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ABSTRACT Tortuosity of the extracellular space describes hindrance posed to the diffusion process by a geometrically
complex medium in comparison to an environment free of any obstacles. Calculating tortuosity in biologically relevant
geometries is difficult. Yet this parameter has proved very important for many processes in the brain, ranging from ischemia and
osmotic stress to delivery of nutrients and drugs. It is also significant for interpretation of the diffusion-weighted magnetic
resonance data. We use a volume-averaging procedure to obtain a general expression for tortuosity in a complex environment.
A simple approximation then leads to tortuosity estimates in a number of two-dimensional (2D) and three-dimensional (3D)
geometries characterized by narrow pathways between the cellular elements. It also explains the counterintuitive fact of lower
diffusion hindrance in a 3D environment. Comparison with Monte Carlo numerical simulations shows that the model gives
reasonable tortuosity estimates for a number of regular and randomized 2D and 3D geometries. Importantly, it is shown that
addition of dead-end pores increases tortuosity in proportion to the square root of enlarged total extracellular volume fraction.
This conclusion is further supported by the previously described tortuosity decrease in ischemic brain slices where dead-end
pores were partially occluded by large macromolecules introduced into the extracellular space.

INTRODUCTION

Diffusion is an important transport mechanism for many

substances introduced into the extracellular space (ECS) of

the brain. Macroscopic properties of this geometrically very

complex environment can be summarized by two parame-

ters, the ECS volume fraction a and its tortuosity l
(Nicholson, 2001). Volume fraction determines what

percentage of the total tissue volume is accessible to the

diffusing molecules. It is often called porosity in the porous

media literature. Tortuosity describes the average hindrance

of a complex medium relative to an obstacle-free medium.

Several methods exist, e.g., real-time iontophoresis (RTI)

(Nicholson and Phillips, 1981) or integrative optical imaging

(IOI) (Nicholson and Tao, 1993), for measuring these

extracellular parameters both in brain slices and in live

animals, and a wealth of experimental data has been

accumulated over the last three decades. The findings are

relevant for both healthy tissue and for many pathological

states, e.g., ischemia, terminal anoxia, or brain trauma

(Syková, 1997; Nicholson and Syková, 1998). The brain

responds to most of these insults by lowering a below its

typical value of ;0.2 (that is, 20%) and by increasing l
above the usual value of ;1.6 (Nicholson and Syková,

1998). Diffusion measurement can thus provide insight into

the pathologies of these processes.

In addition, diffusion can serve as a probe into the local

fine structure of the ECS geometry. Unfortunately, it has

proved very challenging to establish any straightforward

relationship between the microscopic properties of the ECS

on one hand and the macroscopic and experimentally

accessible parameters a and l on the other hand. Even

numerical solutions have mostly been limited to relatively

simple two-dimensional (2D) arrangements (Chen and

Nicholson, 2000). The principal difficulty is that although

diffusion theory in complex media proved the existence of

a unique tortuosity for any given geometry (Lehner, 1979), it

has not provided any direct method to extract it. Conse-

quently, it is also difficult to develop useful intuition for the

effects of various local geometries.

To obtain a more explicit expression for geometric

tortuosity, we will first extend Einstein’s derivation of the

integral formula for the diffusion coefficient (Einstein, 1956)

by the addition of volume averaging. This step will

accommodate very general and geometrically complex

media. The effective diffusion coefficient becomes de-

pendent on the diffusion time and on the average dis-

placement probability for the individual molecules. With

a simple approximation for the probability function, we can

obtain effective diffusion coefficients in a number of 2D and

three-dimensional (3D) geometries with small separations

between the cellular elements. Despite its simplicity, the

model shows good agreement with tortuosities obtained by

Monte Carlo numerical simulations. It also offers an

explanation for recent counterintuitive experimental findings

(Patlak et al., 1998; Hrabětová and Nicholson, 2000;

Hrabětová et al., 2003). These studies documented that an
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addition of large macromolecules into ECS makes the

diffusion of a small marker molecule faster.

THEORY

Effective diffusion tensor, permeability,
and tortuosity

Assume a macroscopically homogeneous (but not necessar-

ily isotropic) environment composed of two phases, e.g., the

cellular obstacles and the extracellular space occupying

volume fraction a around them. We can defineFðr~;~ddÞ as the
probability density for a diffusing particle in a position

r~¼ ðx1; x2; x3Þ inside the ECS at time t to be found in

a position r~1 ~dd after some small fixed diffusion time t.
Particle motion is assumed to be restricted to the ECS during

this time. In contrast to an obstacle-free environment, the

probability depends on the initial position r~ and it is not

necessarily symmetrical with respect to ~dd. We only assume

that

Fðr~1~dd;�~ddÞ ¼ Fðr~;~ddÞ (1)

and that it is still normalized:

ZZZ N

�N

Fðr~;~ddÞd~dd ¼ 1: (2)

Given the concentration cðr~; tÞ at time t and the above

probability distribution, we would like to estimate concen-

tration at time t 1 t. Following Einstein’s argument

(Einstein, 1956), this can be done by adding up all the

particles that were in the right places at time t:

cðr~; t1 tÞdr~¼ dr~

ZZZ N

�N

cðr~1~dd; tÞFðr~1~dd;�~ddÞd~dd

¼ dr~

ZZZ N

�N

cðr~1~dd; tÞFðr~;~ddÞd~dd: (3)

Using the Taylor expansions of cðr~; tÞ in time and spatial

coordinates on the left-hand and right-hand side, respec-

tively, we get

cðr~; tÞ1@cðr~; tÞ
@t

t1 � � �¼
ZZZ N

�N

cðr~; tÞFðr~;~ddÞd~dd

1

ZZZ N

�N

@cðr~; tÞ
@xi

diFðr~;~ddÞd~dd

1

ZZZ N

�N

@
2
cðr~; tÞ

@xi@xj

didj
2
Fðr~;~ddÞd~dd1 � � � ;

(4)

where we sum over spatial coordinate indices i, j ¼ 1, 2, 3.

The expansions leave out second- and higher-order terms in

time interval t as well as third- and higher-order terms in~dd.
As noted by Einstein, this is possible if only small values of~dd
contribute anything to the integral, which is in turn true if F
differs significantly from zero only for small values of ~dd.
Because local concentration does not depend on ~dd, the first

terms on both sides cancel out as a consequence of

probability normalization (Eq. 2). In an environment without

obstacles, the second term on the right-hand side (represent-

ing an average displacement) will vanish because the

probability is symmetrical with respect to di. In a complex

environment, however, this is not necessarily true. If the

location r~ is close to an obstacle, the symmetry will clearly

be violated.

We will now examine a sampling volume Va of the ECS,

sufficiently large to encompass the local geometrical

variability, e.g., the ECS around several cellular elements.

Consider spatial averages of all remaining terms of Eq. 4.

The left-hand side yields simply a time derivative of the

averaged concentration:

t

Va

ZZZ
Va

@cðr~; tÞ
@t

dr~¼ @

@t

t

Va

ZZZ
Va

cðr~; tÞdr~
� �

¼ @Æcðr~; tÞæ
@t

t:

In a macroscopically homogeneous environment the aver-

aged probability does not depend on position r~ and it is

always possible to select the sampling volume sufficiently

large for ÆFð~ddÞæ to become symmetrical with respect to

displacement (so that ÆFð�~ddÞæ ¼ ÆFð~ddÞæ). We can therefore

employ the mean-value theorem and find a location r~1 inside
Va such that

1

Va

ZZZ
Va

ZZZ N

�N

@cðr~; tÞ
@xi

diFðr~;~ddÞd~dd dr~

¼ @cðr~1; tÞ
@xi

ZZZ N

�N

diÆFð~ddÞæd~dd ¼ 0:

The only remaining term on the right-hand side of Eq. 4

can be treated similarly to find a location r~2 inside Va for

which

1

Va

ZZZ
Va

ZZZ N

�N

@
2
cðr~; tÞ

@xi@xj

didj
2
Fðr~;~ddÞd~dd dr~

¼ @
2
cðr~2; tÞ
@xi@xj

ZZZ N

�N

didj
2
ÆFð~ddÞæd~dd:

Finally, if we assume that the second spatial derivative of

concentration undergoes only negligible changes within the

small volume Va, the exact position of r~2 representing the

averaging volume becomes unimportant. We can then define

a symmetrical tensor
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D
�
ij ¼

1

t

ZZZ N

�N

didj
2

ÆFð~ddÞæd~dd (5)

and rewrite Eq. 4 as

@Æcðr~; tÞæ
@t

¼ D
�
ij

@
2Æcðr~; tÞæ
@xi@xj

; (6)

where we again sum over i, j ¼ 1, 2, 3. Clearly, this is the

diffusion equation in a complex, anisotropic, and macro-

scopically homogeneous medium with the effective diffu-

sion tensor Dij
*. This result can also be arrived at (under

similar assumptions) by an averaging process applied to the

diffusion equation in a free environment with geometrically

complex boundary conditions (Lehner, 1979). However, this

approach does not lead to an explicit expression for the

diffusion tensor.

Having both the microscopic and macroscopic diffusion

equations, we can interpret the requirement that the second

spatial derivative does not significantly vary within the

averaging volume. If we express the concentration c as a sum
of its mean value Æcæ and some fluctuation c̃, the second

spatial derivatives of c̃ in the averaging volume should be

negligible. This is equivalent to a requirement that

@c̃ðr~; tÞ
@t

� @Æcðr~; tÞæ
@t

: (7)

The macroscopic diffusion equation (Eq. 6), therefore,

cannot describe phenomena with rapid concentration

transients on a spatial scale of the averaging volume, which

has to be large enough to capture the complexity of the

environment. For example, the macroscopic brain ECS

diffusion that assumes an averaging volume of several

microns in diameter cannot be used to describe the diffusion

of a neurotransmitter shortly after its release into a synaptic

cleft.

In the case of a macroscopically isotropic and homoge-

neous environment, the probabilityF is radially symmetrical

and the diffusion tensor is reduced to a scalar; Eq. 5 is

simplified to

D
� ¼ 1

3
+
3

i¼1

D
�
ii ¼

1

3t

ZZZ N

�N

d
2

2
ÆFðdÞæd~dd; (8)

where d ¼ j~ddj. In a medium free of any obstacles, volume

averaging can be performed over arbitrarily small volumes

without violating any of the assumptions we have made, and

the volume averages coincide with the local values. The

definition of the diffusion coefficient in a one-dimensional

(1D) case then becomes

D ¼ 1

t

Z N

�N

d
2

2
FðdÞdd; (9)

which is the relationship given by Einstein (1956). The

probability density F(d) in an n-dimensional case takes on

the well-known Gaussian form with variance s2 ¼ 2nDt:

FðdÞ ¼ 1

ð4pnDtÞn2 exp � d
2

4nDt

� �
: (10)

Tortuosity l is an auxiliary quantity related to the ratio of

the effective and free diffusion coefficients. Various

definitions exist, which may easily lead to confusion. In

neurobiological applications, it is usually defined as

l ¼
ffiffiffiffiffiffi
D

D
�

r
(11)

for a homogeneous and isotropic environment (Nicholson

and Phillips, 1981; Nicholson, 2001). It is often interpreted

as a path-length multiplication factor for molecules that have

to find their way around obstacles. Although this idea works

in a 1D environment (such as a tube) where the Laplace

operator is reduced to a second derivative along a single axis,

it breaks down in higher dimensions. The notion of diffusion

‘‘path length’’ loses meaning in higher dimensions. The

relative contributions of all possible pathways would have to

be taken into account. Despite its suggestive name, tortuosity

does not have any straightforward relationship with the

convoluted molecular circumnavigation of obstacles.

A more useful alternative for l can be defined as

u ¼ D
�

D
¼ 1

l
2 (12)

with obvious generalization for the anisotropic case. The

effect of u is equivalent to a linear transformation of time in the

diffusion equation, independently of the number of spatial

dimensions. It can therefore be interpreted as a diffusion

retardation factor caused by obstacles in the environment. The

diffusion process in a geometrically complex environment is,

in this sense, equivalent to a free diffusion process played out

in a slow motion. We shall call u a diffusion permeability. It

can range from 0 for an entirely impenetrable medium (l ¼
N) to 1 for a medium free of any obstacles (l ¼ 1).

Note that other influences than a complex local geometry,

e.g., a higher viscosity or a reversible uptake, may also act to

slow down the diffusion. A diffusion experiment alone

cannot distinguish between them.

Another point of potential confusion lies in alternative

definitions of cðr~; tÞ. If cb is the amount of extracellular

substance in a unit volume of the brain tissue (including both

ECS and the cells), then the concentration in ECS is higher,

c ¼ cb/a. This is the concentration measured in the RTI

experiments and referred to in Eq. 6. Other methods, such as

1608 Hrabe et al.
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IOI, radiotracer method, or diffusion-weighted magnetic

resonance (MR) spectroscopy of an extracellular marker,

detect cb instead.
It may seem that Eq. 8 can be used only when detailed

knowledge of the probability distribution is available. It

appears, however, that we can often make simple approx-

imations to obtain useful results. As an example, consider the

case of 1D diffusion restricted to a linear segment (a 1D

‘‘box’’) of length L. If the diffusion time t is sufficiently

long, the particle can be found with equal probability

anywhere along the segment:

Fðx; dÞ ¼
1

L
for x 2 � L

2
;
L

2

� �
; x1 d 2 � L

2
;
L

2

� �
and

0 elsewhere:

8><
>:

Averaging over the segment length yields

ÆFðdÞæ ¼
L� jdj
L
2 for jdj, L and

0 elsewhere

8<
:

and therefore

D� ¼ 2

t

Z L

0

L� d

L
2

d
2

2
dd ¼ L2

12t
; (13)

which is in agreement with an asymptotic expression for the

effective diffusion coefficient measured with diffusion-

weighted MR (Callaghan, 1991). The apparent diffusion

coefficient decreases with diffusion time as a result of the

restriction on molecular movement. This situation is typical

for intracellular substances that cannot escape into ECS.

We shall now turn to diffusion in the extracellular

environment modeled by a system of uniform gaps between

the cellular elements. We generally assume that the obstacles

are closely packed together, leaving only narrow passages

between them. This is almost always the case in the brain

where the ECS volume fraction rarely exceeds 0.2. The

diffusion in the interstitial gaps then represents essentially

a 2D process in a 3D environment, or a 1D process in a 2D

environment. The limits of the approximations in each case

will be verified by numerical experiments described in the

Results section.

2D environments

Squares

The simplest environment we consider is a periodic network

of squares with uniform gaps between them. A unit element

of this environment is formed by a single symmetrical cross

of two perpendicular channels of side lengths L1 ¼ L2
aligned with the x1 and x2 axes. The channels have identical
width w. We assume that the gaps are narrow (w � L1).
Because this environment is macroscopically homoge-

neous and isotropic, it is sufficient to examine diffusion in

the unit element along one axis, e.g., the x1 axis. Due to

symmetrical arrangement at the channel crossings, the

probability for a molecule in the L1 channel to end up in

the L2 channel is the same as the probability of a transition in

the opposite direction and we shall therefore assume that in

the first approximation these channel transitions cancel out

on the average. As a result, the diffusion looks the same as if

the two perpendicular channels were independent of each

other. The L1 channel is then characterized by a free

diffusion along the x1 axis. We thus estimate (Einstein,

1956)

which leads to a volume average over the unit element of the

environment

ÆFðd1Þæ ¼ wL1

wðL1 1 L2Þ
1ffiffiffiffiffiffiffiffiffiffiffiffi

4pDt
p exp � d

2

1

4Dt

� �

and therefore (see Eq. 8) to

D� ¼ 1

2
D; u ¼ 1

2
and l ¼

ffiffiffi
2

p
: (14)

We expect the diffusion to slow down by a factor of 2

relative to the free environment.

Rectangles

In an anisotropic environment made of rectangles with L1 6¼
L2, we similarly obtain effective diffusion coefficients along

the x1 and x2 axes

D
�
11 ¼

L1

L1 1 L2

D and D
�
22 ¼

L2

L1 1 L2

D: (15)

Random convex polygons

A model composed of random but tightly packed convex

polygons with small gaps between them results in a macro-

scopically homogeneous and isotropic environment. The

Fðr~; d1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

4pDt
p exp � d

2

1

4Dt

� �
for r~ inside the L1 channel; and

0 for r~ inside the L2 channel;

8><
>:
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sides of the polygons have random orientations with all

directions being equally likely. We therefore need to average

over all possible directions with uniform weighting.

When observing diffusion along the x1 axis in a channel L
running at an angle b1 relative to x1, the probability dis-

tribution fðr~Þ is simply compressed along x1. The diffu-

sion coefficient therefore appears to be reduced by a factor

of cos2 b1 and averaging yields

u ¼ 1

2p

Z 2p

0

cos
2
b1 db1 ¼

1

2
: (16)

As long as all the narrow channels are well connected (that

is, there are no dead-end pores) and the environment is

macroscopically homogeneous and isotropic, we would

expect the same permeability and tortuosity as for the

periodic network of squares. Another way to arrive at this

conclusion is to realize that every channel of length L has the

same effect as a union of its two independent projections to

x1 and x2. Therefore, averaging all possible rectangles (Eq.

15), we again get

u ¼ 1

2p

Z 2p

0

jL cosb1j
jL sinb1j1 jL cosb1j

db1 ¼
1

2
: (17)

Dead-end pores

Addition of dead-end pores significantly alters diffusion in

a macroscopically homogeneous and isotropic environment

such as the one composed of squares or random convex

polygons. It does so by providing an extra space where

molecules can be delayed. For sufficiently long diffusion

times, the dead-end pores will act in a similar way as if extra

channels were added in a direction perpendicular to the

macroscopic diffusion flow. If we assume as before

symmetry in the average probabilities for entering and

leaving the dead-end pore, the permeability in a square lattice

with added dead-end pores becomes

u ¼ L1

2L1 1 Lp

; (18)

where Lp is the combined length of the dead-end pores in the

unit cell of the environment. In a randomized polygonal

environment, L1 and Lp would have to be replaced by their

averaged values ÆL1æ and ÆLpæ.
If we introduce the volume fraction of the well-connected

space a0 and the total volume fraction a into Eq. 18, an

interesting relationship is revealed. Because of proportion-

alities a0 } 2L1 and a } 2L1 1 Lp, we get

u

u0
¼ 2L1

2L1 1 Lp

¼ a0

a
; or

l

l0

¼
ffiffiffiffiffi
a

a0

r
; (19)

where u0 ¼ 1=2 and l0 ¼
ffiffiffi
2

p
correspond to the environ-

ment lacking any dead-end pores (a well-connected

environment). Therefore, in this approximation, adding

well-connected space by making the gaps wider (within

the w � L1 limit) has negligible effect on permeability and

tortuosity. On the other hand, adding dead-end space

changes the hindrance according to the above relationship.

The determining parameter is the ratio of the total ECS

volume fraction to its well-connected part. We shall examine

the limits of this highly simplified approximation in the

Results section.

3D environments

Cubes

A periodic environment composed of closely spaced cubes

with lengths L1¼ L2¼ L3 along the x1, x2, and x3 axes can be
treated similarly to the squares in a 2D case. A unit element

of the ECS environment is composed of three intersecting

planes. Diffusion along any of the coordinate axes involves

two planes aligned with the concentration gradient and one

perpendicular to it. We therefore obtain average probability

in this homogeneous and isotropic environment as

ÆFðd1Þæ ¼ wðL1L2 1 L1L3Þ
wðL1L2 1 L1L3 1 L2L3Þ

1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp � d
2

1

4Dt

� �

(20)

and the effective diffusion coefficient, permeability and

tortuosity are

D
� ¼ 2

3
D; u ¼ 2

3
and l ¼

ffiffiffi
3

2

r
: (21)

It is interesting to note that the hindrance is lower than in

the corresponding 2D case even though the path elongation

around the cubes seems higher. It is another example that

thinking in terms of pathways is misleading. It would be

correct only for a 3D rectangular network of tubes where we

would indeed obtain larger hindrance effect, u ¼ 1=3,
l ¼ ffiffiffi

3
p

(Mathias, 1983).

Equations 20 and 21 provide another interpretation of

diffusion permeability in the 3D environments composed of

closely packed elements. The surface areas LiLj are pro-

portional to the typical time to ‘‘fill’’ them during a 2D

diffusion process for which ÆL2æ} 4Dt. We can consider

these times as typical ‘‘dwell’’ times for the molecules

diffusing along the corresponding planar elements. Although

these times are mere approximations, the permeability

involves only ratios of these quantities. We can therefore

1610 Hrabe et al.
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consider a 1D macroscopic diffusion through the environ-

ment and express permeability as a ratio of dwell time (t121
t13) needed for diffusion with no perpendicular pathways (a

process equivalent to the free diffusion), to the dwell time

(t12 1 t13 1 t23) consumed after the perpendicular planes

are added. This approach leads to the same results and was

described in more detail elsewhere (Hrabětová et al., 2003).

It also agrees with the explanation of diffusion permeability

as a time-delay factor.

Random convex polyhedra

The transition from a periodic environment of cubes to

randomized polyhedra is analogous to the 2D procedure.

Tightly packed convex polyhedra have sides in the shape of

convex polygons with random orientations of normals. The

environment is macroscopically homogeneous and isotropic.

When observing diffusion in a plane S with unit normal

(n1, n2, n3)¼ (cos b1, cos b2, cos b3) from a viewpoint along

the x1 axis, it appears that the diffusion coefficient is reduced
by a factor of cos2 b2 1 cos2 b3 ¼ sin2 b1. Averaging over

all possible directions in space gives

u ¼ 1

4p

Z 2p

0

Z p

0

sin
2
b1 sinb1 db1 df ¼ 2

3
: (22)

A random and well-connected 3D environment thus

exhibits the same permeability as the periodic network of

cubes. We could also treat the polygonal sides as a collection

of its three independent projections and consider their

respective average dwell times to obtain—thanks to

macroscopic isotropy—the same result:

u ¼ Æt12æ1 Æt13æ
Æt12æ1 Æt13æ1 Æt23æ

¼ ÆS3æ1 ÆS2æ
ÆS3æ1 ÆS2æ1 ÆS1æ

¼ 2

3
: (23)

Dead-end pores

The most realistic and biologically relevant environment we

consider is a 3D homogeneous and isotropic medium

containing dead-end pores. We assume the pores to have

approximately the same width as the well-connected

channels and with openings that are small compared to the

other dimensions of the unit cells. If the average volume of

a dead-end pore in a unit cell of the environment is ÆVpæ, the
diffusion permeability is decreased in the same way as in the

2D case:

u ¼ wðÆS3æ1 ÆS2æÞ
wðÆS3æ1 ÆS2æ1 ÆS1æÞ1 ÆVpæ

¼ 2wÆS1æ
3wÆS1æ1 ÆVpæ

: (24)

Because a0 } 3wÆS1æ (the well-connected ECS volume

fraction) and a } 3wÆS1æ1ÆVpæ (total ECS volume fraction),

the Eq. 19 is still valid in 3D, even though the well-

connected permeability changed to u0 ¼ 2=3 (and tortuosity

to l0 ¼
ffiffiffiffiffiffiffiffi
3=2

p
):

u

u0
¼ a0

a
; or

l

l0

¼
ffiffiffiffiffi
a

a0

r
: (25)

This equation can be used to estimate the amount of dead-

end space in the brain tissue under various physiological

conditions (Hrabětová and Nicholson, 2004).

METHODS

Numerical modeling

Geometrical models of complex environments were constructed as

triangular meshes consisting of point coordinates and point connectivity

data. Monte Carlo diffusion was simulated using the MCell program (Stiles

and Bartol, 2001; Stiles et al., 2004) on various Linux workstations.

Typically, 5000 molecules were released from a point source and allowed to

diffuse for 1 s, divided into 106 time steps. For every molecule in every time

step, the program determined the random displacement vector ~dd from the

probability distribution fð~ddÞ valid for an obstacle-free 3D environment with

diffusion coefficient D ¼ 10�6 cm2/s. When the linear pathway intersected

an obstacle representing a brain cell, it was simply reflected as if the collision

was perfectly elastic.

To facilitate visual rendering by the OpenDX (www.opendx.org) script

DReAMM (www.mcell.psc.edu), the MCell simulation generated a geom-

etry file in a suitable format, together with 500 files containing molecule

positions, typically creating one file every 2 ms of the diffusion time.

All 2D media were modeled essentially as very thin slabs (0.5 mm) of

a 3D environment because there is no specific 2D module in the MCell

program. Four point sources were spaced across this slab and enclosed by

an impenetrable surface of a very narrow beam representing a line source

(0.053 0.053 0.5mm3). The molecules were left to diffuse for 0.01 s inside

the source beam to achieve initial distribution closely resembling a homog-

eneous line source. The source beam was then made transparent, releasing

the molecules into the complex environment.

To estimate the permeability and tortuosity, we generalized the counting

box approach used by Tao and Nicholson (2004). A counting box is invisible

to the passing molecules and is only used to record the number of molecules

inside it at prescribed time points. If the counting box dimensions along the

x1, x2, and x3 axes are a1, a2, and a3, the box is expected to still contain

nðtÞ ¼ n0erf
a1

4
ffiffiffiffiffiffiffi
D

�
t

p
� �

erf
a2

4
ffiffiffiffiffiffiffi
D

�
t

p
� �

erf
a3

4
ffiffiffiffiffiffiffi
D

�
t

p
� �

(26)

molecules out of the n0 released at its center at time t¼ 0 (Crank, 1975). We

recorded the counts at one hundred time points during the diffusion interval,

using boxes of increasing size (typically 10 boxes with sizes 6, 12, . . . , 60
mm). The measured time dependencies were entered into a nonlinear fitting

program implemented in IDL (Research Systems, Boulder, CO) to obtain the

effective diffusion coefficient for every counting box. A median of these

values was used as the best numerical estimate for the effective diffusion

coefficient D*, thus determining the diffusion permeability and tortuosity

(Eq. 12).

Equation 26 was used for the 2D models as well, after setting a3 / N.
Furthermore, it was also adapted to examine anisotropy in both the 2D and

3D environments, by simply letting two dimensions of the counting box
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approach infinity and considering the diffusion along the single remaining

dimension.

In a set of preliminary numerical experiments, two important

assumptions were verified. First, a series of gradually decreasing time

discretization steps was employed to find the maximum possible root mean

square (RMS) displacement. It was found that a simulation interval 1 ms

(corresponding to RMS displacement of;0.025 mm) was sufficiently small

for all geometries with minimum gap widths of 0.1 mm. The only exception

was the random 3D environment where we had to halve the RMS

displacement. We used a gap width of at least 0.2 mm in the majority

of experiments.

Second, given that any geometrical model has a finite size whereas at least

some of themolecules will move very far, it is important to consider the effect

of model boundaries. A combination of a small model with long diffusion

time would necessarily distort the results. At the same time, the counting

boxes (and of course the wholemodel as well) must contain sufficient number

of cellular elements and the diffusion time has to be sufficiently long to

reliably determine the effective diffusion. A typical size of the cellular

elements in our geometries was 3 mm. The influence of the model size was

tested by running the same experiment twice with two different boundary

conditions. In one case the outer boundarywasmade reflective whereas in the

other one it was made absorptive. From the observed differences of the two

cases we found the maximum size of the counting box for which the model

boundaries had only negligible effect. Larger counting boxes were discarded.

No more than two out of ten boxes had to be discarded for model sizes 60–90

mm across and a diffusion time of 1 s.

Simple periodic geometries are straightforward to generate. The random

polygonal models are more interesting. We employed Voronoi tessellations

(Okabe et al., 2000) followed by a shrinkage of cellular elements, which

gave rise to uniform gaps between them. First, pseudorandom seed points

were generated on a rectangular grid in such a way that every cube (or square

in the 2D case) of the grid (33 33 3mm3) contained exactly one seed point.

The seed point was placed randomly inside a smaller concentric cube (2.43
2.4 3 2.4 mm3). The point set was then processed by the Voronoi

tessellation algorithm that produced a set of convex polyhedra (or polygons

in the 2D case). Finally, the sides of these elements were parallel-shifted

toward their center of gravity by half of the desired gap width. Any

nonconvex cellular elements, arising due to complete elimination of some

sides during this transformation, were detected and corrected. For the 2D

randommodel, the algorithm was implemented in the IDL language but only

the QHULL package (Barber et al., 1996) was able to deal reliably with the

3D case.

RESULTS

2D environments

The environment composed of periodic squares (periodicity

3 mm, gaps 0.215 mm) had ECS volume fraction a¼ 0.14. It

is less than a typical value in a living tissue but we chose to

perform the 2D simulations with gaps (rather than volume

fractions) similar to the 3D environments. A total of 303 30

squares were laid down. Effective diffusion was examined

separately for x1 and x2 axes to verify the isotropy. Median

permeabilities were u1 ¼ 0.534 and u2 ¼ 0.534 (and

tortuosities l1 ¼ 1.369 and l2 ¼ 1.368). The environment

thus appears to be isotropic, with results close to the

predicted u ¼ 1/2 (l ¼ ffiffiffi
2

p
). Fig. 1 documents the fitting

procedure of Eq. 26 with a1 ¼ 6, 12, . . . , 48 mm, a2 / N
and a3 / N.

With this simple geometry, we also tested the influence of

the exact positioning of the counting boxes. The counting

box walls normally coincided with the gaps between the

square cells. When the boxes were expanded to run across

the centers of the cellular elements, the results were very

similar, e.g., u1 ¼ 0.526 and l1 ¼ 1.379.

We examined only one anisotropic environment, created

from rectangles with the side length ratio L1/L2 ¼ 2/1. The

gap width was the same as before (0.215 mm). The

simulation resulted in u1/u2 ¼ 0.703/0.355 ¼ 1.981.

Equation 15 predicts, in a good agreement, u1/u2 ¼ (2/3)/

(1/3) ¼ 2.

A random 2D environment (Fig. 2) was generated by the

procedure described in the paragraph on numerical modeling

in the Methods section. There was one seed point (and

therefore one cellular element) per 33 3 mm2 of the surface.

The gap was set uniformly to 0.2 mm. In agreement with Eq.

16, effective diffusion was very similar to the isotropic

squares environment. We measured permeabilities u1 ¼
0.512 and u2 ¼ 0.519 (corresponding to tortuosities l1 ¼
1.397 and l2 ¼ 1.388).

The last series of 2D experiments (Fig. 3) served to

examine the limits of the approximation given by Eq. 19 for

the environment with dead-end pores. The dead-end pores

were created as cul-de-sacs in all four sides of each element.

The gap was kept 0.2 mm wide, both between the elements

and in the pores. The amount of dead-end volume fraction

(a � a0) was varied exclusively by changing the depth of

the pores (0.0,0.6, . . . , 2.4 mm). The results are summarized

in Fig. 4 A. Similarly to the well-connected environment, the

permeability is always slightly higher than predicted by the

model, which assumes infinitely narrow gaps. Apart from

FIGURE 1 An example of the fitting procedure based on Eq. 26. Median

effective diffusion coefficient was computed from fits corresponding to all

individual counting boxes (eight in this case). This example shows fitting for

effective diffusion along the x1 axis in a 2D environment with square

obstacles. To detect possible anisotropy, two sets of counting boxes were

used, one with a2 / N and the second one with a1 / N.
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this shift, the experimental results nicely follow the model

prediction.

For lower values of a, we also tested different positions of
the pores with respect to the square elements, placing them at

the centers of the four sides. The differences were negligible.

No anisotropy was detected in either case.

3D environments

The simplest 3D geometry was formed as a periodic network

of cubes (period of 3 mm in each direction). We examined

ensembles of cubes with varying gap widths (0.1, 0.2, . . . ,
0.6 mm), leading to varying ECS volumes a. Fig. 5 shows

that the permeabilities are almost exactly predicted by the

Maxwell homogenization theory (u � 2/(3 � a)), originally
derived for a suspension of loosely dispersed spheres

FIGURE 3 Dead-end pore diffusion. Cellular elements were removed to

reveal the distribution of the diffusing molecules. The molecules are

rendered as unrealistically large spheres to aid visualization. Because the

molecules readily enter the dead-end pores, the effective diffusion observed

on a macroscopic scale appears to be delayed. The elements are 3 mm across.

FIGURE 4 (A) 2D environment with pores. When dead-end volume

fraction is added to the initial well-connected volume fraction a0, the total

ECS volume fraction a increases but the hindrance of the environment

increases as well. This prediction is contained in Eq. 19 and confirmed by

numerical simulations (data points for effective diffusion along both x1 and

x2 axes are shown). In contrast, if a is increased by adding only well-

connected space to a0, the effective diffusion approximately follows

Maxwell’s curve with decreasing hindrance for higher volume fractions (Eq.

27a). The 2Dmodel used a0¼ 0.129. (B) 3D environment with pores. Dead-

end pores added to the well-connected 3D environment increase the

diffusion hindrance, as Eq. 25 predicts. Note that the mutual relationships

are qualitatively similar to the 2D case (A) but all values are significantly

shifted toward lower hindrance. This effect is characteristic of the transition to

three dimensions. Addition of dead-end pores can lead to tortuosities

commonly observed in the nervous tissue. The 3D model used a0 ¼ 0.1 and

themolecules were allowed to diffuse for 2 s, divided into 43 106 time steps.

FIGURE 2 Geometrical arrangement of the 2D model composed of

random polygons. Molecules are seen in black close to the release site. See

text for details on modeling the 2D effective diffusion as a 3D process

restricted to a thin layer.
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(Torquato, 2002), and, in analogy to the Clausius-Mossotti

approximation for electric permeability, expected to be valid

also for tighter arrangements of spheres. This confirms the

result reported previously by Tao and Nicholson (2004). It

is clear that for biologically relevant volume fractions of

;0.05–0.4, the permeabilities vary in a very small range,

with the upper hindrance limit given by Eq. 21, which

assumes narrow gaps.

We next examined whether this behavior could be

replicated in a more realistic environment composed of

random convex polyhedra (Fig. 6). The experiments con-

firmed validity of Eq. 22 for small a (Fig. 5). For larger

ECS volume fractions, the effective diffusion is again very

well described by the Maxwell relationship, even though the

permeability is everywhere slightly lower than in the cubic

environment. It is thus confirmed that the well-connected

random geometries composed of convex elements produce

permeabilities and tortuosities very similar to the periodic

network of cubes. The narrow channel limit is an excellent

approximation for most biologically relevant volume

fractions. However, well-connected geometries cannot

account for the higher diffusion hindrance measured in the

central nervous system, be it healthy or under stress.

According to Eq. 25, adding dead-end pores to a well-

connected ECS should increase the diffusion hindrance. We

tested this assumption by adding pockets with openings in

the sides of the cubic elements (Fig. 7). These modified

cubes were randomly oriented. The results are summarized

in Fig. 4 B. For the biologically interesting range of ECS

volume fractions, Eq. 25 works quite well, even though the

prediction becomes less accurate when the amount of dead-

end space is larger. It is clear that dead-end pores could, in

principle, account for the diffusion parameters in the nervous

tissue. At the same time, the dramatic changes in effective

diffusion during pathological insult could be explained by

a change in the ratio of the dead-end volume fraction to the

well-connected volume fraction.

In a separate set of experiments we verified the effects

of the exact positioning and shape of the pockets. The

differences between the arrangements with pockets close to

FIGURE 5 Decreasing the ECS volume fraction a by narrowing the

channels between cellular elements decreases the tissue permeability only

slightly. Both a simple model composed of cubes and a more realistic one

with random convex polyhedra follow fairly closely Maxwell’s homoge-

nization estimate (Eq. 27b). The lowest achievable diffusion permeability is

given by the narrow channel approximation (Eqs. 21 and 22). It is clear that

manipulation of the uniformly wide and well-connected channels cannot

account for experimental diffusion data in nervous tissue.

FIGURE 6 Illustration of the random 3D geometry composed of convex

polyhedra. The gaps between the elements are uniform. Typical size of one

cellular element is 3 mm. See text for more details on generating this model.

FIGURE 7 A single element of the 3D environment with dead-end pores.

Pockets were made in every face of the cube, taking care to avoid mutual

intersections while achieving maximum possible dead-end volume fraction.

The orientation of each element in the environment was randomly selected

from the 24 possible orientations. The width of the pore channels was

identical to the gaps between the elements (0.104 mm).
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the cube edges and near the side centers were negligible.

Changes in the pocket shape had a larger effect. Shallower

pockets with larger openings into the well-connected space

(depth/length � 1/2) departed from the model prediction

more (8.1% error in tortuosity prediction for a ¼ 0.16) than

deeper pockets with smaller openings (depth/length � 2/1,

3.0% error in tortuosity prediction for a ¼ 0.16). This is

expected because the model assumed that the openings are

small relative to the size of the cubical elements. Square-

shaped pockets used to generate Fig. 4 B differ from the

model by ;4.6% in tortuosity.

DISCUSSION

Diffusion in a geometrically complicated environment is,

on a microscopic level, an extremely complex process.

Fortunately, in biological applications (as well as many

others), we are often satisfied with macroscopic characteri-

zation. Remarkably, macroscopic diffusion in a complex

environment can be described by the same diffusion equation

as the diffusion in a free environment, except for a new and

more general definition of the diffusion coefficient (Eq. 5).

Although there are other ways to derive the averaged

diffusion equation (Eq. 6), we believe that the approach

based on Einstein’s original idea has several advantages. It is

very straightforward and the origins of various assumptions

that have to be made are easy to understand. It also leads to

an explicit formula for the effective diffusion coefficient

that ties it to the average displacement probability. Finally,

it reveals the dependence of the effective diffusion on the

diffusion time. In a free environment, the only requirement

for the diffusion time t is to be sufficiently long for the

diffusing particle to ‘‘forget’’ its starting position. In

contrast, different (and experimentally accessible) diffusion

times in a complex environment can lead to very different

results. This is easy to demonstrate experimentally by the

diffusion-weighted-MR technique. Short diffusion times

(e.g., several ms) emphasize properties of the immediate

neighborhoods of the molecules at time t ¼ 0 and the

effective diffusion therefore resembles the free diffusion.

With longer diffusion times (e.g., several tens of ms), more

of the complex geometry is being explored and the effective

diffusion becomes more in tune with the iontophoretic and

IOI methods that normally utilize very long diffusion times

(e.g., tens of seconds) (Nicholson and Phillips, 1981;

Nicholson and Tao, 1993; Nicholson, 2001; Kroenke et al.,

2003).

Unlike the porous media found in many nonbiological

applications, the assemblies of brain cells develop in such

a way that the cell walls yield to their neighbors and the

spacing between the cells is comparatively uniform (van

Harreveld, 1972). The geometry of this close packing is very

different from a pile of sand or a sediment rock, for example.

The ECS volume fraction in the brain is usually;0.2, which

means that the gaps between the cells are very narrow

compared to the typical diameter of the cellular elements

themselves. This structure, characteristic of nervous tissue,

has made it possible to develop the narrow channel ap-

proximation. In this approximation, the exact width of the

channels does not affect the effective diffusion, as long as it

is small.

A complementary approach, starting from a diluted sus-

pension of small spherical obstacles, is given by Maxwell’s

homogenization theory (Torquato, 2002). This point of view

leads to permeability estimates

u ¼ 1

2� a
for a 2D environment; and (27a)

u ¼ 2

3� a
for a 3D environment: (27b)

Interestingly, in the limit of a / 0, these estimates happen

to agree with our narrow channel approximation in the well-

connected environment, even though Maxwell’s assump-

tions are severely violated under these circumstances. This is

probably the reason why Eqs. 27a and 27b work fairly well

for a wide range of well-connected ECS volume fractions.

However, the variations due to Eq. 27b are entirely outside of

the range obtained experimentally both in normal and

pathological nervous tissues. Some other factor limiting

percolation must therefore be present. One possibility is the

presence of the dead-end pores where diffusion can be

delayed. Existence of dead-end pores gives the u ¼ u(a)
relationship an additional degree of freedom, thus making

Eq. 27b inadequate for the description of nervous tissue.

Enlarging the volume fraction can lead either to lower dif-

fusion hindrance or to higher diffusion hindrance, depend-

ing on what exactly is enlarged—either the well-connected

space or the dead-end space. The most important factor is

the ratio of thewell-connected anddead-endvolume fractions.

The total ECS volume has much smaller effect.

In pathological conditions such as hypoosmotic stress or

ischemia, the cells swell and the ECS volume fraction

is lowered (Nicholson and Syková, 1998). The dramatic

increase in tissue hindrance commonly measured under

these conditions is most likely attributed to the relative

increase of the dead-end space (Hrabětová et al., 2003)

because the hindrance becomes much higher than

Eq. 27b would predict. This conclusion is corroborated

by diffusion experiments with macromolecules. As shown by

Hrabětová et al. (2003), adding the background macro-

molecules increases diffusion permeability (and decreases

tortuosity), which cannot be easily explained without the

presence of dead-end pores. The macromolecules are

likely trapped in the dead-end pores and partly eliminate them,

thus emphasizing the well-connected part of the ECS.

From the wealth of diffusion measurements in the brain

and other nervous tissue we can estimate that ;40% of ECS
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is located in the dead-end pores. This proportion is likely

increased to;60% under pathological stress (Hrabětová and

Nicholson, 2004).

Our approach was strictly geometrical and any other

effects, such as viscosity or reversible uptake, were neg-

lected. Viscosity due to, e.g., extracellular matrix, could con-

ceivably contribute to the observed diffusion hindrance.

However, in the light of recent experiments in the ischemic

brain slices (Patlak et al., 1998; Hrabětová et al., 2003), it

seems increasingly unlikely that the viscosity contribution is

large. Background macromolecules blocking the dead-end

pores were able to lower the diffusion hindrance almost to its

well-connected limit given by Eq. 22 (Patlak et al., 1998).

This would not be possible if the ECS matrix played

a significant role in hindering diffusion, unless the matrix is

preferably distributed in the dead-end pores, for which there

is no evidence. A similar argument can be made about the

reversible uptake that would also lower the effective

diffusion. Although there is not yet a definitive proof for

the prominent role of the dead-end pores in the brain ECS,

they appear to provide the most plausible explanation of the

available data.

Electron micrographs lend some support for the existence

of dead-end pores in the brain tissue. For example, the

processes of glia, the most abundant cell type in the brain,

possess a remarkable structural complexity that includes

pocket-like formations (Špaček, 1985; Grosche et al., 1999).

It is conceivable that more dead-end pores form in the ECS

when gaps between the cells get occluded during ischemia or

hypoosmotic stress. A study by van Harreveld and Malhotra

(1967) shows many tight junctions between cellular elements

in electron micrographs of ischemic neocortex.

Several limitations of the narrow channel models should

be mentioned. First, it became clear that 2D models, even

though they qualitatively have some features found in the

brain diffusion, are characterized by consistently lower

permeabilities (and higher tortuosities) than the 3D models.

Their predictive value is therefore quite limited, except, of

course, in the structures that are of approximately 2D nature,

such as the nerve bundles. Although the 3D models are

computationally much more demanding (on the order of days

for a 1 s simulation run with 5000 molecules on a modern

Linux PC), they should be employed whenever possible.

Second, geometrieswith larger volume fractions violate the

narrow channel assumption. If the obstacles are convex and

all of the ECS iswell connected, theMaxwell model (Eq. 27b)

may provide a better approximation. However, for biologi-

cally relevant values of a0 (up to ;0.2), the difference

between the Maxwell and the narrow channel models is small

(up to 3.4% in tortuosity). In some geometries, notably the

random polyhedra with a ¼ a0 , 25%, the narrow channel

estimate appeared better than the Maxwell approximation.

Nonbiological applications with larger values of a0 may

benefit from an empirical correction to Eq. 25 based on

a Maxwell relationship between u0 and a0.

Finally, the accuracy of the narrow channel approximation

with dead-end pores is lower for larger pore openings into

the well-connected space. We have verified this effect by

constructing an anisotropic environment that incorporated

very shallow pockets with openings almost as wide as the

cube sides (a0 ¼ 0.1, ad ¼ a � a0 ¼ 0.09). The pockets

(similar to Fig. 7) were arranged so that four of them were

aligned with the x3 axis and four had openings perpendicular
to the x2 axis. The step randomizing the cube orientations

was skipped. The tortuosity l2 (perpendicular to openings)

was within 3.5% of the predicted value (1.8% with Maxwell

empirical correction for l0). The diffusion along the pocket

openings, however, was hindered much less than the model

predicts. The error in l3 was ;17%. The reason is that this

aligned arrangement effectively blurs the boundary between

the well-connected space and the dead-end pore. The pore

opening is so large that a portion of the pore close to the

opening becomes indistinguishable from the well-connected

space. This geometrical arrangement is artificial but it

documents the least favorable case for the model application.

In a macroscopically isotropic and homogeneous environ-

ment with parameters typical for a healthy brain ECS, we can

estimate the errors in tortuosity due to finite widths of the

well-connected gaps by ;1–2% (based on the Maxwell

model) and the errors due to finite widths of pore openings

by ;4–5% (based on randomly oriented square pockets).

Both errors increase with larger volume fractions but in most

pathological situations the volume fraction decreases below

its physiological value, favoring the compliance with the

model assumptions.

We have presented a derivation of the effective diffusion

coefficient and shown how it can be estimated in a range of

2D and 3D models with narrow channels between tightly

packed cellular elements. The geometrical model is presently

able to explain the experimentally obtained diffusion

properties in the nervous tissue in both physiological

conditions and under pathological insults such as ischemia.
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