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Abstract

Let S = K[x1, . . . , xn] be a polynomial ring over a field K , and E = ∧〈y1, . . . , yn〉 an exterior alge-
bra. The linearity defect ldE(N) of a finitely generated graded E-module N measures how far N departs
from “componentwise linear”. It is known that ldE(N) < ∞ for all N . But the value can be arbitrary large,
while the similar invariant ldS(M) for an S-module M is always at most n. We will show that if IΔ (resp.
JΔ) is the squarefree monomial ideal of S (resp. E) corresponding to a simplicial complex Δ ⊂ 2{1,...,n},
then ldE(E/JΔ) = ldS(S/IΔ). Moreover, except some extremal cases, ldE(E/JΔ) is a topological invari-
ant of the geometric realization |Δ∨| of the Alexander dual Δ∨ of Δ. We also show that, when n � 4,
ldE(E/JΔ) = n − 2 (this is the largest possible value) if and only if Δ is an n-gon.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let A = ⊕
i∈N

Ai be a graded (not necessarily commutative) noetherian algebra over a
field K(∼= A0). Let M be a finitely generated graded left A-module, and P• its minimal free
resolution. Eisenbud et al. [3] defined the linear part lin(P•) of P•, which is the complex
obtained by erasing all terms of degree � 2 from the matrices representing the differen-
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tial maps of P• (hence lin(P•)i = Pi for all i). Following Herzog and Iyengar [6], we call
ldA(M) = sup{i | Hi(lin(P•)) 
= 0} the linearity defect of M . This invariant and related concepts
have been studied by several authors (e.g., [3,6,9,12,18]). Following [5], we say a finitely gener-
ated graded A-module M is componentwise linear (or (weakly) Koszul in some literature) if M〈i〉
has a linear free resolution for all i. Here M〈i〉 is the submodule of M generated by its degree i

part Mi . Then we have

ldA(M) = min{i | the ith syzygy of M is componentwise linear}.

For this invariant, a remarkable result holds over an exterior algebra E = ∧〈y1, . . . , yn〉. In
[3, Theorem 3.1], Eisenbud et al. showed that any finitely generated graded E-module N satis-
fies ldE(N) < ∞ while proj.dimE(N) = ∞ in most cases. (We also remark that Martinez-Villa
and Zacharia [9] proved the same result for many selfinjective Koszul algebras.) If n � 2, then
we have sup{ldE(N) | N a finitely generated graded E-module} = ∞. But Herzog and Römer
proved that if J ⊂ E is a monomial ideal then ldE(E/J ) � n − 1 (cf. [12]).

A monomial ideal of E = ∧〈y1, . . . , yn〉 is always of the form JΔ := (
∏

i∈F yi | F /∈ Δ) for a
simplicial complex Δ ⊂ 2{1,...,n}. Similarly, we have the Stanley–Reisner ideal

IΔ :=
( ∏

i∈F

xi | F /∈ Δ

)

of a polynomial ring S = K[x1, . . . , xn]. In this paper, we will show the following.

Theorem 1.1. With the above notation, we have ldE(E/JΔ) = ldS(S/IΔ). Moreover, if
ldE(E/JΔ) > 0 (equivalently, Δ 
= 2T for any T ⊂ [n]), then ldE(E/JΔ) is a topological in-
variant of the geometric realization |Δ∨| of the Alexander dual Δ∨. (But ld(E/JΔ) may depend
on char(K).)

By virtue of the above theorem, we can put ld(Δ) := ldE(E/JΔ) = ldS(S/IΔ). If we set
d := min{i | [IΔ]i 
= 0} = min{i | [JΔ]i 
= 0}, then ld(Δ) � max{1, n − d}. But, if d = 1 (i.e.,
{i} /∈ Δ for some 1 � i � n), then ld(Δ) � max{1, n−3}. Hence, if n � 3, we have ld(Δ) � n−2
for all Δ.

Theorem 1.2. Assume that n � 4. Then ld(Δ) = n − 2 if and only if Δ is an n-gon.

While we treat S and E in most part of the paper, some results on S can be generalized to a
normal semigroup ring, and this generalization makes the topological meaning of ld(Δ) clear. So
Section 2 concerns a normal semigroup ring. But, in this case, we use an irreducible resolution
(something analogous to an injective resolution), not a projective resolution.

2. Linearity defects for irreducible resolutions

Let C ⊂ Z
n ⊂ R

n be an affine semigroup (i.e., C is a finitely generated additive submonoid
of Z

n), and R := K[xc | c ∈ C] ⊂ K[x±1
1 , . . . , x±1

n ] the semigroup ring of C over the field K .
Here xc for c = (c1, . . . , cn) ∈ C denotes the monomial

∏n
i=1 x

ci

i . Let P := R�0C ⊂ R
n be the

polyhedral cone spanned by C. We always assume that ZC = Z
n, Z

n ∩ P = C and C ∩ (−C) =
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{0}. Thus R is a normal Cohen–Macaulay integral domain of dimension n with a maximal ideal
m := (xc | 0 
= c ∈ C).

Clearly,

R =
⊕
c∈C

Kxc

is a Z
n-graded ring. We say a Z

n-graded ideal of R is a monomial ideal. Let ∗modR be the
category of finitely generated Z

n-graded R-modules and degree preserving R-homomorphisms.
As usual, for M ∈ ∗modR and a ∈ Z

n, Ma denotes the degree a component of M , and M(a)

denotes the shifted module of M with M(a)b = Ma+b.
Let L be the set of non-empty faces of the polyhedral cone P. Note that {0} and P itself belong

to L. For F ∈ L, PF := (xc | c ∈ C \ F) is a prime ideal of R. Conversely, any monomial prime
ideal is of the form PF for some F ∈ L. Note that P{0} = m and PP = (0). Set K[F ] := R/PF

∼=
K[xc | c ∈ C ∩ F ] for F ∈ L. The Krull dimension of K[F ] equals the dimension dimF of the
polyhedral cone F .

For a point u ∈ P, we always have a unique face F ∈ L whose relative interior contains u.
Here we denote s(u) = F .

Definition 2.1. (See [16].) We say a module M ∈ ∗modR is squarefree, if it is C-graded (i.e.,
Ma = 0 for all a /∈ C), and the multiplication map Ma � y → xby ∈ Ma+b is bijective for all
a,b ∈ C with s(a + b) = s(a).

For a monomial ideal I , R/I is a squarefree R-module if and only if I is a radical ideal (i.e.,√
I = I ). Regarding L as a partially ordered set by inclusion, we say Δ ⊂ L is an order ideal,

if Δ � F ⊃ F ′ ∈ L implies F ′ ∈ Δ. If Δ is an order ideal, then IΔ := (xc | c ∈ C, s(c) /∈ Δ) ⊂ R

is a radical ideal. Conversely, any radical monomial ideal is of the form IΔ for some Δ. Set
K[Δ] := R/IΔ. Clearly,

K[Δ]a ∼=
{

K if a ∈ C and s(a) ∈ Δ,
0 otherwise.

In particular, if Δ = L (resp. Δ = {{0}}), then IΔ = 0 (resp. IΔ = m) and K[Δ] = R (resp.
K[Δ] = K). When R is a polynomial ring, K[Δ] is nothing else than the Stanley–Reisner ring of
a simplicial complex Δ. (If R is a polynomial ring, then the partially ordered set L is isomorphic
to the power set 2{1,...,n}, and Δ can be seen as a simplicial complex.)

For each F ∈ L, take some c(F ) ∈ C ∩ rel − int(F ) (i.e., s(c(F )) = F ). For a squarefree R-
module M and F,G ∈ L with G ⊃ F , [16, Theorem 3.3] gives a K-linear map ϕM

G,F :Mc(F ) →
Mc(G). They satisfy ϕM

F,F = Id and ϕM
H,G ◦ ϕM

G,F = ϕM
H,F for all H ⊃ G ⊃ F . We have Mc ∼= Mc′

for c, c′ ∈ C with s(c) = s(c′). Under these isomorphisms, the maps ϕM
G,F do not depend on the

particular choice of c(F )’s.
Let Sq(R) be the full subcategory of ∗modR consisting of squarefree modules. As shown

in [16], Sq(R) is an abelian category with enough injectives. For an indecomposable squarefree
module M , it is injective in Sq(R) if and only if M ∼= K[F ] for some F ∈ L. Each M ∈ Sq(R)

has a minimal injective resolution in Sq(R), and we call it a minimal irreducible resolution (see
[10,19] for further information). A minimal irreducible resolution is unique up to isomorphism,
and its length is at most n.
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Let ωR be the Z
n-graded canonical module of R. It is well known that ωR is isomorphic to

the radical monomial ideal (xc | c ∈ C, s(c) = P). Since we have ExtiR(M•,ωR) ∈ Sq(R) for
all M• ∈ Sq(R), D(−) := RHomR(−,ωR) gives a duality functor from the derived category
Db(Sq(R))(∼= Db

Sq(R)(
∗modR)) to itself.

In the sequel, for a K-vector space V , V ∗ denotes its dual space. But, even if V = Ma for
some M ∈ ∗modR and a ∈ Z

n, we set the degree of V ∗ to be 0.

Lemma 2.2. (See [19, Lemma 3.8].) If M ∈ Sq(R), then D(M) is quasi-isomorphic to the com-
plex D• : 0 → D0 → D1 → ·· · → Dn → 0 with

Di =
⊕
F∈L

dimF=n−i

(Mc(F ))
∗ ⊗K K[F ].

Here the differential is the sum of the maps

(±ϕM
F,F ′

)∗ ⊗ nat : (Mc(F ))
∗ ⊗K K[F ] → (Mc(F ′))

∗ ⊗K K
[
F ′]

for F,F ′ ∈ L with F ⊃ F ′ and dimF = dimF ′ + 1, and nat denotes the natural surjection
K[F ] → K[F ′]. We can also describe D(M•) for a complex M• ∈ Db(Sq(R)) in a similar way.

Convention. In the sequel, as an explicit complex, D(M•) for M• ∈ Db(Sq(R)) means the com-
plex described in Lemma 2.2.

Since D ◦ D ∼= IdDb(Sq(R)), D ◦ D(M) is an irreducible resolution of M , but it is far from being
minimal. Let (I •, ∂•) be a minimal irreducible resolution of M . For each i ∈ N and F ∈ L, we
have a natural number νi(F,M) such that

I i ∼=
⊕
F∈L

K[F ]νi (F,M).

Since I • is minimal, z ∈ K[F ] ⊂ I i with dimF = d is sent to

∂i(z) ∈
⊕
G∈L

dimG<d

K[G]νi+1(G,M) ⊂ I i+1.

The above observation on D ◦ D(M) gives the formula [16, Theorem 4.15]

νi(F,M) = dimK

[
Extn−i−dimF

R (M,ωR)
]

c(F )
.

For each l ∈ N with 0 � l � n, we define the l-linear strand linl (I
•) of I • as follows: The

term linl(I
•)i of cohomological degree i is

⊕
dimF=l−i

K[F ]νi (F,M),

which is a direct summand of I i , and the differential linl(I
•)i → linl (I

•)i+1 is the corresponding
component of the differential ∂i : I i → I i+1 of I •. By the minimality of I •, we can see that
linl (I

•) are cochain complexes. Set lin(I •) := ⊕
0�l�n linl(I

•). Then we have the following.
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=

For a complex M• and an integer p, let M•[p] be the pth translation of M•. That is, M•[p] is a
complex with Mi[p] = Mi+p .

Theorem 2.3. (See [19, Theorem 3.9].) With the above notation, we have

linl

(
I •) ∼= D

(
Extn−l

R (M,ωR)
)[n − l].

Hence

lin
(
I •) ∼=

⊕
i∈Z

D
(
ExtiR(M,ωR)

)[i].

Definition 2.4. Let I • be a minimal irreducible resolution of M ∈ Sq(R). We call max{i |
Hi(lin(I •)) 
= 0} the linearity defect of the minimal irreducible resolution of M , and denote
it by ld.irrR(M).

Corollary 2.5. With the above notation, we have

max
{
i | Hi

(
linl

(
I •)) 
= 0

} = l − depthR

(
Extn−l

R (M,ωR)
)
,

and hence

ld.irrR(M) = max
{
i − depthR

(
Extn−i

R (M,ωR)
) | 0 � i � n

}
.

Here we set the depth of the 0 module to be +∞.

Proof. By Theorem 2.3, we have Hi(linl (I
•)) = Exti+n−l

R (Extn−l
R (M,ωR),ωR). Since depthR N

min{i | Extn−i
R (N,ωR) 
= 0} for a finitely generated graded R-module N , the assertion fol-

lows. �
Definition 2.6. (See Stanley [14].) Let M ∈ ∗modR. We say M is sequentially Cohen–Macaulay
if there is a finite filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

of M by graded submodules Mi satisfying the following conditions.

(a) Each quotient Mi/Mi−1 is Cohen–Macaulay.
(b) dim(Mi/Mi−1) < dim(Mi+1/Mi) for all i.

Remark that the notion of sequentially Cohen–Macaulay module is also studied under the
name of a “Cohen–Macaulay filtered module” [13].

Sequentially Cohen–Macaulay property is getting important in the theory of Stanley–
Reisner rings. It is known that M ∈ ∗modR is sequentially Cohen–Macaulay if and only if
Extn−i

R (M,ωR) is a zero module or a Cohen–Macaulay module of dimension i for all i (cf.
[14, III. Theorem 2.11]). Let us go back to Corollary 2.5. If N := Extn−i

R (M,ωR) 
= 0, then
depthR N � dimR N � i. Hence depthR N = i if and only if N is a Cohen–Macaulay module of
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dimension i. Thus, as stated in [19, Corollary 3.11], ld.irrR(M) = 0 if and only if M is sequen-
tially Cohen–Macaulay.

Let I • : 0 → I 0 ∂0→ I 1 ∂1→ I 2 → ·· · be an irreducible resolution of M ∈ Sq(R). Then it is easy
to see that ker(∂i) is sequentially Cohen–Macaulay if and only if i � ld.irrR(M). In particular,

ld.irrR(M) = min
{
i | ker

(
∂i

)
is sequentially Cohen–Macaulay

}
.

We have a hyperplane H ⊂ R
n such that B := H ∩ P is an (n − 1)-dimensional polytope.

Clearly, B is homeomorphic to a closed ball of dimension n − 1. For a face F ∈ L, set |F | to be
the relative interior of F ∩H . If Δ ⊂ L is an order ideal, then |Δ| := ⋃

F∈Δ |F | is a closed subset
of B , and

⋃
F∈Δ |F | is a regular cell decomposition (cf. [1, §6.2]) of |Δ|. Up to homeomorphism,

(the regular cell decomposition of) |Δ| does not depend on the particular choice of the hyperplane
H . The dimension dim |Δ| of |Δ| is given by max{dim |F | | F ∈ Δ}. Here dim |F | denotes the
dimension of |F | as a cell (we set dim∅ = −1), that is, dim |F | = dimF − 1 = dimK[F ] − 1.
Hence we have dimK[Δ] = dim |Δ| + 1.

If F ∈ Δ, then UF := ⋃
F ′⊃F |F ′| is an open set of B . Note that {UF | {0} 
= F ∈ L} is an

open covering of B . In [17], from M ∈ Sq(R), the second author constructed a sheaf M+ on B .
(For the sheaf theory used below, consult [7].) More precisely, the assignment

Γ
(
UF ,M+) = Mc(F )

for each F 
= {0} and the map

ϕM
F,F ′ : Γ

(
UF ′ ,M+) = Mc(F ′) → Mc(F ) = Γ

(
UF ,M+)

for F,F ′ 
= {0} with F ⊃ F ′ (equivalently, UF ′ ⊃ UF ) defines a sheaf. Note that M+ is
a constructible sheaf with respect to the cell decomposition B = ⋃

F∈L |F |. In fact, for all
{0} 
= F ∈ L, the restriction M+||F | of M+ to |F | ⊂ B is a constant sheaf with coefficients
in Mc(F ). Note that M0 is “irrelevant” to M+, where 0 denotes (0,0, . . . ,0) ∈ Z

n.
It is easy to see that K[Δ]+ ∼= j∗K |Δ|, where K |Δ| is the constant sheaf on |Δ| with coef-

ficients in K , and j denotes the embedding map |Δ| ↪→ B . Similarly, we have that (ωR)+ ∼=
h!KB◦ , where KB◦ is the constant sheaf on the relative interior B◦ of B , and h denotes the
embedding map B◦ ↪→ B . Note that (ωR)+ is the orientation sheaf of B over K .

Theorem 2.7. (See [17, Theorem 3.3].) For M ∈ Sq(R), we have an isomorphism

Hi
(
B;M+) ∼= [

Hi+1
m (M)

]
0 for all i � 1,

and an exact sequence

0 → [
H 0

m(M)
]

0 → M0 → H 0(B;M+) → [
H 1

m(M)
]

0 → 0.

In particular, we have [Hi+1
m (K[Δ])]0 ∼= H̃ i(|Δ|;K) for all i � 0, where H̃ i(|Δ|;K) denotes

the ith reduced cohomology of |Δ| with coefficients in K .

Let Δ ⊂ L be an order ideal and X := |Δ|. Then X admits Verdier’s dualizing complex D•
X ,

which is a complex of sheaves of K-vector spaces. For example, D•
B is quasi-isomorphic to

(ωR)+[n − 1].
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Theorem 2.8. (See [17, Theorem 4.2].) With the above notation, if ann(M) ⊃ IΔ (equivalently,
supp(M+) := {x ∈ B | (M+)x 
= 0} ⊂ X), then we have

supp
(
ExtiR(M,ωR)+

) ⊂ X and ExtiR(M,ωR)+|X ∼= Exti−n+1(M+|X,D•
X

)
.

Theorem 2.9. Let M be a squarefree R-module with M 
= 0 and [H 1
m(M)]0 = 0, and X the clo-

sure of supp(M+). Then ld.irrR(M) only depends on the sheaf M+|X (also independent from R).

Proof. We use Corollary 2.5. In the notation there, the case when i = 0 is always unnecessary
to check. Moreover, by the present assumption, we have depthR(Extn−1

R (M,ωR)) � 1 (in fact,
Extn−1

R (M,ωR) is either the 0 module, or a 1-dimensional Cohen–Macaulay module). So we
may assume that i > 1.

Recall that

depthR

(
Extn−i

R (M,ωR)
) = min

{
j | Extn−j

R

(
Extn−i

R (M,ωR),ωR

) 
= 0
}
.

By Theorem 2.8, [Extn−j
R (Extn−i

R (M,ωR),ωR)]a can be determined by M+|X for all i, j and all

a 
= 0. If j > 1, then [Extn−j
R (Extn−i

R (M,ωR),ωR)]0 is isomorphic to

[
H

j
m

(
Extn−i

R (M,ωR)
)]∗

0
∼= Hj−1(B;Extn−i

R (M,ωR)+
)∗

∼= Hj−1(X;Ext−i−1(M+|X;D•
X

))∗

(the first and the second isomorphisms follow from Theorems 2.7 and 2.8, respectively), and
determined by M+|X . So only [Extn−j

R (Extn−i
R (M,ωR),ωR)]0 for j = 0,1 remain. As above,

they are isomorphic to [Hj
m(Extn−i

R (M,ωR))]∗0 . But, by [19, Lemma 5.11], we can compute

[Hj
m(Extn−i

R (M,ωR))]0 for i > 1 and j = 0,1 from the sheaf M+|X . So we are done. �
Theorem 2.10. For an order ideal Δ ⊂ L with Δ 
= ∅, ld.irrR(K[Δ]) depends only on the topo-
logical space |Δ|.

Note that ld.irrR(K[Δ]) may depend on char(K). For example, if |Δ| is homeomorphic
to a real projective plane, then ld.irrR(K[Δ]) = 0 if char(K) 
= 2, but ld.irrR(K[Δ]) = 2 if
char(K) = 2.

Similarly, some other invariants and conditions (e.g., the Cohen–Macaulay property of K[Δ])
studied in this paper depend on char(K). But, since we fix the base field K , we always omit the
phrase “over K”.

Proof. If |Δ| is not connected, then [H 1
m(K[Δ])]0 
= 0 by Theorem 2.7, and we cannot use

Theorem 2.9 directly. But even in this case, depthR(Extn−i
R (K[Δ],ωR)) can be computed for all

i 
= 1 by the same way as in Theorem 2.9. In particular, they only depend on |Δ|. So the assertion
follows from the next lemma. �
Lemma 2.11. We have depthR(Extn−1

R (K[Δ],ωR)) ∈ {0,1,+∞}, and

depthR

(
Extn−1(K[Δ],ωR

)) = 0 if and only if |Δ′| is not connected.
R
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Here Δ′ := Δ \ {F | F is a maximal element of Δ and dim |F | = 0}.

Proof. Since dimR Extn−1
R (K[Δ],ωR) � 1, the first statement is clear. If dim |Δ| � 0, then

|Δ′| = ∅ and depthR(Extn−1
R (K[Δ],ωR)) � 1. So, to see the second statement, we may assume

that dim |Δ| � 1. Set J := IΔ′/IΔ to be an ideal of K[Δ]. Note that either J is a 1-dimensional
Cohen–Macaulay module or J = 0. From the short exact sequence 0 → J → K[Δ] → K[Δ′] →
0, we have an exact sequence

0 → Extn−1
R

(
K[Δ′],ωR

) → Extn−1
R

(
K[Δ],ωR

) → Extn−1
R (J,ωR) → 0.

Since Extn−1
R (J,ωR) has positive depth,

depthR

(
Extn−1

R

(
K[Δ′],ωR

)) = 0

if and only if depthR(Extn−1
R (K[Δ],ωR)) = 0. But, since K[Δ′] does not have 1-dimensional

associated primes, Extn−1
R (K[Δ′],ωR) is an artinian module. Hence we have the following.

depthR

(
Extn−1

R

(
K[Δ′],ωR

)) = 0 ⇐⇒ [
Extn−1

R

(
K[Δ′],ωR

)]
0 
= 0

⇐⇒ [
H 1

m

(
K[Δ′])]0 = H̃ 0(|Δ′|;K) 
= 0

⇐⇒ |Δ′| is not connected. �
3. Linearity defects of symmetric and exterior face rings

Let S := K[x1, . . . , xn] be a polynomial ring, and consider its natural Z
n-grading. Since S =

K[Nn] is a normal semigroup ring, we can use the notation and the results in the previous section.
Now we introduce some conventions which are compatible with the previous notation. Let

ei := (0, . . . ,0,1,0, . . . ,0) ∈ R
n be the ith unit vector, and P the cone spanned by e1, . . . , en.

We identify a face F of P with the subset {i | ei ∈ F } of [n] := {1,2, . . . , n}. Hence the set L of
nonempty faces of P can be identified with the power set 2[n] of [n]. We say a = (a1, . . . , an) ∈
N

n is squarefree, if ai = 0,1 for all i. A squarefree vector a ∈ N
n will be identified with the

subset {i | ai = 1} of [n]. Recall that we took a vector c(F ) ∈ C for each F ∈ L in the previous
section. Here we assume that c(F ) is the squarefree vector corresponding to F ∈ L ∼= 2[n]. So,
for a Z

n-graded S-module M , we simply denote Mc(F ) by MF . In the first principle, we regard
F as a subset of [n], or a squarefree vector in N

n, rather than the corresponding face of P. For
example, we write PF = (xi | i /∈ F), K[F ] ∼= K[xi | i ∈ F ]. And S(−F) denotes the rank 1 free
S-module S(−a), where a ∈ N

n is the squarefree vector corresponding to F .
Squarefree S-modules are defined by the same way as Definition 2.1. Note that the free mod-

ule S(−a), a ∈ Z
n, is squarefree if and only if a is squarefree. Let ∗modS (resp. Sq(S)) be the

category of finitely generated Z
n-graded S-modules (resp. squarefree S-modules). Let P• be a

Z
n-graded minimal free resolution of M ∈ ∗modS. Then M is squarefree if and only if each Pi

is a direct sum of copies of S(−F) for various F ⊂ [n]. In the present case, an order ideal Δ of
L(∼= 2[n]) is essentially a simplicial complex, and the ring K[Δ] defined in the previous section
is nothing other than the Stanley–Reisner ring (cf. [1,14]) of Δ.

Let E = ∧〈y1, . . . , yn〉 be the exterior algebra over K . Under the Bernstein–Gel’fand–
Gel’fand correspondence (cf. [3]), E is the counter part of S. We regard E as a Z

n-graded ring
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by degyi = ei = degxi for each i. Clearly, any monomial ideal of E is “squarefree”, and of the
form

JΔ :=
( ∏

i∈F

yi | F ⊂ [n],F /∈ Δ

)

for a simplicial complex Δ ⊂ 2[n]. We say K〈Δ〉 := E/JΔ is the exterior face ring of Δ.
Let ∗modE be the category of finitely generated Z

n-graded E-modules and degree preserving
E-homomorphisms. Note that, for graded E-modules, we do not have to distinguish left modules
from right ones. Hence

DE(−) :=
⊕
a∈Zn

Hom∗modE

(−,E(a)
)

gives an exact contravariant functor from ∗modE to itself satisfying DE ◦ DE = Id.

Definition 3.1. (See Römer [11].) We say N ∈ ∗modE is squarefree, if N = ⊕
F⊂[n] NF (i.e., if

a ∈ Z
n is not squarefree, then Na = 0).

An exterior face ring K〈Δ〉 is a squarefree E-module. But, since a free module E(a) is not
squarefree for a 
= 0, the syzygies of a squarefree E-module are not squarefree. Let Sq(E) be
the full subcategory of ∗modE consisting of squarefree modules. If N is a squarefree E-module,
then so is DE(N). That is, DE gives a contravariant functor from Sq(E) to itself.

We have functors S : Sq(E) → Sq(S) and E : Sq(S) → Sq(E) giving an equivalence Sq(S) ∼=
Sq(E). Here S(N)F = NF for N ∈ Sq(E) and F ⊂ [n], and the multiplication map S(N)F �
z → xiz ∈ S(N)F∪{i} for i /∈ F is given by

S(N)F = NF � z → (−1)α(i,F )yiz ∈ NF∪{i} = S(N)F∪{i},

where α(i,F ) = #{j ∈ F | j < i}. For example, S(K〈Δ〉) ∼= K[Δ]. See [11] for detail.
Note that A := S ◦ DE ◦ E is an exact contravariant functor from Sq(S) to itself satisfying A ◦

A = Id. It is easy to see that A(K[F ]) ∼= S(−F c), where F c := [n]\F . We also have A(K[Δ]) ∼=
IΔ∨ , where

Δ∨ := {
F ⊂ [n] | F c /∈ Δ

}

is the Alexander dual complex of Δ. Since A is exact, it exchanges a (minimal) free resolution
with a (minimal) irreducible resolution.

Eisenbud et al. [2,3] introduced the notion of the linear strands and the linear part of a
minimal free resolution of a graded S-module. Let P• : · · · → P1 → P0 → 0 be a Z

n-graded
minimal S-free resolution of M ∈ ∗modS. We have natural numbers βi,a(M) for i ∈ N and
a ∈ Z

n such that Pi = ⊕
a∈Zn S(−a)βi,a(M). We call βi,a(M) the graded Betti numbers of M . Set

|a| = ∑n
i=1 ai for a = (a1, . . . , an) ∈ N

n. For each l ∈ Z, we define the l-linear strand linl(P•)
of P• as follows: The term linl (P•)i of homological degree i is

⊕
S(−a)βi,a(M),
|a|=l+i
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which is a direct summand of Pi , and the differential linl (P•)i → linl (P•)i−1 is the correspond-
ing component of the differential Pi → Pi−1 of P•. By the minimality of P•, we can easily verify
that linl (P•) are chain complexes (see also [2, §7A]). We call lin(P•) := ⊕

l∈Z
linl (P•) the linear

part of P•. Note that the differential maps of lin(P•) are represented by matrices of linear forms.
We call

ldS(M) := max
{
i | Hi

(
lin(P•)

) 
= 0
}

the linearity defect of M .
Sometimes, we regard M ∈ ∗modS as a Z-graded module by Mj = ⊕

|a|=j Ma. In this case,

we set βi,j (M) := ∑
|a|=j βi,a(M). Then linl (P•)i = S(−l − i)βi,l+i (M).

Remark 3.2. For M ∈ ∗modS, it is clear that ldS(M) � proj.dimS(M) � n, and there are many
examples attaining the equalities. In fact, ldS(S/(x2

1 , . . . , x2
n)) = n. But if M ∈ Sq(S), then we

always have ldS(M) � n − 1. In fact, for a squarefree module M , proj.dimS(M) = n, if and
only if depthS M = 0, if and only if M ∼= K ⊕ M ′ for some M ′ ∈ Sq(S). But ldS(K) = 0 and
ldS(M ′ ⊕ K) = ldS(M ′). So we may assume that proj.dimS M ′ � n − 1.

Proposition 3.3. Let M ∈ Sq(S), and P• its minimal graded free resolution. We have

max
{
i | Hi

(
linl(P•)

) 
= 0
} = n − l − depthS

(
ExtlS

(
A(M),S

))
,

and hence

ldS(M) = max
{
i − depthS

(
Extn−i

S

(
A(M),S

)) | 0 � i � n
}
.

Proof. Note that I • := A(P•) is a minimal irreducible resolution of A(M). Moreover, we have
A(linl (P•)) ∼= linn−l (I

•). Since A is exact,

max
{
i | Hi

(
linl(P•)

) 
= 0
} = max

{
i | Hi

(
linn−l

(
I •)) 
= 0

}
,

and hence

ldS(M) = ld.irrS
(
A(M)

)
. (3.1)

Hence the assertions follow from Corollary 2.5 (note that S ∼= ωS as underlying modules). �
For N ∈ ∗modE, we have a Z

n-graded minimal E-free resolution P• of N . By the similar
way to the S-module case, we can define the linear part lin(P•) of P•, and set ldE(N) := max{i |
Hi(lin(P•)) 
= 0}. (In [12,18], ldE(N) is denoted by lpd(N). “lpd” is an abbreviation for “linear
part dominate”.) In [3, Theorem 3.1], Eisenbud et al. showed that ldE(N) < ∞ for all N ∈
∗modE. Since proj.dimE(N) = ∞ in most cases, this is a strong result. If n � 2, then we have
sup{ldE(N) | N ∈ ∗modE} = ∞. In fact, since E is selfinjective, we can take “cosyzygies”. But,
if N ∈ Sq(E), then ldE(N) behaves quite nicely.

Theorem 3.4. For N ∈ Sq(E), we have ldE(N) = ldS(S(N)) � n − 1. In particular, for a sim-
plicial complex Δ ⊂ 2[n], we have ldE(K〈Δ〉) = ldS(K[Δ]).



372 R. Okazaki, K. Yanagawa / Journal of Algebra 314 (2007) 362–382
Proof. Using the Bernstein–Gel’fand–Gel’fand correspondence, the second author described
ldE(N) in [18, Lemma 4.12]. This description is the first equality of the following computa-
tion, which proves the assertion.

ldE(N) = max
{
i − depthS

(
Extn−i

S

(
S ◦ DE(N),S

)) | 0 � i � n
}

(by [18])

= max
{
i − depthS

(
Extn−i

S

(
A ◦ S(N),S

)) | 0 � i � n
}

(see below)

= ldS

(
S(N)

)
(by Proposition 3.3).

Here the second equality follows from the isomorphisms S ◦ DE(N) ∼= S ◦ DE ◦ E ◦ S(N) ∼=
A ◦ S(N). �
Remark 3.5. Herzog and Römer showed that ldE(N) � proj.dimS(S(N)) for N ∈ Sq(E) [12,
Corollary 3.3.5]. Since ldS(S(N)) � proj.dimS(S(N)) (the inequality is strict quite often), The-
orem 3.4 refines their result. Our equality might follow from the argument in [12], which
constructs a minimal E-free resolution of N from a minimal S-free resolution of S(N). But
it seems that certain amount of computation will be required.

Theorem 3.4 suggests that we may set

ld(Δ) := ldS

(
K[Δ]) = ldE

(
K〈Δ〉).

Theorem 3.6. If IΔ 
= (0) (equivalently, Δ 
= 2[n]), then ldS(IΔ) is a topological invariant of
the geometric realization |Δ∨| of the Alexander dual Δ∨ of Δ. If Δ 
= 2T for any T ⊂ [n], then
ld(Δ) is also a topological invariant of |Δ∨| (also independent from the number n = dimS).

Proof. Since A(IΔ) = K[Δ∨] and Δ∨ 
= ∅, the first assertion follows from Theorem 2.10 and
the equality (3.1) in the proof of Proposition 3.3.

It is easy to see that Δ 
= 2T for any T if and only if ld(Δ) � 1. If this is the case, ld(Δ) =
ldS(IΔ) + 1, and the second assertion follows from the first. �
Remark 3.7. (1) For the first statement of Theorem 3.6, the assumption that IΔ 
= (0) is neces-
sary. In fact, if IΔ = (0), then Δ = 2[n] and Δ∨ = ∅. On the other hand, if we set Γ := 2[n] \ [n],
then Γ ∨ = {∅} and |Γ ∨| = ∅ = |Δ∨|. In view of Proposition 3.3, it might be natural to set
ldS(IΔ) = ldS((0)) = −∞. But, IΓ = ωS and hence ldS(IΓ ) = 0. One might think it is better to
set ldS((0)) = 0 to avoid the problem. But this convention does not help so much, if we consider
K[Δ] and K[Γ ]. In fact, ldS(K[Δ]) = ldS(S) = 0 and ldS(K[Γ ]) = ldS(S/ωS) = 1.

(2) Let us think about the second statement of the theorem. Even if we forget the assumption
that Δ 
= 2T , ld(Δ) is almost a topological invariant. Under the assumption that IΔ 
= 0, we have
the following.

• ld(Δ) � 1 if and only if K[Δ∨] is sequentially Cohen–Macaulay. Hence we can determine
whether ld(Δ) � 1 from the topological space |Δ∨|.

• ld(Δ) = 0, if and only if all facets of Δ∨ have dimension n − 2, if and only if |Δ∨| is
Cohen–Macaulay and has dimension n − 2.

Hence, if we forget the number “n”, we cannot determine whether ld(Δ) = 0 from |Δ∨|.
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4. An upper bound of linearity defects

In the previous section, we have seen that ldE(N) = ldS(S(N)) for N ∈ Sq(E), in particular
ldE(K〈Δ〉) = ldS(K[Δ]) for a simplicial complex Δ. In this section, we will give an upper bound
of them, and see that the bound is sharp.

For 0 
= N ∈ ∗modE, regarding N as a Z-graded module, we set indegE(N) := min{i | Ni 
=
0}, which is called the initial degree of N , and indegS(M) is similarly defined as indegS(M) :=
min{i | Mi 
= 0} for 0 
= M ∈ ∗modS. If Δ 
= 2[n] (equivalently IΔ 
= 0 or JΔ 
= 0), then we have
indegS(IΔ) = indegE(JΔ) = min{�F | F ⊂ [n],F /∈ Δ}, where �F denotes the cardinal number
of F . So we set

indeg(Δ) := indegS(IΔ) = indegE(JΔ).

Since ld(2[n]) = ldS(S) = ldE(E) = 0 holds, we henceforth exclude this trivial case; we assume
that Δ 
= 2[n].

We often make use of the following facts:

Lemma 4.1. Let 0 
= M ∈ ∗modS and let P• be a minimal graded free resolution of M . Then

(1) lini (P•) = 0 for all i < indegS(M), i.e., there are only l-linear strands with l � indegS(M)

in P•;
(2) linindegS(M)(P•) is a subcomplex of P•;
(3) if M ∈ Sq(S), then lin(P•) = ⊕

0�l�n linl (P•), and linl (P•)i = 0 for all i > n − l and all
0 � l � n, where the subscript i is a homological degree.

Proof. (1) and (2) are clear. (3) holds from the fact that Pi
∼= ⊕

F⊂[n] S(−F)βi,F . �
Theorem 4.2. For 0 
= N ∈ Sq(E), it follows that

ldE(N) � max
{
0, n − indegE(N) − 1

}
.

By Theorem 3.4 this is equivalent to say that for M ∈ Sq(S),

ldS(M) � max
{
0, n − indegS(M) − 1

}
.

Proof. It suffices to show the assertion for M ∈ Sq(S). Set indegS(M) = d and let P• be a min-
imal graded free resolution of M . The case d = n is trivial by Lemma 4.1 (1), (3). Assume that
d � n − 1. Observing that linl (P•)i = S(−l − i)βi,i+l , where βi,i+l are Z-graded Betti numbers
of M , Lemma 4.1 (1), (3) implies that the last few steps of P• are of the form

0 → S(−n)βn−d,n → S(−n)βn−d−1,n ⊕ S(−n + 1)βn−d−1,n−1 → ·· · .

Hence lind(P•)n−d = S(−n)βn−d,n = Pn−d . Since lind(P•) is a subcomplex of the acyclic com-
plex P• by Lemma 4.1(2), we have Hn−d(lind(P•)) = 0, so that ldS(M) � n − d − 1. �

Note that JΔ ∈ Sq(E) (resp. IΔ ∈ Sq(S)). Since ld(Δ) � ldE(JΔ) + 1 (resp. ld(Δ) �
ldS(IΔ) + 1) holds, we have a bound for ld(Δ), applying Theorem 4.2 to JΔ (resp. IΔ).
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Corollary 4.3. For a simplicial complex Δ on [n], we have

ld(Δ) � max
{
1, n − indeg(Δ)

}
.

Let Δ,Γ be simplicial complexes on [n]. We denote Δ ∗ Γ for the join

{F ∪ G | F ∈ Δ, G ∈ Γ }

of Δ and Γ , and for our convenience, set

ver(Δ) := {
v ∈ [n] | {v} ∈ Δ

}
.

Lemma 4.4. Let Δ be a simplicial complex on [n]. Assume that indeg(Δ) = 1, or equivalently
ver(Δ) 
= [n]. Then we have

ld(Δ) = ld
(
Δ ∗ {v})

for v ∈ [n] \ ver(Δ).

Proof. We may assume that v = 1. Let P• be a minimal graded free resolution of K[Δ ∗ {1}]
and K(x1) the Koszul complex

0 → S(−1)
x1−→ S → 0

with respect to x1. Consider the mapping cone P• ⊗S K(x1) of the map P•(−1)
x1−→ P•. There

is the short exact sequence

0 → P• → P• ⊗S K(x1) → P•(−1)[−1] → 0,

whence we have Hi(P• ⊗S K(x1)) = 0 for all i � 2 and the exact sequence

0 → H1
(
P• ⊗S K(x1)

) → H0
(
P•(−1)

) x1−→ H0(P•).

But since H0(P•) = K[Δ ∗ {1}] and x1 is regular on it, we have H1(P• ⊗S K(x1)) = 0. Thus
P• ⊗S K(x1) is acyclic and hence a minimal graded free resolution of K[Δ]. Note that lin(P• ⊗S

K(x1)) = lin(P•) ⊗S K(x1): in fact, we have

linl

(
P• ⊗S K(x1)

)
i
= linl (P• ⊗S S)i ⊕ linl

(
P•[−1] ⊗S S(−1)

)
i

= (
linl (P•)i ⊗S S

) ⊕ (
linl (P•)i−1 ⊗S S(−1)

)
= (

linl (P•) ⊗S K(x1)
)
i
,

where the subscripts i denote homological degrees, and the differential map

linl

(
P• ⊗S K(x1)

) → linl

(
P• ⊗S K(x1)

)

i i−1
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is composed by ∂
〈l〉
i , −∂

〈l〉
i−1, and the multiplication map by x1, where ∂

〈l〉
i (resp. ∂

〈l〉
i−1) is the

ith (resp. (i − 1)st) differential map of the l-linear strand of P•. Hence there is the short exact
sequence

0 → lin(P•) → lin
(
P• ⊗S K(x1)

) → lin(P•)(−1)[−1] → 0,

which yields that Hi(lin(P• ⊗S K(x1))) = 0 for all i � ld(Δ ∗ {1}) + 2, and the exact sequence

0 → Hld(Δ∗{1})+1
(
lin

(
P• ⊗S K(x1)

)) → Hld(Δ∗{1})
(
lin(P•)(−1)

)
x1−→ Hld(Δ∗{1})

(
lin(P•)

) → Hld(Δ∗{1})
(
lin

(
P• ⊗S K(x1)

))
.

Since x1 does not appear in any entry of the matrices representing the differentials of lin(P•), it
is regular on H•(lin(P•)), and hence we have

Hld(Δ∗{1})+1
(
lin

(
P• ⊗S K(x1)

)) = 0

and

Hld(Δ∗{1})
(
lin

(
P• ⊗S K(x1)

)) 
= 0,

since Hld(Δ∗{1})(lin(P•)) 
= 0. Therefore ld(Δ) = ld(Δ ∗ {1}). �
Let Δ be a simplicial complex on [n]. For F ⊂ [n], we set

ΔF := {G ∈ Δ | G ⊂ F }.
The following fact, due to Hochster, is well known, but because of our frequent use, we

mention it.

Proposition 4.5. (Cf. [1,14].) For a simplicial complex Δ on [n], we have

βi,j

(
K[Δ]) =

∑
F⊂[n], �F=j

dimK H̃j−i−1(ΔF ;K),

where βi,j (K[Δ]) are the Z-graded Betti numbers of K[Δ].

Now we can give a new proof of [18, Proposition 4.15], which is the latter part of the next
result.

Proposition 4.6. (Cf. [18, Proposition 4.15].) Let Δ be a simplicial complex on [n]. If indegΔ =
1, then we have

ld(Δ) � max{1, n − 3}.
Hence, for any Δ, we have

ld(Δ) � max{1, n − 2}.
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Proof. The second inequality follows from the first one and Corollary 4.3. So it suffices to
show the first. We set V := [n] \ ver(Δ). Our hypothesis indegΔ = 1 implies that V 
= ∅. By
Lemma 4.4, the proof can be reduced to the case �V = 1. We may then assume that V = {1}.
Thus we have only to show that ld(Δ ∗ {1}) � max{1, n − 3}. Since we have indeg(Δ ∗ {1}) � 2,
we may assume n � 4 by Corollary 4.3. The length of the 0-linear strand of K[Δ ∗ {1}] is 0,
and hence we concentrate on the l-linear strands with l � 1. Let P• be a minimal graded free
resolution of K[Δ ∗ {1}]. Since, as is well known, the cone of a simplicial complex, i.e. the join
with a point, is acyclic, we have

βi,n

(
K

[
Δ ∗ {1}]) = dimK H̃n−i−1

(
Δ ∗ {1};K) = 0

by Proposition 4.5. Thus linl (P•)n−l = 0 for all l � 1. Now applying the same argument as the
last part of the proof of Theorem 4.2 (but we need to replace n by n − 1), we have

Hn−2
(
lin(P•)

) = 0,

and so ld(Δ ∗ {1}) � n − 3. �
According to [18, Proposition 4.14], we can construct a squarefree module N ∈ Sq(E)

with ldE(N) = proj.dimS(S(N)) = n − 1. By Theorems 3.4 and 4.2, M := S(N) satisfies
that indegS(M) = 0 and ldS(M) = n − 1. For 0 � i � n − 1, let Ωi(M) be the ith syzygy
of M . Then Ωi(M) is squarefree, and we have that ldS(Ωi(M)) = ldS(M) − i = n − i − 1 and
indegS(Ωi(M)) � indegS(M) + i = i. Thus by Theorem 4.2, we know that indegS(Ωi(M)) = i

and ldS(Ωi(M)) = n − indegS(Ωi(M)) − 1. So the bound in Theorem 4.2 is optimal.
In the following, we will give an example of a simplicial complex Δ with ld(Δ) = n −

indeg(Δ) for 2 � indeg(Δ) � n − 2, and so we know the bound in Proposition 4.3 is optimal
if indeg(Δ) � 2, that is, ver(Δ) = [n].

Given a simplicial complex Δ on [n], we denote Δ(i) for the ith skeleton of Δ, which is
defined as

Δ(i) := {F ∈ Δ | #F � i + 1}.

Example 4.7. Set Σ := 2[n], and let Γ be a simplicial complex on [n] whose geometric re-
alization |Γ | is homeomorphic to the (d − 1)-dimensional sphere with 2 � d < n − 1, which
we denote by Sd−1. (For m > d there exists a triangulation of Sd−1 with m vertices. See, for
example, [1, Proposition 5.2.10].) Consider the simplicial complex Δ := Γ ∪ Σ(d−2). We will
verify that Δ is a desired complex, that is, ld(Δ) = n − indeg(Δ). For brief notation, we put
t := indegΔ and l := ld(Δ).

First, from our definition, it is clear that t � d . Thus it is enough to show that n − d � l; in
fact we have that l � n − t � n − d � l by Corollary 4.3, and hence that t = d and l = n − d .
Our aim is to prove that

βn−d,n

(
K[Δ]) 
= 0 and βn−d−1,n−1

(
K[Δ]) = 0,

since, in this case, we have Hn−d(lind(P•)) 
= 0, and hence n − d � l.
Now, let F ⊂ [n], and C̃•(ΔF ;K), C̃•(ΓF ;K) be the augmented chain complexes of ΔF and

ΓF , respectively. Since Σ(d−2) have no faces of dimension � d − 1, we have C̃d−1(ΔF ;K) =
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C̃d−1(ΓF ;K) and hence H̃d−1(ΔF ;K) = H̃d−1(ΓF ;K). On the other hand, our assumption that
|Γ | ≈ Sd−1 implies that Γ is Gorenstein, and hence that

H̃d−1(ΓF ;K) =
{

K if F = [n];
0 otherwise.

Therefore, by Proposition 4.5, we have that

βn−d,n

(
K[Δ]) = dimK H̃d−1(Γ ;K) = 1 
= 0;

βn−d−1,n−1
(
K[Δ]) =

∑
F⊂[n], �F=n−1

dimK H̃d−1(ΓF ;K) = 0.

5. A simplicial complex Δ with ld(Δ) = n − 2 is an n-gon

Following the previous section, we assume that Δ 
= [n], throughout this section. We say a
simplicial complex on [n] is an n-gon if its facets are {1,2}, {2,3}, . . . , {n − 1, n}, and {n,1}
after a suitable permutation of vertices. Consider the simplicial complex Δ on [n] given in Ex-
ample 4.7. If we set d = 2, then Δ is an n-gon. Thus if a simplicial complex Δ on [n] is an n-gon,
we have ld(Δ) = n − 2. Actually, the inverse holds, that is, if ld(Δ) = n − 2 with n � 4, Δ is
nothing but an n-gon.

Theorem 5.1. Let Δ be a simplicial complex on [n] with n � 4. Then ld(Δ) = n − 2 if and only
if Δ is an n-gon.

In the previous section, we introduced Hochster’s formula (Proposition 4.5), but in this sec-
tion, we need explicit correspondence between [TorS• (K[Δ],K)]F and reduced cohomologies of
ΔF , and so we will give it as follows.

Set V := 〈x1, . . . , xn〉 = S1 and let K• := S ⊗K

∧
V be the Koszul complex of S with respect

to x1, . . . , xn. Then we have

[
TorSi

(
K[Δ],K)]

F
= Hi

([
K[Δ] ⊗S K•

]
F

) = Hi

([
K[Δ] ⊗K

∧
V

]
F

)

for F ⊂ [n]. Furthermore, the basis of the K-vector space [K[Δ] ⊗K

∧
V ]F is of the form

xG ⊗ ∧F\Gx with G ∈ ΔF , where xG = ∏
i∈G xi and ∧F\Gx = xi1 ∧ · · · ∧ xik for {i1, . . . , ik} =

F \ G with i1 < · · · < ik . Thus the assignment

ϕi : C̃i−1(ΔF ;K) � e∗
G → (−1)α(G,F )xG ⊗ ∧F\Gx ∈ [

K[Δ] ⊗K

∧
V

]
F

with G ∈ ΔF gives the isomorphism ϕ• : C̃•(ΔF ;K)[−1] → [K[Δ] ⊗K

∧
V ]F of chain com-

plexes, where C̃i−1(ΔF ;K) (resp. C̃i−1(ΔF ;K)) is the (i − 1)st term of the augmented cochain
(resp. chain) complex of ΔF over K , eG is the basis element of C̃i−1(ΔF ;K) corresponding to
G, and e∗

G is the K-dual base of eG. Here we set

α(A,B) := �
{
(a, b) | a > b, a ∈ A, b ∈ B

}



378 R. Okazaki, K. Yanagawa / Journal of Algebra 314 (2007) 362–382
for A,B ⊂ [n]. Thus we have the isomorphism

ϕ̄ : H̃ i−1(ΔF ;K) → [
TorS�F−i

(
K[Δ],K)]

F
. (5.1)

Lemma 5.2. Let Δ be a simplicial complex on [n] with indeg(Δ) � 2, and P• a minimal
graded free resolution of K[Δ]. We denote Q• for the subcomplex of P• such that Qi :=⊕

j�i+1 S(−j)βi,j ⊂ ⊕
j∈Z

S(−j)βi,j = Pi . Assume n � 4. Then the following are equivalent.

(1) ld(Δ) = n − 2;
(2) Hn−2(lin2(P•)) 
= 0;
(3) Hn−3(Q•) 
= 0.

In the case n � 5, the condition (3) is equivalent to Hn−3(lin1(P•)) 
= 0.

Proof. Since indeg(Δ) � 2, lin0(P•)i = 0 holds for i � 1. Clearly, Hi(Q•) = Hi(lin1(P•)) for
i � 2. Since linl (P•)i = 0 for i � n − 2 and l � 3 by Lemma 4.1 and that ld(Δ) � n − 2 by
Proposition 4.6, it suffices to show the following.

Hn−2
(
lin2(P•)

) ∼= Hn−3(Q•) and Hi(Q•) = 0 for i � n − 2. (5.2)

Since Q• is a subcomplex of P•, there exists the following short exact sequence of complexes.

0 → Q• → P• → P̃• := P•/Q• → 0,

which induces the exact sequence of homology groups

Hi(P•) → Hi(P̃•) → Hi−1(Q•) → Hi−1(P•).

Hence the acyclicity of P• implies that Hi(P̃•) ∼= Hi−1(Q•) for all i � 2. Now Hi(P̃•) = 0 for
i � n − 1 by Lemma 4.1 and the fact that P̃i = ⊕

l�2 linl (P•)i . So the latter assertion of (5.2)

holds, since n−2 � 2. The former follows from the equality Hn−2(P̃•) = Hn−2(lin2(P•)), which
is a direct consequence of the fact that lin2(P•) is a subcomplex of P̃•, that P̃n−2 = lin2(P•)n−2,
and that P̃n−1 = 0. �

Let Δ be a 1-dimensional simplicial complex on [n] (i.e., Δ is essentially a simple graph).
A cycle C in Δ of length t (� 3) is a sequence of edges of Δ of the form (v1, v2), (v2, v3), . . . ,

(vt , v1) joining distinct vertices v1, . . . , vt .
Now we are ready for the proof of Theorem 5.1.

Proof of Theorem 5.1. The implication “⇐” has been already done in the beginning of this
section. So we shall show the inverse. By Proposition 4.6, we may assume that indeg(Δ) � 2.
Let P• be a minimal graded free resolution of K[Δ] and Q• as in Lemma 5.2. Note that Q•
is determined only by [IΔ]2 and that it follows [IΔ]2 = [IΔ(1) ]2. If the 1-skeleton Δ(1) of Δ

is an n-gon, then so is Δ itself. Thus by Lemma 5.2, we may assume that dimΔ = 1. Since
ld(Δ) = n − 2, by Lemma 5.2 we have

H̃1(Δ;K) ∼= H̃ 1(Δ;K) ∼= [
TorSn−2

(
K[Δ],K)] 
= 0,
[n]
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and hence Δ contains at least one cycle as a subcomplex. So it suffices to show that Δ has no
cycles of length � n − 1. Suppose not, i.e., Δ has some cycles of length � n − 1. To give a
contradiction, we shall show

0 → lin2(P•)n−2 → lin2(P•)n−3 (5.3)

is exact; in fact it follows Hn−2(lin2(P•)) = 0, which contradicts to Lemma 5.2. For that, we need
some observations (this is a similar argument to that done in Theorem 4.1 of [15]). Consider the
chain complex K[Δ] ⊗K

∧
V ⊗K S where V is the K-vector space with the basis x1, . . . , xn.

We can define two differential map ϑ, ∂ on it as follows:

ϑ
(
f ⊗ ∧Gx ⊗ g

) =
∑
i∈G

(−1)α(i,G)
(
xif ⊗ ∧G\{i}x ⊗ g

);

∂
(
f ⊗ ∧Gx ⊗ g

) =
∑
i∈G

(−1)α(i,G)
(
f ⊗ ∧G\{i}x ⊗ xig

)
.

By a routine, we have that ∂ϑ + ϑ∂ = 0, and easily we can check that the ith homology group
of the chain complex (K[Δ] ⊗K

∧
V ⊗K S,ϑ) is isomorphic to the ith graded free module of a

minimal free resolution P• of K[Δ]. Since, moreover, the differential maps of lin(P•) is induced
by ∂ due to Eisenbud and Goto [4], Herzog, Simis and Vasconcelos [8], linl(P•)i → linl(P•)i−1
can be identified with

⊕
F⊂[n], �F=i+l

[
TorSi

(
K[Δ],K)]

F
⊗K S

∂̄−→
⊕

F⊂[n], �F=i−1+l

[
TorSi−1

(
K[Δ],K)]

F
⊗K S,

where ∂̄ is induced by ∂ . In the sequel, −{i} denotes the subset [n] \ {i} of [n]. Then we may
identify the sequence (5.3) with

0 → [
TorSn−2

(
K[Δ],K)]

[n] ⊗K S
∂̄−→

⊕
i∈[n]

[
TorSn−3

(
K[Δ],K)]

−{i} ⊗K S

and hence, by the isomorphism (5.1), with

0 → H̃ 1(Δ;K) ⊗K S
ε̄−→

⊕
i∈[n]

H̃ 1(Δ−{i};K) ⊗K S. (5.4)

Here ε̄ is composed by ε̄i : H̃ 1(Δ;K) ⊗K S → H̃ 1(Δ−{i};K) ⊗K S which is induced by the
chain map

εi : C̃•(Δ;K) ⊗K S → C̃•(Δ−{i};K) ⊗K S,

εi

(
e∗
G ⊗ 1

) =
{

(−1)α(i,G)e∗
G ⊗ xi if i /∈ G;

0 otherwise.

Well, let C be a cycle in Δ of the form (v1, v2), (v2, v3), . . . , (vt , v1) with distinct vertices
v1, . . . , vt . We say C has a chord if there exists an edge (vi, vj ) of G such that j 
≡ i + 1 (mod t),
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and C is said to be minimal if it has no chord. It is easy to see that the 1st homology of Δ is
generated by those of minimal cycles contained in Δ, that is, we have the surjective map:

⊕
C⊂Δ

C : minimal cycle

H̃1(C;K) → H̃1(Δ;K).

Now by our assumption that Δ contains a cycle of length � n − 1 (that is, Δ itself is not a
minimal cycle), we have the surjective map

⊕
i∈[n]

H̃1(Δ−{i};K)
η̄−→ H̃1(Δ;K) (5.5)

where η̄ is induced by the chain map η :
⊕

C̃•(Δ−{i};K) → C̃•(Δ;K), and η is the sum of

ηi : C̃•(Δ−{i};K) � eG → (−1)α(i,G)eG ∈ C̃•(Δ;K).

Taking the K-dual of (5.5), we have the injective map

H̃ 1(Δ;K)
η̄∗

−→
⊕
i∈[n]

H̃ 1(Δ−{i};K),

where η̄∗ is the K-dual map of η̄, and composed by the K-dual

η̄∗
i : H̃ 1(Δ;K) → H̃ 1(Δ−{i};K)

of η̄i . Then for all 0 
= z ∈ H̃ 1(Δ;K), we have η̄∗
i (z) 
= 0 for some i. Recalling the map

ε̄ : H̃ 1(Δ;K) ⊗K S → ⊕
H̃ 1(Δ−{i};K) ⊗K S in (5.4) and its construction, we know for

z ∈ H̃ 1(Δ;K),

ε̄(z ⊗ y) =
n∑

i=1

η̄∗
i (z) ⊗ xiy,

and hence ε̄ is injective. �
Remark 5.3. (1) If Δ is an n-gon, then Δ∨ is an (n − 3)-dimensional Buchsbaum complex with
H̃n−4(Δ

∨;K) = K . If n = 5, then Δ∨ is a triangulation of the Möbius band. But, for n � 6, Δ∨
is not a homology manifold. In fact, let {1,2}, {2,3}, . . . , {n − 1, n}, {n,1} be the facets of Δ,
then if F = [n] \ {1,3,5}, easy computation shows that lkΔ∨ F is a 0-dimensional complex with
3 vertices, and hence H̃0(lkΔ∨ F ;K) = K2.

(2) If indegΔ � 3, then the simplicial complexes given in Example 4.7 are not the only ex-
amples which attain the equality ld(Δ) = n − indeg(Δ). We shall give two examples of such
complexes.

Let Δ be the triangulation of the real projective plane P
2
R with 6 vertices which is given in

[1, Fig. 5.8, p. 236]. Since P
2
R is a manifold, K[Δ] is Buchsbaum. Hence we have

H 2
m

(
K[Δ]) = [

H 2
m

(
K[Δ])] ∼= H̃1(Δ;K).
0
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So, if char(K) = 2, then we have depthS(Ext4S(K[Δ],ωS)) = 0. Note that we have Δ = Δ∨ in
this case. Therefore, easy computation shows that

ld
(
Δ∨) = ld(Δ) = 3 = 6 − 3 = 6 − indeg(Δ).

Next, as is well known, there is a triangulation of the torus with 7 vertices. Let Δ be the
triangulation. Since dimΔ = 2, we have indeg(Δ∨) = 7 − dimΔ − 1 = 4. Observing that K[Δ]
is Buchsbaum, we have, by easy computation, that

ld
(
Δ∨) = 3 = 7 − 4 = 7 − indeg

(
Δ∨)

.

Thus Δ∨ attains the equality, but is not a simplicial complex given in Example 4.7, since it
follows, from Alexander’s duality, that

dimK H̃i

(
Δ∨;K) = dimK H̃4−i (Δ;K) =

{
2 
= 1 for i = 3;
0 for i � 4.

More generally, the dual complexes of d-dimensional Buchsbaum complexes Δ with
H̃d−1(Δ;K) 
= 0 satisfy the equality

ld
(
Δ∨) = n − indeg

(
Δ∨)

,

but many of them differ from the examples in Example 4.7, and we can construct such complexes
more easily as indeg(Δ∨) is larger.
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