$J_{\Delta} := \left(\prod_{i \in F} y_i \mid F \subset [n], F \notin \Delta\right)$$

for a simplicial complex $\Delta \subset 2^{[n]}$. We say $K\langle \Delta \rangle := E/J_{\Delta}$ is the *exterior face ring* of Δ .

Let *mod *E* be the category of finitely generated \mathbb{Z}^n -graded *E*-modules and degree preserving *E*-homomorphisms. Note that, for graded *E*-modules, we do not have to distinguish left modules from right ones. Hence

$$\mathbf{D}_{E}(-) := \bigoplus_{\mathbf{a} \in \mathbb{Z}^{n}} \operatorname{Hom}_{\operatorname{mod} E} \left(-, E(\mathbf{a}) \right)$$

gives an exact contravariant functor from *mod E to itself satisfying $\mathbf{D}_E \circ \mathbf{D}_E = \mathrm{Id}$.

Definition 3.1. (See Römer [11].) We say $N \in \text{*mod } E$ is squarefree, if $N = \bigoplus_{F \subset [n]} N_F$ (i.e., if $\mathbf{a} \in \mathbb{Z}^n$ is not squarefree, then $N_{\mathbf{a}} = 0$).

An exterior face ring $K \langle \Delta \rangle$ is a squarefree *E*-module. But, since a free module $E(\mathbf{a})$ is not squarefree for $\mathbf{a} \neq 0$, the syzygies of a squarefree *E*-module are *not* squarefree. Let Sq(*E*) be the full subcategory of *mod *E* consisting of squarefree modules. If *N* is a squarefree *E*-module, then so is $\mathbf{D}_E(N)$. That is, \mathbf{D}_E gives a contravariant functor from Sq(*E*) to itself.

We have functors $S: Sq(E) \rightarrow Sq(S)$ and $\mathcal{E}: Sq(S) \rightarrow Sq(E)$ giving an equivalence $Sq(S) \cong$ Sq(*E*). Here $S(N)_F = N_F$ for $N \in Sq(E)$ and $F \subset [n]$, and the multiplication map $S(N)_F \ni z \mapsto x_i z \in S(N)_{F \cup \{i\}}$ for $i \notin F$ is given by

$$\mathcal{S}(N)_F = N_F \ni z \mapsto (-1)^{\alpha(i,F)} y_i z \in N_{F \cup \{i\}} = \mathcal{S}(N)_{F \cup \{i\}},$$

where $\alpha(i, F) = \#\{j \in F \mid j < i\}$. For example, $\mathcal{S}(K(\Delta)) \cong K[\Delta]$. See [11] for detail.

Note that $\mathbf{A} := S \circ \mathbf{D}_E \circ \mathcal{E}$ is an exact contravariant functor from $\operatorname{Sq}(S)$ to itself satisfying $\mathbf{A} \circ \mathbf{A} = \operatorname{Id}$. It is easy to see that $\mathbf{A}(K[F]) \cong S(-F^c)$, where $F^c := [n] \setminus F$. We also have $\mathbf{A}(K[\Delta]) \cong I_{\Delta^{\vee}}$, where

$$\Delta^{\vee} := \left\{ F \subset [n] \mid F^{c} \notin \Delta \right\}$$

is the *Alexander dual* complex of Δ . Since **A** is exact, it exchanges a (minimal) free resolution with a (minimal) irreducible resolution.

Eisenbud et al. [2,3] introduced the notion of the *linear strands* and the *linear part* of a minimal free resolution of a graded S-module. Let $P_{\bullet}:\dots \to P_1 \to P_0 \to 0$ be a \mathbb{Z}^n -graded minimal S-free resolution of $M \in \operatorname{*mod} S$. We have natural numbers $\beta_{i,\mathbf{a}}(M)$ for $i \in \mathbb{N}$ and $\mathbf{a} \in \mathbb{Z}^n$ such that $P_i = \bigoplus_{\mathbf{a} \in \mathbb{Z}^n} S(-\mathbf{a})^{\beta_{i,\mathbf{a}}(M)}$. We call $\beta_{i,\mathbf{a}}(M)$ the graded Betti numbers of M. Set $|\mathbf{a}| = \sum_{i=1}^n a_i$ for $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$. For each $l \in \mathbb{Z}$, we define the *l*-linear strand $\lim_l (P_{\bullet})_i$ of P_• as follows: The term $\lim_l (P_{\bullet})_i$ of homological degree i is

$$\bigoplus_{|\mathbf{a}|=l+i} S(-\mathbf{a})^{\beta_{i,\mathbf{a}}(M)},$$

which is a direct summand of P_i , and the differential $\lim_l (P_{\bullet})_i \to \lim_l (P_{\bullet})_{i-1}$ is the corresponding component of the differential $P_i \to P_{i-1}$ of P_{\bullet} . By the minimality of P_{\bullet} , we can easily verify that $\lim_l (P_{\bullet})$ are chain complexes (see also [2, §7A]). We call $\lim(P_{\bullet}) := \bigoplus_{l \in \mathbb{Z}} \lim_l (P_{\bullet})$ the *linear part* of P_{\bullet} . Note that the differential maps of $\lim_{l \to \infty} (P_{\bullet})$ are represented by matrices of linear forms. We call

$$\mathrm{ld}_{\mathcal{S}}(M) := \max\left\{i \mid H_i(\mathrm{lin}(P_{\bullet})) \neq 0\right\}$$

the *linearity defect* of *M*.

Sometimes, we regard $M \in \operatorname{*mod} S$ as a \mathbb{Z} -graded module by $M_j = \bigoplus_{|\mathbf{a}|=j} M_{\mathbf{a}}$. In this case, we set $\beta_{i,j}(M) := \sum_{|\mathbf{a}|=j} \beta_{i,\mathbf{a}}(M)$. Then $\lim_{l \to 0} (P_{\bullet})_i = S(-l-i)^{\beta_{i,l+i}(M)}$.

Remark 3.2. For $M \in \operatorname{*mod} S$, it is clear that $\operatorname{ld}_S(M) \leq \operatorname{proj.dim}_S(M) \leq n$, and there are many examples attaining the equalities. In fact, $\operatorname{ld}_S(S/(x_1^2, \ldots, x_n^2)) = n$. But if $M \in \operatorname{Sq}(S)$, then we always have $\operatorname{ld}_S(M) \leq n - 1$. In fact, for a squarefree module M, $\operatorname{proj.dim}_S(M) = n$, if and only if depth_S M = 0, if and only if $M \cong K \oplus M'$ for some $M' \in \operatorname{Sq}(S)$. But $\operatorname{ld}_S(K) = 0$ and $\operatorname{ld}_S(M' \oplus K) = \operatorname{ld}_S(M')$. So we may assume that $\operatorname{proj.dim}_S M' \leq n - 1$.

Proposition 3.3. Let $M \in Sq(S)$, and P_{\bullet} its minimal graded free resolution. We have

$$\max\{i \mid H_i(\lim_l(P_\bullet)) \neq 0\} = n - l - \operatorname{depth}_S(\operatorname{Ext}_S^l(\mathbf{A}(M), S)),$$

and hence

$$\mathrm{ld}_{S}(M) = \max\left\{i - \mathrm{depth}_{S}\left(\mathrm{Ext}_{S}^{n-i}\left(\mathbf{A}(M), S\right)\right) \mid 0 \leq i \leq n\right\}$$

Proof. Note that $I^{\bullet} := \mathbf{A}(P_{\bullet})$ is a minimal irreducible resolution of $\mathbf{A}(M)$. Moreover, we have $\mathbf{A}(\lim_{l \to 0} (P_{\bullet})) \cong \lim_{n \to l} (I^{\bullet})$. Since **A** is exact,

$$\max\{i \mid H_i(\operatorname{lin}_l(P_{\bullet})) \neq 0\} = \max\{i \mid H^i(\operatorname{lin}_{n-l}(I^{\bullet})) \neq 0\},\$$

and hence

$$\mathrm{ld}_{S}(M) = \mathrm{ld.irr}_{S}(\mathbf{A}(M)). \tag{3.1}$$

Hence the assertions follow from Corollary 2.5 (note that $S \cong \omega_S$ as underlying modules). \Box

For $N \in \operatorname{*mod} E$, we have a \mathbb{Z}^n -graded minimal E-free resolution P_{\bullet} of N. By the similar way to the *S*-module case, we can define the linear part $\operatorname{lin}(P_{\bullet})$ of P_{\bullet} , and set $\operatorname{ld}_E(N) := \max\{i \mid H_i(\operatorname{lin}(P_{\bullet})) \neq 0\}$. (In [12,18], $\operatorname{ld}_E(N)$ is denoted by $\operatorname{lpd}(N)$. "lpd" is an abbreviation for "linear part dominate".) In [3, Theorem 3.1], Eisenbud et al. showed that $\operatorname{ld}_E(N) < \infty$ for all $N \in \operatorname{*mod} E$. Since $\operatorname{proj.dim}_E(N) = \infty$ in most cases, this is a strong result. If $n \ge 2$, then we have $\operatorname{sup}\{\operatorname{ld}_E(N) \mid N \in \operatorname{*mod} E\} = \infty$. In fact, since E is selfinjective, we can take "cosyzygies". But, if $N \in \operatorname{Sq}(E)$, then $\operatorname{ld}_E(N)$ behaves quite nicely.

Theorem 3.4. For $N \in \text{Sq}(E)$, we have $\text{ld}_E(N) = \text{ld}_S(\mathcal{S}(N)) \leq n - 1$. In particular, for a simplicial complex $\Delta \subset 2^{[n]}$, we have $\text{ld}_E(K \langle \Delta \rangle) = \text{ld}_S(K[\Delta])$.

Proof. Using the Bernstein–Gel'fand–Gel'fand correspondence, the second author described $ld_E(N)$ in [18, Lemma 4.12]. This description is the first equality of the following computation, which proves the assertion.

$$ld_{E}(N) = \max\{i - \operatorname{depth}_{S}(\operatorname{Ext}_{S}^{n-i}(S \circ \mathbf{D}_{E}(N), S)) \mid 0 \leq i \leq n\} \quad (by [18])$$
$$= \max\{i - \operatorname{depth}_{S}(\operatorname{Ext}_{S}^{n-i}(\mathbf{A} \circ \mathcal{S}(N), S)) \mid 0 \leq i \leq n\} \quad (see \text{ below})$$
$$= ld_{S}(\mathcal{S}(N)) \quad (by \text{ Proposition 3.3}).$$

Here the second equality follows from the isomorphisms $S \circ \mathbf{D}_E(N) \cong S \circ \mathbf{D}_E \circ \mathcal{E} \circ \mathcal{S}(N) \cong \mathbf{A} \circ \mathcal{S}(N)$. \Box

Remark 3.5. Herzog and Römer showed that $ld_E(N) \leq proj.dim_S(\mathcal{S}(N))$ for $N \in Sq(E)$ [12, Corollary 3.3.5]. Since $ld_S(\mathcal{S}(N)) \leq proj.dim_S(\mathcal{S}(N))$ (the inequality is strict quite often), Theorem 3.4 refines their result. Our equality might follow from the argument in [12], which constructs a minimal *E*-free resolution of *N* from a minimal *S*-free resolution of $\mathcal{S}(N)$. But it seems that certain amount of computation will be required.

Theorem 3.4 suggests that we may set

$$\mathrm{ld}(\Delta) := \mathrm{ld}_S(K[\Delta]) = \mathrm{ld}_E(K\langle\Delta\rangle).$$

Theorem 3.6. If $I_{\Delta} \neq (0)$ (equivalently, $\Delta \neq 2^{[n]}$), then $\operatorname{ld}_{S}(I_{\Delta})$ is a topological invariant of the geometric realization $|\Delta^{\vee}|$ of the Alexander dual Δ^{\vee} of Δ . If $\Delta \neq 2^{T}$ for any $T \subset [n]$, then $\operatorname{ld}(\Delta)$ is also a topological invariant of $|\Delta^{\vee}|$ (also independent from the number $n = \dim S$).

Proof. Since $\mathbf{A}(I_{\Delta}) = K[\Delta^{\vee}]$ and $\Delta^{\vee} \neq \emptyset$, the first assertion follows from Theorem 2.10 and the equality (3.1) in the proof of Proposition 3.3.

It is easy to see that $\Delta \neq 2^T$ for any T if and only if $ld(\Delta) \ge 1$. If this is the case, $ld(\Delta) = ld_S(I_\Delta) + 1$, and the second assertion follows from the first. \Box

Remark 3.7. (1) For the first statement of Theorem 3.6, the assumption that $I_{\Delta} \neq (0)$ is necessary. In fact, if $I_{\Delta} = (0)$, then $\Delta = 2^{[n]}$ and $\Delta^{\vee} = \emptyset$. On the other hand, if we set $\Gamma := 2^{[n]} \setminus [n]$, then $\Gamma^{\vee} = \{\emptyset\}$ and $|\Gamma^{\vee}| = \emptyset = |\Delta^{\vee}|$. In view of Proposition 3.3, it might be natural to set $\mathrm{ld}_S(I_{\Delta}) = \mathrm{ld}_S((0)) = -\infty$. But, $I_{\Gamma} = \omega_S$ and hence $\mathrm{ld}_S(I_{\Gamma}) = 0$. One might think it is better to set $\mathrm{ld}_S((0)) = 0$ to avoid the problem. But this convention does not help so much, if we consider $K[\Delta]$ and $K[\Gamma]$. In fact, $\mathrm{ld}_S(K[\Delta]) = \mathrm{ld}_S(S) = 0$ and $\mathrm{ld}_S(K[\Gamma]) = \mathrm{ld}_S(S/\omega_S) = 1$.

(2) Let us think about the second statement of the theorem. Even if we forget the assumption that $\Delta \neq 2^T$, $ld(\Delta)$ is almost a topological invariant. Under the assumption that $I_{\Delta} \neq 0$, we have the following.

- ld(Δ) ≤ 1 if and only if K[Δ[∨]] is sequentially Cohen–Macaulay. Hence we can determine whether ld(Δ) ≤ 1 from the topological space |Δ[∨]|.
- $ld(\Delta) = 0$, if and only if all facets of Δ^{\vee} have dimension n 2, if and only if $|\Delta^{\vee}|$ is Cohen–Macaulay and has dimension n 2.

Hence, if we forget the number "n", we cannot determine whether $ld(\Delta) = 0$ from $|\Delta^{\vee}|$.

4. An upper bound of linearity defects

In the previous section, we have seen that $ld_E(N) = ld_S(\mathcal{S}(N))$ for $N \in Sq(E)$, in particular $ld_E(K\langle\Delta\rangle) = ld_S(K[\Delta])$ for a simplicial complex Δ . In this section, we will give an upper bound of them, and see that the bound is sharp.

For $0 \neq N \in \operatorname{*mod} E$, regarding N as a \mathbb{Z} -graded module, we set $\operatorname{indeg}_E(N) := \min\{i \mid N_i \neq 0\}$, which is called the *initial degree* of N, and $\operatorname{indeg}_S(M)$ is similarly defined as $\operatorname{indeg}_S(M) := \min\{i \mid M_i \neq 0\}$ for $0 \neq M \in \operatorname{*mod} S$. If $\Delta \neq 2^{[n]}$ (equivalently $I_{\Delta} \neq 0$ or $J_{\Delta} \neq 0$), then we have $\operatorname{indeg}_S(I_{\Delta}) = \operatorname{indeg}_E(J_{\Delta}) = \min\{\sharp F \mid F \subset [n], F \notin \Delta\}$, where $\sharp F$ denotes the cardinal number of F. So we set

$$\operatorname{indeg}(\Delta) := \operatorname{indeg}_{S}(I_{\Delta}) = \operatorname{indeg}_{E}(J_{\Delta}).$$

Since $ld(2^{[n]}) = ld_S(S) = ld_E(E) = 0$ holds, we henceforth exclude this trivial case; we assume that $\Delta \neq 2^{[n]}$.

We often make use of the following facts:

Lemma 4.1. Let $0 \neq M \in \text{*mod } S$ and let P_{\bullet} be a minimal graded free resolution of M. Then

- (1) $\lim_{i} (P_{\bullet}) = 0$ for all $i < \operatorname{indeg}_{S}(M)$, *i.e.*, there are only *l*-linear strands with $l \ge \operatorname{indeg}_{S}(M)$ in P_{\bullet} ;
- (2) $\lim_{\text{indeg}_{S}(M)}(P_{\bullet})$ is a subcomplex of P_{\bullet} ;
- (3) if $M \in \text{Sq}(S)$, then $\lim(P_{\bullet}) = \bigoplus_{0 \le l \le n} \lim_{l \ge n} (P_{\bullet})$, and $\lim_{l \ge n} (P_{\bullet})_{l} = 0$ for all i > n l and all $0 \le l \le n$, where the subscript *i* is a homological degree.

Proof. (1) and (2) are clear. (3) holds from the fact that $P_i \cong \bigoplus_{F \subset [n]} S(-F)^{\beta_{i,F}}$. \Box

Theorem 4.2. For $0 \neq N \in Sq(E)$, it follows that

$$\mathrm{ld}_E(N) \leqslant \max\{0, n - \mathrm{indeg}_E(N) - 1\}.$$

By Theorem 3.4 this is equivalent to say that for $M \in Sq(S)$,

$$\mathrm{ld}_{S}(M) \leq \max\{0, n - \mathrm{indeg}_{S}(M) - 1\}.$$

Proof. It suffices to show the assertion for $M \in \text{Sq}(S)$. Set $\text{indeg}_S(M) = d$ and let P_{\bullet} be a minimal graded free resolution of M. The case d = n is trivial by Lemma 4.1 (1), (3). Assume that $d \leq n - 1$. Observing that $\lim_{l \to 0} (P_{\bullet})_{l} = S(-l - i)^{\beta_{l,l+l}}$, where $\beta_{l,l+l}$ are \mathbb{Z} -graded Betti numbers of M, Lemma 4.1 (1), (3) implies that the last few steps of P_{\bullet} are of the form

$$0 \to S(-n)^{\beta_{n-d,n}} \to S(-n)^{\beta_{n-d-1,n}} \oplus S(-n+1)^{\beta_{n-d-1,n-1}} \to \cdots$$

Hence $\lim_{d} (P_{\bullet})_{n-d} = S(-n)^{\beta_{n-d,n}} = P_{n-d}$. Since $\lim_{d} (P_{\bullet})$ is a subcomplex of the acyclic complex P_{\bullet} by Lemma 4.1(2), we have $H_{n-d}(\lim_{d} (P_{\bullet})) = 0$, so that $\operatorname{ld}_{S}(M) \leq n - d - 1$. \Box

Note that $J_{\Delta} \in \text{Sq}(E)$ (resp. $I_{\Delta} \in \text{Sq}(S)$). Since $\text{ld}(\Delta) \leq \text{ld}_E(J_{\Delta}) + 1$ (resp. $\text{ld}(\Delta) \leq \text{ld}_S(I_{\Delta}) + 1$) holds, we have a bound for $\text{ld}(\Delta)$, applying Theorem 4.2 to J_{Δ} (resp. I_{Δ}).

Corollary 4.3. For a simplicial complex Δ on [n], we have

$$\mathrm{ld}(\Delta) \leqslant \max\{1, n - \mathrm{indeg}(\Delta)\}.$$

Let Δ , Γ be simplicial complexes on [n]. We denote $\Delta * \Gamma$ for the join

$$\{F \cup G \mid F \in \Delta, \ G \in \Gamma\}$$

of Δ and Γ , and for our convenience, set

$$\operatorname{ver}(\Delta) := \left\{ v \in [n] \mid \{v\} \in \Delta \right\}.$$

Lemma 4.4. Let Δ be a simplicial complex on [n]. Assume that $indeg(\Delta) = 1$, or equivalently $ver(\Delta) \neq [n]$. Then we have

$$\mathrm{ld}(\Delta) = \mathrm{ld}(\Delta * \{v\})$$

for $v \in [n] \setminus ver(\Delta)$.

Proof. We may assume that v = 1. Let P_{\bullet} be a minimal graded free resolution of $K[\Delta * \{1\}]$ and $\mathcal{K}(x_1)$ the Koszul complex

$$0 \to S(-1) \xrightarrow{x_1} S \to 0$$

with respect to x_1 . Consider the mapping cone $P_{\bullet} \otimes_S \mathcal{K}(x_1)$ of the map $P_{\bullet}(-1) \xrightarrow{x_1} P_{\bullet}$. There is the short exact sequence

$$0 \to P_{\bullet} \to P_{\bullet} \otimes_{S} \mathcal{K}(x_{1}) \to P_{\bullet}(-1)[-1] \to 0,$$

whence we have $H_i(P_{\bullet} \otimes_S \mathcal{K}(x_1)) = 0$ for all $i \ge 2$ and the exact sequence

$$0 \to H_1(P_{\bullet} \otimes_S \mathcal{K}(x_1)) \to H_0(P_{\bullet}(-1)) \xrightarrow{x_1} H_0(P_{\bullet}).$$

But since $H_0(P_{\bullet}) = K[\Delta * \{1\}]$ and x_1 is regular on it, we have $H_1(P_{\bullet} \otimes_S \mathcal{K}(x_1)) = 0$. Thus $P_{\bullet} \otimes_S \mathcal{K}(x_1)$ is acyclic and hence a minimal graded free resolution of $K[\Delta]$. Note that $\ln(P_{\bullet} \otimes_S \mathcal{K}(x_1)) = \ln(P_{\bullet}) \otimes_S \mathcal{K}(x_1)$: in fact, we have

$$\begin{aligned} \lim_{l} \left(P_{\bullet} \otimes_{S} \mathcal{K}(x_{1}) \right)_{i} &= \lim_{l} \left(P_{\bullet} \otimes_{S} S \right)_{i} \oplus \lim_{l} \left(P_{\bullet}[-1] \otimes_{S} S(-1) \right)_{i} \\ &= \left(\lim_{l} \left(P_{\bullet} \right)_{i} \otimes_{S} S \right) \oplus \left(\lim_{l} \left(P_{\bullet} \right)_{i-1} \otimes_{S} S(-1) \right) \\ &= \left(\lim_{l} \left(P_{\bullet} \right) \otimes_{S} \mathcal{K}(x_{1}) \right)_{i}, \end{aligned}$$

where the subscripts *i* denote homological degrees, and the differential map

$$\ln_l \left(P_{\bullet} \otimes_S \mathcal{K}(x_1) \right)_i \to \ln_l \left(P_{\bullet} \otimes_S \mathcal{K}(x_1) \right)_{i-1}$$

is composed by $\partial_i^{\langle l \rangle}$, $-\partial_{i-1}^{\langle l \rangle}$, and the multiplication map by x_1 , where $\partial_i^{\langle l \rangle}$ (resp. $\partial_{i-1}^{\langle l \rangle}$) is the *i*th (resp. (i-1)st) differential map of the *l*-linear strand of P_{\bullet} . Hence there is the short exact sequence

$$0 \to \lim(P_{\bullet}) \to \lim(P_{\bullet} \otimes_{S} \mathcal{K}(x_{1})) \to \lim(P_{\bullet})(-1)[-1] \to 0,$$

which yields that $H_i(\ln(P_{\bullet} \otimes_S \mathcal{K}(x_1))) = 0$ for all $i \ge \operatorname{ld}(\Delta * \{1\}) + 2$, and the exact sequence

$$0 \to H_{\mathrm{ld}(\varDelta * \{1\})+1} (\mathrm{lin}(P_{\bullet} \otimes_{S} \mathcal{K}(x_{1}))) \to H_{\mathrm{ld}(\varDelta * \{1\})} (\mathrm{lin}(P_{\bullet})(-1))$$
$$\xrightarrow{x_{1}} H_{\mathrm{ld}(\varDelta * \{1\})} (\mathrm{lin}(P_{\bullet})) \to H_{\mathrm{ld}(\varDelta * \{1\})} (\mathrm{lin}(P_{\bullet} \otimes_{S} \mathcal{K}(x_{1}))).$$

Since x_1 does not appear in any entry of the matrices representing the differentials of $lin(P_{\bullet})$, it is regular on $H_{\bullet}(lin(P_{\bullet}))$, and hence we have

$$H_{\mathrm{ld}(\varDelta * \{1\})+1} \big(\mathrm{lin} \big(P_{\bullet} \otimes_{S} \mathcal{K}(x_{1}) \big) \big) = 0$$

and

$$H_{\mathrm{ld}(\varDelta * \{1\})} (\mathrm{lin}(P_{\bullet} \otimes_{S} \mathcal{K}(x_{1}))) \neq 0,$$

since $H_{\mathrm{ld}(\varDelta * \{1\})}(\mathrm{lin}(P_{\bullet})) \neq 0$. Therefore $\mathrm{ld}(\varDelta) = \mathrm{ld}(\varDelta * \{1\})$. \Box

Let Δ be a simplicial complex on [n]. For $F \subset [n]$, we set

$$\Delta_F := \{ G \in \Delta \mid G \subset F \}.$$

The following fact, due to Hochster, is well known, but because of our frequent use, we mention it.

Proposition 4.5. (*Cf.* [1,14].) For a simplicial complex Δ on [n], we have

$$\beta_{i,j}(K[\Delta]) = \sum_{F \subset [n], \ \sharp F = j} \dim_K \tilde{H}_{j-i-1}(\Delta_F; K),$$

where $\beta_{i,j}(K[\Delta])$ are the \mathbb{Z} -graded Betti numbers of $K[\Delta]$.

Now we can give a new proof of [18, Proposition 4.15], which is the latter part of the next result.

Proposition 4.6. (*Cf.* [18, Proposition 4.15].) Let Δ be a simplicial complex on [n]. If indeg $\Delta = 1$, then we have

$$\mathrm{ld}(\Delta) \leqslant \max\{1, n-3\}.$$

Hence, for any Δ *, we have*

$$\mathrm{ld}(\Delta) \leqslant \max\{1, n-2\}.$$

Proof. The second inequality follows from the first one and Corollary 4.3. So it suffices to show the first. We set $\mathcal{V} := [n] \setminus \text{ver}(\Delta)$. Our hypothesis indeg $\Delta = 1$ implies that $\mathcal{V} \neq \emptyset$. By Lemma 4.4, the proof can be reduced to the case $\#\mathcal{V} = 1$. We may then assume that $\mathcal{V} = \{1\}$. Thus we have only to show that $\text{ld}(\Delta * \{1\}) \leq \max\{1, n - 3\}$. Since we have indeg $(\Delta * \{1\}) \geq 2$, we may assume $n \geq 4$ by Corollary 4.3. The length of the 0-linear strand of $K[\Delta * \{1\}]$ is 0, and hence we concentrate on the *l*-linear strands with $l \geq 1$. Let P_{\bullet} be a minimal graded free resolution of $K[\Delta * \{1\}]$. Since, as is well known, the cone of a simplicial complex, i.e. the join with a point, is acyclic, we have

$$\beta_{i,n}\left(K\left[\Delta * \{1\}\right]\right) = \dim_K \tilde{H}_{n-i-1}\left(\Delta * \{1\}; K\right) = 0$$

by Proposition 4.5. Thus $\lim_{l} (P_{\bullet})_{n-l} = 0$ for all $l \ge 1$. Now applying the same argument as the last part of the proof of Theorem 4.2 (but we need to replace *n* by n - 1), we have

$$H_{n-2}(\ln(P_{\bullet})) = 0,$$

and so $\operatorname{ld}(\Delta * \{1\}) \leq n - 3$. \Box

According to [18, Proposition 4.14], we can construct a squarefree module $N \in Sq(E)$ with $Id_E(N) = proj.dim_S(S(N)) = n - 1$. By Theorems 3.4 and 4.2, M := S(N) satisfies that $indeg_S(M) = 0$ and $Id_S(M) = n - 1$. For $0 \le i \le n - 1$, let $\Omega_i(M)$ be the *i*th syzygy of M. Then $\Omega_i(M)$ is squarefree, and we have that $Id_S(\Omega_i(M)) = Id_S(M) - i = n - i - 1$ and $indeg_S(\Omega_i(M)) \ge indeg_S(M) + i = i$. Thus by Theorem 4.2, we know that $indeg_S(\Omega_i(M)) = i$ and $Id_S(\Omega_i(M)) = n - indeg_S(\Omega_i(M)) - 1$. So the bound in Theorem 4.2 is optimal.

In the following, we will give an example of a simplicial complex Δ with $ld(\Delta) = n - indeg(\Delta)$ for $2 \leq indeg(\Delta) \leq n - 2$, and so we know the bound in Proposition 4.3 is optimal if $indeg(\Delta) \geq 2$, that is, $ver(\Delta) = [n]$.

Given a simplicial complex Δ on [n], we denote $\Delta^{(i)}$ for the *i*th skeleton of Δ , which is defined as

$$\Delta^{(i)} := \{ F \in \Delta \mid \#F \leq i+1 \}.$$

Example 4.7. Set $\Sigma := 2^{[n]}$, and let Γ be a simplicial complex on [n] whose geometric realization $|\Gamma|$ is homeomorphic to the (d-1)-dimensional sphere with $2 \leq d < n-1$, which we denote by S^{d-1} . (For m > d there exists a triangulation of S^{d-1} with m vertices. See, for example, [1, Proposition 5.2.10].) Consider the simplicial complex $\Delta := \Gamma \cup \Sigma^{(d-2)}$. We will verify that Δ is a desired complex, that is, $ld(\Delta) = n - indeg(\Delta)$. For brief notation, we put $t := indeg \Delta$ and $l := ld(\Delta)$.

First, from our definition, it is clear that $t \ge d$. Thus it is enough to show that $n - d \le l$; in fact we have that $l \le n - t \le n - d \le l$ by Corollary 4.3, and hence that t = d and l = n - d. Our aim is to prove that

$$\beta_{n-d,n}(K[\Delta]) \neq 0$$
 and $\beta_{n-d-1,n-1}(K[\Delta]) = 0$,

since, in this case, we have $H_{n-d}(\lim_{d} (P_{\bullet})) \neq 0$, and hence $n - d \leq l$.

Now, let $F \subset [n]$, and $\tilde{\mathcal{C}}_{\bullet}(\Delta_F; K)$, $\tilde{\mathcal{C}}_{\bullet}(\Gamma_F; K)$ be the augmented chain complexes of Δ_F and Γ_F , respectively. Since $\Sigma^{(d-2)}$ have no faces of dimension $\geq d-1$, we have $\tilde{\mathcal{C}}_{d-1}(\Delta_F; K) =$

 $\tilde{\mathcal{C}}_{d-1}(\Gamma_F; K)$ and hence $\tilde{H}_{d-1}(\Delta_F; K) = \tilde{H}_{d-1}(\Gamma_F; K)$. On the other hand, our assumption that $|\Gamma| \approx S^{d-1}$ implies that Γ is Gorenstein, and hence that

$$\tilde{H}_{d-1}(\Gamma_F; K) = \begin{cases} K & \text{if } F = [n]; \\ 0 & \text{otherwise.} \end{cases}$$

Therefore, by Proposition 4.5, we have that

$$\beta_{n-d,n}(K[\Delta]) = \dim_K \tilde{H}_{d-1}(\Gamma; K) = 1 \neq 0;$$

$$\beta_{n-d-1,n-1}(K[\Delta]) = \sum_{F \subset [n], \ \sharp F = n-1} \dim_K \tilde{H}_{d-1}(\Gamma_F; K) = 0.$$

5. A simplicial complex Δ with $ld(\Delta) = n - 2$ is an *n*-gon

Following the previous section, we assume that $\Delta \neq [n]$, throughout this section. We say a simplicial complex on [n] is an *n*-gon if its facets are $\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}$, and $\{n, 1\}$ after a suitable permutation of vertices. Consider the simplicial complex Δ on [n] given in Example 4.7. If we set d = 2, then Δ is an *n*-gon. Thus if a simplicial complex Δ on [n] is an *n*-gon, we have $ld(\Delta) = n - 2$. Actually, the inverse holds, that is, if $ld(\Delta) = n - 2$ with $n \ge 4$, Δ is nothing but an *n*-gon.

Theorem 5.1. Let Δ be a simplicial complex on [n] with $n \ge 4$. Then $ld(\Delta) = n - 2$ if and only if Δ is an n-gon.

In the previous section, we introduced Hochster's formula (Proposition 4.5), but in this section, we need explicit correspondence between $[\text{Tor}^{S}_{\bullet}(K[\Delta], K)]_{F}$ and reduced cohomologies of Δ_{F} , and so we will give it as follows.

Set $V := \langle x_1, \ldots, x_n \rangle = S_1$ and let $\mathcal{K}_{\bullet} := S \otimes_K \bigwedge V$ be the Koszul complex of S with respect to x_1, \ldots, x_n . Then we have

$$\left[\operatorname{Tor}_{i}^{S}(K[\Delta], K)\right]_{F} = H_{i}\left(\left[K[\Delta] \otimes_{S} \mathcal{K}_{\bullet}\right]_{F}\right) = H_{i}\left(\left[K[\Delta] \otimes_{K} \bigwedge V\right]_{F}\right)$$

for $F \subset [n]$. Furthermore, the basis of the *K*-vector space $[K[\Delta] \otimes_K \bigwedge V]_F$ is of the form $\mathbf{x}^G \otimes \wedge^{F \setminus G} \mathbf{x}$ with $G \in \Delta_F$, where $\mathbf{x}^G = \prod_{i \in G} x_i$ and $\wedge^{F \setminus G} \mathbf{x} = x_{i_1} \wedge \cdots \wedge x_{i_k}$ for $\{i_1, \ldots, i_k\} = F \setminus G$ with $i_1 < \cdots < i_k$. Thus the assignment

$$\varphi^{i}: \tilde{\mathcal{C}}^{i-1}(\Delta_{F}; K) \ni e_{G}^{*} \mapsto (-1)^{\alpha(G, F)} \mathbf{x}^{G} \otimes \wedge^{F \setminus G} \mathbf{x} \in \left[K[\Delta] \otimes_{K} \bigwedge V \right]_{F}$$

with $G \in \Delta_F$ gives the isomorphism $\varphi^{\bullet}: \tilde{C}^{\bullet}(\Delta_F; K)[-1] \to [K[\Delta] \otimes_K \bigwedge V]_F$ of chain complexes, where $\tilde{C}^{i-1}(\Delta_F; K)$ (resp. $\tilde{C}_{i-1}(\Delta_F; K)$) is the (i-1)st term of the augmented cochain (resp. chain) complex of Δ_F over K, e_G is the basis element of $\tilde{C}_{i-1}(\Delta_F; K)$ corresponding to G, and e_G^* is the K-dual base of e_G . Here we set

$$\alpha(A, B) := \sharp \big\{ (a, b) \mid a > b, \ a \in A, \ b \in B \big\}$$

for $A, B \subset [n]$. Thus we have the isomorphism

$$\bar{\varphi} \colon \tilde{H}^{i-1}(\Delta_F; K) \to \left[\operatorname{Tor}_{\sharp F-i}^{S} \left(K[\Delta], K \right) \right]_F.$$
(5.1)

Lemma 5.2. Let Δ be a simplicial complex on [n] with $indeg(\Delta) \ge 2$, and P_{\bullet} a minimal graded free resolution of $K[\Delta]$. We denote Q_{\bullet} for the subcomplex of P_{\bullet} such that $Q_i := \bigoplus_{j \le i+1} S(-j)^{\beta_{i,j}} \subset \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i,j}} = P_i$. Assume $n \ge 4$. Then the following are equivalent.

- (1) $\operatorname{ld}(\Delta) = n 2;$
- (2) $H_{n-2}(\lim_{t \to 0} (P_{\bullet})) \neq 0;$
- (3) $H_{n-3}(Q_{\bullet}) \neq 0.$

In the case $n \ge 5$, the condition (3) is equivalent to $H_{n-3}(\lim_{t \to 0} (P_{\bullet})) \ne 0$.

Proof. Since $\operatorname{indeg}(\Delta) \ge 2$, $\operatorname{lin}_0(P_{\bullet})_i = 0$ holds for $i \ge 1$. Clearly, $H_i(Q_{\bullet}) = H_i(\operatorname{lin}_1(P_{\bullet}))$ for $i \ge 2$. Since $\operatorname{lin}_l(P_{\bullet})_i = 0$ for $i \ge n-2$ and $l \ge 3$ by Lemma 4.1 and that $\operatorname{ld}(\Delta) \le n-2$ by Proposition 4.6, it suffices to show the following.

$$H_{n-2}(\operatorname{lin}_2(P_{\bullet})) \cong H_{n-3}(Q_{\bullet}) \quad \text{and} \quad H_i(Q_{\bullet}) = 0 \quad \text{for } i \ge n-2.$$
(5.2)

Since Q_{\bullet} is a subcomplex of P_{\bullet} , there exists the following short exact sequence of complexes.

$$0 \to Q_{\bullet} \to P_{\bullet} \to \tilde{P}_{\bullet} := P_{\bullet}/Q_{\bullet} \to 0,$$

which induces the exact sequence of homology groups

$$H_i(P_{\bullet}) \to H_i(P_{\bullet}) \to H_{i-1}(Q_{\bullet}) \to H_{i-1}(P_{\bullet}).$$

Hence the acyclicity of P_{\bullet} implies that $H_i(\tilde{P}_{\bullet}) \cong H_{i-1}(Q_{\bullet})$ for all $i \ge 2$. Now $H_i(\tilde{P}_{\bullet}) = 0$ for $i \ge n-1$ by Lemma 4.1 and the fact that $\tilde{P}_i = \bigoplus_{l\ge 2} \ln_l(P_{\bullet})_i$. So the latter assertion of (5.2) holds, since $n-2 \ge 2$. The former follows from the equality $H_{n-2}(\tilde{P}_{\bullet}) = H_{n-2}(\ln_2(P_{\bullet}))$, which is a direct consequence of the fact that $\ln_2(P_{\bullet})$ is a subcomplex of \tilde{P}_{\bullet} , that $\tilde{P}_{n-2} = \ln_2(P_{\bullet})_{n-2}$, and that $\tilde{P}_{n-1} = 0$. \Box

Let Δ be a 1-dimensional simplicial complex on [n] (i.e., Δ is essentially a simple graph). A cycle C in Δ of length $t (\geq 3)$ is a sequence of edges of Δ of the form $(v_1, v_2), (v_2, v_3), \ldots, (v_t, v_1)$ joining distinct vertices v_1, \ldots, v_t .

Now we are ready for the proof of Theorem 5.1.

Proof of Theorem 5.1. The implication " \Leftarrow " has been already done in the beginning of this section. So we shall show the inverse. By Proposition 4.6, we may assume that $indeg(\Delta) \ge 2$. Let P_{\bullet} be a minimal graded free resolution of $K[\Delta]$ and Q_{\bullet} as in Lemma 5.2. Note that Q_{\bullet} is determined only by $[I_{\Delta}]_2$ and that it follows $[I_{\Delta}]_2 = [I_{\Delta}^{(1)}]_2$. If the 1-skeleton $\Delta^{(1)}$ of Δ is an *n*-gon, then so is Δ itself. Thus by Lemma 5.2, we may assume that dim $\Delta = 1$. Since $ld(\Delta) = n - 2$, by Lemma 5.2 we have

$$\tilde{H}_1(\Delta; K) \cong \tilde{H}^1(\Delta; K) \cong \left[\operatorname{Tor}_{n-2}^{\mathcal{S}} (K[\Delta], K) \right]_{[n]} \neq 0,$$

and hence Δ contains at least one cycle as a subcomplex. So it suffices to show that Δ has no cycles of length $\leq n - 1$. Suppose not, i.e., Δ has some cycles of length $\leq n - 1$. To give a contradiction, we shall show

$$0 \to \lim_{2} (P_{\bullet})_{n-2} \to \lim_{2} (P_{\bullet})_{n-3}$$
(5.3)

is exact; in fact it follows $H_{n-2}(\lim_2(P_{\bullet})) = 0$, which contradicts to Lemma 5.2. For that, we need some observations (this is a similar argument to that done in Theorem 4.1 of [15]). Consider the chain complex $K[\Delta] \otimes_K \bigwedge V \otimes_K S$ where V is the K-vector space with the basis x_1, \ldots, x_n . We can define two differential map ϑ , ∂ on it as follows:

$$\vartheta \left(f \otimes \wedge^G \mathbf{x} \otimes g \right) = \sum_{i \in G} (-1)^{\alpha(i,G)} \left(x_i f \otimes \wedge^{G \setminus \{i\}} \mathbf{x} \otimes g \right);$$

$$\vartheta \left(f \otimes \wedge^G \mathbf{x} \otimes g \right) = \sum_{i \in G} (-1)^{\alpha(i,G)} \left(f \otimes \wedge^{G \setminus \{i\}} \mathbf{x} \otimes x_i g \right).$$

By a routine, we have that $\partial \vartheta + \vartheta \partial = 0$, and easily we can check that the *i*th homology group of the chain complex $(K[\Delta] \otimes_K \bigwedge V \otimes_K S, \vartheta)$ is isomorphic to the *i*th graded free module of a minimal free resolution P_{\bullet} of $K[\Delta]$. Since, moreover, the differential maps of $\lim(P_{\bullet})$ is induced by ∂ due to Eisenbud and Goto [4], Herzog, Simis and Vasconcelos [8], $\lim_{l} (P_{\bullet})_{l} \rightarrow \lim_{l} (P_{\bullet})_{l-1}$ can be identified with

$$\bigoplus_{F \subset [n], \ \sharp F = i+l} \left[\operatorname{Tor}_{i}^{S} \left(K[\Delta], K \right) \right]_{F} \otimes_{K} S \xrightarrow{\partial} \bigoplus_{F \subset [n], \ \sharp F = i-1+l} \left[\operatorname{Tor}_{i-1}^{S} \left(K[\Delta], K \right) \right]_{F} \otimes_{K} S,$$

where $\bar{\partial}$ is induced by ∂ . In the sequel, $-\{i\}$ denotes the subset $[n] \setminus \{i\}$ of [n]. Then we may identify the sequence (5.3) with

$$0 \to \left[\operatorname{Tor}_{n-2}^{S}(K[\Delta], K)\right]_{[n]} \otimes_{K} S \xrightarrow{\bar{\partial}} \bigoplus_{i \in [n]} \left[\operatorname{Tor}_{n-3}^{S}(K[\Delta], K)\right]_{-\{i\}} \otimes_{K} S$$

and hence, by the isomorphism (5.1), with

$$0 \to \tilde{H}^{1}(\Delta; K) \otimes_{K} S \xrightarrow{\bar{\varepsilon}} \bigoplus_{i \in [n]} \tilde{H}^{1}(\Delta_{-\{i\}}; K) \otimes_{K} S.$$
(5.4)

Here $\bar{\varepsilon}$ is composed by $\bar{\varepsilon}_i : \tilde{H}^1(\Delta; K) \otimes_K S \to \tilde{H}^1(\Delta_{-\{i\}}; K) \otimes_K S$ which is induced by the chain map

$$\varepsilon_{i} : \tilde{\mathcal{C}}^{\bullet}(\Delta; K) \otimes_{K} S \to \tilde{\mathcal{C}}^{\bullet}(\Delta_{-\{i\}}; K) \otimes_{K} S,$$

$$\varepsilon_{i}(e_{G}^{*} \otimes 1) = \begin{cases} (-1)^{\alpha(i,G)} e_{G}^{*} \otimes x_{i} & \text{if } i \notin G; \\ 0 & \text{otherwise} \end{cases}$$

Well, let C be a cycle in Δ of the form $(v_1, v_2), (v_2, v_3), \dots, (v_t, v_1)$ with distinct vertices v_1, \dots, v_t . We say C has a *chord* if there exists an edge (v_i, v_j) of G such that $j \neq i + 1 \pmod{t}$,

and C is said to be *minimal* if it has no chord. It is easy to see that the 1st homology of Δ is generated by those of minimal cycles contained in Δ , that is, we have the surjective map:

$$\bigoplus_{\substack{C \subset \Delta \\ C : \text{ minimal cycle}}} \tilde{H}_1(C; K) \to \tilde{H}_1(\Delta; K).$$

Now by our assumption that Δ contains a cycle of length $\leq n - 1$ (that is, Δ itself is not a minimal cycle), we have the surjective map

$$\bigoplus_{i \in [n]} \tilde{H}_1(\Delta_{-\{i\}}; K) \xrightarrow{\bar{\eta}} \tilde{H}_1(\Delta; K)$$
(5.5)

where $\bar{\eta}$ is induced by the chain map $\eta: \bigoplus \tilde{\mathcal{C}}_{\bullet}(\Delta_{-\{i\}}; K) \to \tilde{\mathcal{C}}_{\bullet}(\Delta; K)$, and η is the sum of

$$\eta_i: \tilde{\mathcal{C}}_{\bullet}(\Delta_{-\{i\}}; K) \ni e_G \mapsto (-1)^{\alpha(i,G)} e_G \in \tilde{\mathcal{C}}_{\bullet}(\Delta; K).$$

Taking the K-dual of (5.5), we have the injective map

$$\widetilde{H}^{1}(\Delta; K) \xrightarrow{\widetilde{\eta}^{*}} \bigoplus_{i \in [n]} \widetilde{H}^{1}(\Delta_{-\{i\}}; K),$$

where $\bar{\eta}^*$ is the *K*-dual map of $\bar{\eta}$, and composed by the *K*-dual

$$\bar{\eta}_i^* \colon \tilde{H}^1(\Delta; K) \to \tilde{H}^1(\Delta_{-\{i\}}; K)$$

of $\bar{\eta}_i$. Then for all $0 \neq z \in \tilde{H}^1(\Delta; K)$, we have $\bar{\eta}_i^*(z) \neq 0$ for some *i*. Recalling the map $\bar{\varepsilon}: \tilde{H}^1(\Delta; K) \otimes_K S \to \bigoplus \tilde{H}^1(\Delta_{-\{i\}}; K) \otimes_K S$ in (5.4) and its construction, we know for $z \in \tilde{H}^1(\Delta; K)$,

$$\bar{\varepsilon}(z\otimes y) = \sum_{i=1}^{n} \bar{\eta}_{i}^{*}(z) \otimes x_{i} y,$$

and hence $\bar{\varepsilon}$ is injective. \Box

Remark 5.3. (1) If Δ is an *n*-gon, then Δ^{\vee} is an (n-3)-dimensional Buchsbaum complex with $\tilde{H}_{n-4}(\Delta^{\vee}; K) = K$. If n = 5, then Δ^{\vee} is a triangulation of the Möbius band. But, for $n \ge 6$, Δ^{\vee} is not a homology manifold. In fact, let $\{1, 2\}, \{2, 3\}, \ldots, \{n-1, n\}, \{n, 1\}$ be the facets of Δ , then if $F = [n] \setminus \{1, 3, 5\}$, easy computation shows that $lk_{\Delta^{\vee}} F$ is a 0-dimensional complex with 3 vertices, and hence $\tilde{H}_0(lk_{\Delta^{\vee}} F; K) = K^2$.

(2) If indeg $\Delta \ge 3$, then the simplicial complexes given in Example 4.7 are not the only examples which attain the equality $ld(\Delta) = n - indeg(\Delta)$. We shall give two examples of such complexes.

Let Δ be the triangulation of the real projective plane $\mathbb{P}^2\mathbb{R}$ with 6 vertices which is given in [1, Fig. 5.8, p. 236]. Since $\mathbb{P}^2\mathbb{R}$ is a manifold, $K[\Delta]$ is Buchsbaum. Hence we have

$$H^{2}_{\mathfrak{m}}(K[\Delta]) = \left[H^{2}_{\mathfrak{m}}(K[\Delta])\right]_{0} \cong \tilde{H}_{1}(\Delta; K).$$

So, if char(*K*) = 2, then we have depth_S(Ext⁴_S(*K*[Δ], ω_S)) = 0. Note that we have $\Delta = \Delta^{\vee}$ in this case. Therefore, easy computation shows that

$$\mathrm{ld}(\Delta^{\vee}) = \mathrm{ld}(\Delta) = 3 = 6 - 3 = 6 - \mathrm{indeg}(\Delta).$$

Next, as is well known, there is a triangulation of the torus with 7 vertices. Let Δ be the triangulation. Since dim $\Delta = 2$, we have indeg $(\Delta^{\vee}) = 7 - \dim \Delta - 1 = 4$. Observing that $K[\Delta]$ is Buchsbaum, we have, by easy computation, that

$$\mathrm{ld}(\Delta^{\vee}) = 3 = 7 - 4 = 7 - \mathrm{indeg}(\Delta^{\vee}).$$

Thus Δ^{\vee} attains the equality, but is not a simplicial complex given in Example 4.7, since it follows, from Alexander's duality, that

$$\dim_K \tilde{H}_i(\Delta^{\vee}; K) = \dim_K \tilde{H}_{4-i}(\Delta; K) = \begin{cases} 2 \neq 1 & \text{for } i = 3; \\ 0 & \text{for } i \geq 4. \end{cases}$$

More generally, the dual complexes of *d*-dimensional Buchsbaum complexes Δ with $\tilde{H}_{d-1}(\Delta; K) \neq 0$ satisfy the equality

$$\operatorname{ld}(\Delta^{\vee}) = n - \operatorname{indeg}(\Delta^{\vee}),$$

but many of them differ from the examples in Example 4.7, and we can construct such complexes more easily as indeg(Δ^{\vee}) is larger.

References

- [1] W. Bruns, J. Herzog, Cohen-Macaulay Rings, revised edition, Cambridge University Press, 1998.
- [2] D. Eisenbud, The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry, Grad. Texts in Math., vol. 229, Springer, 2005.
- [3] D. Eisenbud, G. Fløystad, F.-O. Schreyer, Sheaf cohomology and free resolutions over exterior algebra, Trans. Amer. Math. Soc. 355 (2003) 4397–4426.
- [4] D. Eisenbud, S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984) 89-133.
- [5] J. Herzog, T. Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999) 141-153.
- [6] J. Herzog, S. Iyengar, Koszul modules, J. Pure Appl. Algebra 201 (2005) 154-188.
- [7] B. Iversen, Cohomology of Sheaves, Springer-Verlag, 1986.
- [8] J. Herzog, A. Simis, W. Vasconcelos, Approximation complexes of blowing-up rings, II, J. Algebra 82 (1983) 53– 83.
- [9] R. Martinez-Villa, D. Zacharia, Approximations with modules having linear resolutions, J. Algebra 266 (2003) 671–697.
- [10] E. Miller, Cohen-Macaulay quotients of normal affine semigroup rings via irreducible resolutions, Math. Res. Lett. 9 (2002) 117–128.
- [11] T. Römer, Generalized Alexander duality and applications, Osaka J. Math. 38 (2001) 469-485.
- [12] T. Römer, On minimal graded free resolutions, Thesis, University of Essen, 2001.
- [13] P. Schenzel, On the dimension filtration and Cohen–Macaulay filtered modules, in: F. Van Oystaeyen (Ed.), Commutative Algebra and Algebraic Geometry, in: Lecture Notes in Pure and Appl. Math., vol. 206, Dekker, 1999, pp. 245–264.
- [14] R. Stanley, Combinatorics and Commutative Algebra, second ed., Birkhäuser, 1996.
- [15] K. Yanagawa, Alexander duality for Stanley–Reisner rings and squarefree Nⁿ-graded modules, J. Algebra 225 (2000) 630–645.
- [16] K. Yanagawa, Sheaves on finite posets and modules over normal semigroup rings, J. Pure Appl. Algebra 161 (2001) 341–366.

- [17] K. Yanagawa, Stanley-Reisner rings, sheaves, and Poincaré-Verdier duality, Math. Res. Lett. 10 (2003) 635-650.
- [18] K. Yanagawa, Castelnuovo–Mumford regularity for complexes and weakly Koszul modules, J. Pure Appl. Algebra 207 (2006) 77–97.
- [19] K. Yanagawa, Notes on C-graded modules over an affine semigroup ring K[C], Comm. Algebra, in press.