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The behavior of multilayer elastomeric isolators employing carbon fibers as reinforcement material
rather than steel has been considered. This kind of reinforcement is used to make the isolators lighter
and cheaper, since carbon fibers (or Kevlar) are much more resistant per unit weight than steel. From
the mechanical point of view, the main difference is that the fiber reinforcement cannot be considered
rigid in extension as it is usually done for steel plates. In this paper an analytical model to analyze the
compression and bending behavior of fiber-reinforced rectangular isolators is presented. The model takes
into account, for the first time, both the reinforcement extensibility and the compressibility of the elas-
tomer. An analytical solution to predict deformations, stresses and stiffness is here determined in terms
of Fourier series, both for compression and bending.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Seismic isolation is a design approach to preserve structures
from earthquakes loads, which is based on the considerably in-
crease of the fundamental vibration period of structures due to iso-
lators presence. This goal is essentially reached by utilizing devices
which exhibit significant horizontal flexibility, maintaining high
vertical stiffness. Steel reinforced elastomeric isolators (SREIs),
usually used for seismic isolation, consist of a number of sheets
of elastomeric layers alternated to thin steel plates and bonded
to them. Steel plates are supposed to be rigid and consequently lat-
eral displacements at the top and the bottom of each elastomeric
layer are zero, thus increasing computed vertical stiffness. Two
steel plates, much thicker than others, are positioned at the top
and bottom of the whole isolator; they allow the isolator to be rig-
idly connected, by means of other two thick steel plates, to the
foundation and to the superstructure. This kind of isolators is hea-
vy and expensive and consequently this isolation technology is
generally applied in specific cases only (emergency centers, hospi-
tals or large-expensive buildings).

In the last years, theoretical studies have been carried out to
conceive isolators lighter and possibly made by a less labor-inten-
sive manufacturing process. Kelly (2002) and Kelly and Takhirov
(2002) showed that such kind of isolators can be produced,
replacing steel plates with carbon fiber sheets or Kevlar. In the fol-
lowing years, experimental and numerical studies (Kelly, 2002;
Kelly and Takhirov, 2002; Moon et al., 2003; Russo et al., 2008;
Toopchi-Nezhad et al., 2008; Mordini and Strauss, 2008; Gerhaher
et al., 2009) have been carried out to verify the feasibility and reli-
ability of such isolators.

The great advantage of this kind of isolators is that they are
much lighter weighting, but fiber reinforcement exhibits exten-
sional flexibility producing a small but significant reduction in iso-
lators vertical stiffness, with respect to steel reinforced isolators.
Therefore a good design of isolators requires a correct estimation
of vertical and flexural stiffness.

Some models to evaluate vertical and flexural stiffness for car-
bon fiber reinforced elastomeric isolators are already present in
the literature. They all assume both the elastomeric material and
the fiber-reinforcement to be linearly elastic; this is allowed by
the fact that displacements involved by compression and bending
actions are small. Moreover, the stress state is supposed to be dom-
inated by internal pressure (Kelly, 1997). In order to obtain analyt-
ical solutions, identical deformations are assumed for each
elastomeric reinforced layer. By this way, the analysis of the overall
isolator reduces on the analysis of the single fiber-reinforced elas-
tomeric layer.

Different models can be considered, according to the different
hypothesis that can be introduced on the geometry and on the
mechanical properties of the materials which constitute the isola-
tor. In particular, (i) the isolator shape can be circular, rectangular
or an infinitely long strip; (ii) the reinforcement can be assumed to
be rigid (typically for steel reinforcement) or extensible (fiber-rein-
forcement) and (iii) the elastomer can be assumed incompressible
or not.

The first proposed model (Kelly, 1997) considers isolators with
rigid reinforcement and compressible or incompressible rubber.
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Fig. 2. Single fiber-reinforced elastomeric layer under compression and the
displacements field.
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Kelly (1999) takes into account reinforcement extensibility for infi-
nitely long isolators. For the same shape, Kelly and Takhirov (2002)
considers also rubber compressibility. Tsai and Kelly (2002) study
the behavior of rectangular isolators, taking into account reinforc-
ing extensibility but neglecting rubber compressibility; they con-
sider the reinforcement as a homogenous isotropic elastic sheet
supporting shear stresses and obeying Poisson effect.

On the basis of the above mentioned approaches, in this paper
an analytical model for rectangular carbon fiber-reinforced isola-
tors, which takes into account reinforcement flexibility and rubber
compressibility, is for the first time presented. In this case, the
reinforcement is made by fabrics constituted with carbon fibers
laid out in two orthogonal directions and simply overlapped. As
it is explained in detail in the following chapter, such a kind of
material does not present Poisson effect and it is not able to sustain
shear stress. For this reason the reinforcement model is different
from Tsai and Kelly’s (2002) one.

The analytical solution for compression and bending is given in
terms of Fourier series. To validate the model a Finite Element (FE)
analysis has been also carried out; it showed an excellent agree-
ment with the analytical solution.

As all above mentioned models do, the proposed one assumes a
linear elastic behavior both for elastomer and the reinforcement.
For this reason, the range of applicability of the obtained solution
is restricted to small deformations occurring under service loading.
Being the assumed behavior elastic, no damping effect can be taken
into account.

Linear behavior for the materials is also assumed in the FE anal-
ysis to make the numerical model consistent with the analytical
one.
2. Compression analysis

A rectangular isolator with extensible reinforcement is a system
of elastomeric layers alternated with reinforcing fiber fabrics.
Thickness of each elastomeric layer is t, while the ideal equivalent
thickness of the fiber fabric is tf, being the fibers volume assumed
to be uniformly distributed on the whole isolator cross section. In
Fig. 1 a portion of an isolator bounded by the symmetry vertical
plane and constituted by three elastomeric layers, is represented.

To study the static behavior of the isolator, a single fiber-
reinforced elastomeric layer extracted from the whole, as shown
in Fig. 1, is considered. The single fiber-reinforced elastomeric layer
is made by an elastomeric layer and by two superior and inferior
fiber sheets of ideal thickness tf/2 each, as represented in Fig. 2.
The side length parallel to the x axis is 2b and to the y axis is 2h.
2.1. Equilibrium equations in the elastomeric layer

A vertical compressive load P is supposed to be applied to the
isolator layer. Each point of the elastomer exhibits the displace-
ments u, v, and w in x, y and z coordinate directions respectively.
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Fig. 1. Portion of the isolator and the extracted single layer.
By assuming fiber sheets to be perfectly bonded to the elastomeric
layers, these displacements can be expressed as (Tsai and Kelly,
2002):

uðx; y; zÞ ¼ u0ðx; yÞð1� 4z2=t2Þ þ u1ðx; yÞ ð1Þ

vðx; y; zÞ ¼ v0ðx; yÞð1� 4z2=t2Þ þ v1ðx; yÞ ð2Þ

wðx; y; zÞ ¼ wðzÞ ð3Þ

First terms on the right-hand side of Eqs. (1) and (2), represent
the kinematic assumption that the displacements u and v vary qua-
dratically along z, u0 and v0 being the displacements of the elasto-
meric layer mean plane x–y. The additional displacements u1 and
v1, which are constant through the thickness, are the displacements
evaluated at the fiber reinforcement interface. These displacements
are equals to those of the fiber sheet, due to perfect bonding be-
tween elastomer and fibers. The fiber sheet displacements u1 and
v1 are assumed to be constant along the fiber sheet thickness, due
to its smallness. Eq. (3) represents the kinematic assumption that
horizontal planes remain plane after the deformation. A sketch of
the displacement field is shown on the right-hand side in Fig. 2.

Accordingly to the hypothesis introduced by Kelly (1997), the
stress state in the elastomer is supposed to be dominated by the
internal pressure p, such that the corresponding stress components
are assumed to be:

rxx � ryy � rzz � �p ð4Þ

sxy ¼ syx � 0 ð5Þ

The equilibrium equations in x and y directions for the stresses
in the elastomer are therefore reduced to (Kelly, 1997)

�p;x þ sxz;z ¼ 0 ð6Þ

�p;y þ syz;z ¼ 0 ð7Þ

where commas imply partial differentiation with respect to the
coordinate indicated after the comma.

A linear elastic behavior for the elastomer is assumed.
By taking into account the compressibility of the material, the

compressibility equation can be written

u;x þ v ;y þw;z ¼ �
p
K

ð8Þ

where K is the bulk modulus of the elastomer. The right-hand side
in Eq. (8) is equal to zero when the elastomer compressibility is not
taken into account, as was done by Tsai and Kelly (2002).

Eqs. (1)–(8) are the governing equations of the elastic problem
of rectangular isolators with extensible reinforcement and com-
pressible elastomer. A solution of this problem is here obtained
for the first time as shown in the following paragraphs.
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Substituting Eqs. (1)–(3) in Eq. (8) and then integrating from
z = �t/2 to z = t/2, it is obtained:

2
3
ðu0;x þ v0;yÞ þ ðu1;x þ v1;yÞ ¼ ec �

p
K

ð9Þ

in which ec = (w(�t/2) � w(t/2))/t is the axial strain measured along
z in the elastomeric layer.

Eq. (9) will be the fundamental equation in terms of pressure p.
To express displacements derivatives as functions of pressure,
equilibrium equations will be used.

Taking into account that sxz = 2Gcxz = G(u,z + w,x) and syz = 2-
Gcyz = G(v,z + w,y), with G shear modulus of the elastomer, and
using Eqs. (1)–(3), the shear stress components in the elastomer
are obtained:

sxz ¼ �8Gu0
z
t2 ð10Þ

syz ¼ �8Gv0
z
t2 ð11Þ

By means of Eqs. (10) and (11), Eqs. (6) and (7) lead to:

p;x ¼ �8G
u0

t2 ð12Þ

p;y ¼ �8G
v0

t2 ð13Þ

Differentiating Eqs. (12) and (13) with respect to x and y respec-
tively, the expressions for the axial strains in the elastomer follow:

u0;x ¼ �p;xx
t2

8G
ð14Þ

v0;y ¼ �p;yy
t2

8G
ð15Þ
z
y

2.2. Equilibrium equations in the fiber reinforcement

In Fig. 3 a sample of a real carbon fiber reinforcement fabric,
made by independent very thin threads, is shown (note that carbon
fiber filaments groups are only black ones). It can be easily seen
that fibers laid down in orthogonal directions are actually indepen-
dent. The intersections of the fibers do not determine any mechan-
ical link, being the fibers simply overlapped. Consequently the
elongation of a fiber in one direction does not determine any short-
ening of the fibers in the orthogonal direction, which implies that
Poisson coefficient is zero. Being the carbon fiber fabric made by
Fig. 3. A sample of a real carbon fiber fabric reinforcement.
independent very thin threads, it obviously does not exhibit any
shear stiffness. Consequently no shear stress can arise in the fibers.

The carbon fiber reinforcement under consideration is assumed
to be constituted of continuously and uniformly distributed fibers
laid in x and y directions only.

The internal forces acting on an infinitesimal area of the rein-
forcing sheet are therefore the forces shown in Fig. 4, where Fx

and Fy represent the normal forces per unit length in x and y direc-
tions, and sxz, syz are the shear stresses, on the surfaces of the rein-
forcing sheet, exerted by the elastomer.

The same fiber amount is assumed to be laid down in both
directions. It follows that only half of the reinforcing thickness
tf/2 is laid down in one direction and half is laid down in the
orthogonal one, since tf denotes the whole ideal thickness of the
fiber reinforcement fabric.

The forces Fx and Fy are therefore linearly related to the exten-
sional strains in the respective direction only, by the following
expressions:

u1;x ¼
2Fx

Ef tf
ð16Þ

v1;y ¼
2Fy

Ef tf
ð17Þ

where Ef is the elastic modulus of the fibers.
The equilibrium equations in the x and y directions are:

Fx þ
@Fx

@x
dxþ sxzjz¼�t=2dx� Fx � sxzjz¼þt=2dx ¼ 0 ð18Þ

Fy þ
@Fy

@y
dyþ syz

��z¼�t=2
dy� Fy � syz

��z¼þt=2
dy ¼ 0 ð19Þ

Taking into account Eqs. (10) and (11), Eqs. (18) and (19) pro-
vide the relationships between the displacement components in
the elastomer, u0 and v0, and in the fibers, u1 and v1:

u0 ¼ �
Ef tf t
16G

u1;xx ð20Þ

v0 ¼ �
Ef tf t
16G

v1;yy ð21Þ
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Fig. 4. Internal forces acting on an infinitesimal area of the carbon fiber reinforcing
sheet.
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Finally, by substituting Eqs. (20) and (21) in Eqs. (12) and (13),
the following expressions are obtained:

p;x ¼
Ef tf

2t
u1;xx ð22Þ

p;y ¼
Ef tf

2t
v1;yy ð23Þ

Integrating Eqs. (22) and (23) with respect to x and y respec-
tively, it is obtained:

p ¼ Ef tf

2t
u1;x þ f ðyÞ ð24Þ

p ¼ Ef tf

2t
v1;y þ gðxÞ ð25Þ
2.3. Boundary conditions

To determine the function f(y) appearing in Eq. (24), appropriate
boundary conditions have to be considered: at the lateral surface of
the elastomeric layer (x = ±b) both the pressure p and the force Fx

must be zero; taking into account Eqs. (24) and (16), this implies
that f(y) = 0.

Analogously for y = ±h both p and Fy must be zero, implying
g(x) = 0.

Thus from Eqs. (24) and (25), axial strains in the reinforcement
as functions of the pressure p are obtained:

u1;x ¼
2t

Ef tf
p ð26Þ

v1;y ¼
2t

Ef tf
p ð27Þ

Replacing Eqs. (14) and (15) and Eqs. (26) and (27) into Eq. (9),
it is obtained:

r2p� 2a2 þ b2� �
p ¼ �12G

t2 ec ð28Þ

where r2p = (p,xx + p,yy) and the following constants have been
introduced:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 12G

Ef tf t

s
ð29Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffi
12G
K � t2

r
ð30Þ

It must be observed that, for a given elastomeric layer thickness
t, a provides a measure of the elastomer shear stiffness G relative to
the fiber sheet axial stiffness (Ef tf/2) per unit length. So a tends to
zero for axially rigid fibers.

Analogously, the parameter b provides a measure of the same
shear stiffness G relative to the bulk modulus K. So b becomes zero
for incompressible elastomer (i.e. when K is very large)

2.4. Solution of pressure

Eq. (28) is the partial differential equation which has to be sat-
isfied by p(x,y) within the region X given by the cross-section of
the elastomeric layer (Fig. 2). Since no forces are applied on the lat-
eral surface of the elastomeric layer, the following boundary condi-
tions on the perimeter oX (Fig. 2) must hold:

pð�b; yÞ ¼ 0 y 2 ½�h;h� ð31Þ

pðx;�hÞ ¼ 0 x 2 ½�b; b� ð32Þ
To solve Eq. (28), with boundary conditions (31) and (32), Fourier
series technique can be used. If the pressure p is expressed by:

pðx; yÞ ¼
X1

n;m¼1

pnm cos
np
2b

x
� �

cos
mp
2h

y
� �

ð33Þ

where the Fourier series is extended only to terms for which n and
m are odd numbers, then each term of the series identically satisfies
boundary conditions (31) and (32), and consequently p(x,y) van-
ishes on the boundary.

The constant term on the right-hand side in Eq. (28) can also be
expressed by means of an analogous double Fourier series:

�12G
t2 ec ¼

X1
n;m¼1

anm cos
np
2b

x
� �

cos
mp
2h

y
� �

ð34Þ

where the terms anm are determined as:

anm ¼
1

bh

Z b

�b

Z h

�h
�12G

t2 ec

� 	
cos

np
2b

x
� �

cos
mp
2h

y
� �

dydx ð35Þ

Substituting Eqs. (33) and (34) in Eq. (28), utilizing anm values
obtained from Eq. (35) and finally equating the homologous cosine
coefficients, it follows:

pnm ¼
192G

mnp2t2 ec

np
2b

� �2 þ mp
2h

� �2 þ 2a2 þ b2� � sin
mp
2

� �
sin

np
2

� �
ð36Þ

Eq. (33), by means of Eq. (36), gives the final expression for p(x,y):

pðx; yÞ ¼
X1

n;m¼1

192G
mnp2t2 ec

sin mp
2

� �
sin np

2

� �
np
2b

� �2 þ mp
2h

� �2 þ ð2a2 þ b2Þ

� cos
np
2b

x
� �

cos
mp
2h

y
� �

ð37Þ
2.5. Effective compression modulus

The compression stiffness of the single isolator layer Ec can be
defined as:

Ec ¼
P

Aec
ð38Þ

where A = 4bh is the area of the isolator. Integration of the function
p(x,y) given by Eq. (37) over the domain X, leads to the total vertical
load P. Substitution of P into Eq. (38) leads to:

Ec ¼
768GS2

p4

b
h
þ 1

� 	2 X1
n;m¼1

sin2 np
2

� �
sin2 mp

2

� �
n2m2 np

2

� �2 þ mp
2

b
h

� �2 þ 2 abð Þ2 þ bbð Þ2
� �

ð39Þ

in which S is the shape factor of the rectangular layer of the elasto-
mer, defined as:

S ¼ bh
ðbþ hÞt ð40Þ

Normalizing the compression modulus given by Eq. (39) with re-
spect to the quantity GS2, the following expression can be obtained:

Ec

GS2 ¼
768
p4

b
h
þ 1

� 	2 X1
n;m¼1

sin2 np
2

� �
sin2 mp

2

� �
n2m2 np

2

� �2 þ mp
2

b
h

� �2 þ 2 abð Þ2 þ bbð Þ2
� �

ð41Þ

The variation of the normalized modulus Ec/GS2 vs. ab and bb for
the square isolator (b/h = 1) is plotted in Fig. 5.

It can be immediately noticed that, for given shape factor S and
elastomeric shear modulus G, the compression modulus decreases
when either ab or bb increases. The variation of the normalized



Fig. 5. Normalized effective compression modulus for a square fiber reinforced
layer.

Fig. 7. Variation of normalized effective compression modulus with bb for rigid
reinforcement ab = 0.
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compression modulus with ab for different values of the aspect ra-
tio b/h is plotted in Fig. 6.

These curves exhibit similar shapes to those obtained by Tsai and
Kelly (2002) for isotropic homogeneous reinforcement. The upper
curve in Fig. 6 coincides with the curve shown in Fig. 5 at bb = 0.
In Fig. 6, it can be observed that by increasing ab, i.e. decreasing
the fiber sheet axial stiffness per unit length, the normalized com-
pression modulus rapidly decreases. Moreover it can be observed
that the greatest Ec is exhibited by the square isolator (b/h = 1).

The variation of normalized compression modulus with bb, for
different values of the aspect ratio b/h, is plotted in Fig. 7

It can be observed that by increasing bb, i.e. decreasing the bulk
modulus of the elastomer, the normalized compression modulus
rapidly decreases. The upper curve in Fig. 7 coincides with the
curve shown in Fig. 5 at ab = 0.

2.6. Horizontal displacements and shear stresses in the elastomer

The displacements u0 and v0 can be immediately calculated dif-
ferentiating the expression of p(x,y), Eq. (37), and substituting the
result into Eqs. (12) and (13), obtaining:

u0 ¼
t2

8G

X1
n;m¼1

pnm
np
2b

sin
np
2b

x
� �

cos
mp
2h

y
� �

ð42Þ

v0 ¼
t2

8G

X1
n;m¼1

pnm
mp
2h

cos
np
2b

x
� �

sin
mp
2h

y
� �

ð43Þ

Substituting Eqs. (42) and (43) into Eqs. (10) and (11) respec-
tively, the shear stresses in the elastomer are obtained:
Fig. 6. Variation of normalized compression modulus with ab for an incompressible
elastomer bb = 0.
sxz ¼ �z
p
2b

X1
n;m¼1

pnmn sin
np
2b

x
� �

cos
mp
2h

y
� �

ð44Þ

syz ¼ �z
p
2h

X1
n;m¼1

pnmm cos
np
2b

x
� �

sin
mp
2h

y
� �

ð45Þ
2.7. Horizontal displacements and internal forces in the reinforcement

The displacements in the reinforcement u1 and v1 can be ob-
tained by substituting the expression of p(x,y), Eq. (37), into Eqs.
(26) and (27) and integrating with respect to x and y respectively:

u1 ¼
4bt
Ef tf

X1
n;m¼1

pnm

np
sin

np
2b

x
� �

cos
mp
2h

y
� �

þ AðyÞ ð46Þ

v1 ¼
4ht
Ef tf

X1
n;m¼1

pnm

mp cos
np
2b

x
� �

sin
mp
2h

y
� �

þ BðxÞ ð47Þ

Because of the symmetry of the deformed isolator under the
compression load P, the x-displacement of the points on the y axis
must vanish (u1(0,y) = 0), and consequently A(y) = 0. The analogous
occur for the points on the x axis (v1(x,0) = 0), and consequently
B(x) = 0. It follows that:

u1 ¼
4bt
Ef tf

X1
n;m¼1

pnm

np
sin

np
2b

x
� �

cos
mp
2h

y
� �

ð48Þ

v1 ¼
4ht
Ef tf

X1
n;m¼1

pnm

mp
cos

np
2b

x
� �

sin
mp
2h

y
� �

ð49Þ

Finally, differentiating Eqs. (48) and (49) with respect to x and y
respectively, and substituting into Eqs. (16) and (17), the internal
forces acting on the fiber reinforcing sheet in x and y direction
follow:

Fx ¼ t
X1

n;m¼1

pnm cos
np
2b

x
� �

cos
mp
2h

y
� �

ð50Þ

Fy ¼ t
X1

n;m¼1

pnm cos
np
2b

x
� �

cos
mp
2h

y
� �

ð51Þ
3. Bending analysis

A layer of a rectangular isolator with extensible reinforcement
subjected to a pure bending moment M about the y-axis, is shown
in Fig. 8. Due to the bending moment M, top and bottom surfaces
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rotate about the y-axis. Fiber reinforcement sheets are assumed to
remain plane and the angle between two consecutive reinforcing
sheets is denoted by h

3.1. Governing equations

The kinematic assumptions for the displacements in x and y
direction, are the same used in the compression analysis (Eqs. (1)
and (2)), while the displacements of the elastomer in the z direc-
tion is given by (Kelly, 1999):

wðx; y; zÞ ¼ hz
x
t

ð52Þ

which evidences that horizontal planes rotate rigidly about y-axis,
but remain plane after deformation.

In the following, the procedure goes through the same analyti-
cal steps of the compression problem.

Substituting Eqs. (1), (2), and (52) into the compressibility
equation, Eq. (8), and then integrating from z = �t/2 to z = t/2 lead
to:

ðu0;x þ v0;yÞ þ
3
2
ðu1;x þ v1;yÞ ¼ �

3
2

hx
t
� 3

2
p
K

ð53Þ

Eq. (8), by using Eqs. (1), (2), and (52), provides the shear stress
sxz in the elastomer:

sxz ¼ �8Gu0
z
t2 þ G

h
t

z ð54Þ

while syz is still provided by Eq. (11).
Substitution of Eq. (54) into Eq. (6), leads to:

p;x ¼ �8G
u0

t2 þ
Gh
t

ð55Þ

while p,y is still provided by Eq. (13)
Derivation of Eq. (55) with respect to x, leads again to Eq. (14).
Although expression (54) for sxz exhibit an extra term with re-

spect to that given by Eq. (10), relevant to the compression case,
Eqs. (14) and (15) and Eqs. (22)–(27) can be obtained unaltered
in the bending case.

Replacing Eqs. (14) and (15) and Eqs. (26) and (27) into Eq. (53),
it is obtained:

r2p� ð2a2 þ b2Þp ¼ 12G
t2

hx
t

ð56Þ

As it can be easily seen, the only difference with respect to Eq.
(28) relies on the axial strain appearing on the right-hand side
which, instead to be constant, varies linearly along x-axis in the
bending case.
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Fig. 8. Rectangular layer of reinforced
Eq. (56) is the partial differential equation which has to be sat-
isfied by p(x,y) within region X (Fig. 2). The boundary conditions
on the perimeter oX (Fig. 2) of the elastomeric layer are provided
again by Eqs. (31) and (32).

3.2. Solution of pressure

To solve the problem given by Eqs. (56), (31), and (32), Fourier
series technique can be used. Consequently the pressure p is ex-
panded in the following way:

pðx; yÞ ¼
X1

n;m¼1

pnm sin
np
b

x
� �

cos
mp
2h

y
� �

ð57Þ

where, in this case, n = 1,2,3,4 . . . and m = 1,3,5 . . . , to identically
satisfy boundary and symmetry conditions. In fact p must be an
odd function with respect to y direction and an even function with
respect to x direction.

Analogously the known term in the right-hand side of Eq. (56)
can be expanded as:

12G
t2

#x
t
¼
X1

n;m¼1

anm sin
np
b

x
� �

cos
mp
2h

y
� �

ð58Þ

with n = 1,2,3,4 . . . and m = 1,3,5. . . The terms anm are determined
by calculating the following integrals:

anm ¼
1

bh

Z b

�b

Z h

�h

12G
t2

hx
t

� 	
sin

np
b

x
� �

cos
mp
2h

y
� �

dydx ð59Þ

Substituting anm expressions obtained from Eq. (59) into Eq. (58)
and utilizing also Eqs. (57) and (56) provides the series expressions
from which, equating the homologous sine and cosine coefficients,
the pnm coefficients are derived:

pnm ¼
96Gb

mn2p3t2
h
t sin mp

2

� �
ðnp cosðnpÞ � sinðnpÞÞ

np
b

� �2 þ mp
2h

� �2 þ ð2a2 þ b2Þ
ð60Þ

By means of Eq. (60), Eq. (57) provides the final expression for
the pressure p(x,y) in the elastomer:

pðx; yÞ ¼
X1

n;m¼1

96Gb
mn2p3t2

h
t sin mp

2

� �
ðnp cosðnpÞ � sinðnpÞÞ

np
b

� �2 þ mp
2h

� �2 þ ð2a2 þ b2Þ

� sin
np
b

x
� �

cos
mp
2h

y
� �

ð61Þ
3.3. Effective bending modulus

The effective bending modulus of the single isolator layer of the
elastomer Eb can be defined as:
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Fig. 10. Variation of normalized mean bending modulus with ab, for an incom-
pressible elastomer bb = 0.

Fig. 11. Variation of normalized effective bending modulus with bb for a rigid
reinforcement ab = 0.
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Eb ¼
M
Iy

h
t

ð62Þ

where Iy = 4/3b3h is the moment of inertia about the y axis of the
rectangular area, and M is the bending moment, which can be ex-
pressed as:

M ¼ �
Z b

�b

Z h

�h
pxdydx ð63Þ

By substituting Eq. (61) into Eq. (63), the M expression is obtained,
that leads Eq. (62) to give:

Eb ¼
576G
t2p6

X1
n;m¼1

1
m2n4

sin mp
2

� �2

np
b

� �2 þ mp
2h

� �2 þ ð2a2 þ b2Þ
sinðnpð Þ

� np cos npÞð Þ2 ð64Þ

The variation of the normalized effective bending modulus (Eb/
GS2) vs. ab and bb for the square isolator (b/h = 1) is plotted in
Fig. 9. It can be noticed that, for given shape factor S and elasto-
meric shear modulus G, the bending modulus decreases when
either ab or bb increases.

The variation of normalized effective bending modulus with ab
for different values of the aspect ratio b/h is plotted in Fig. 10.

All the considerations emphasized in the paragraph 2.5 can be
repeated here for the bending case.

The variation of normalized effective bending modulus (Eb/GS2)
with bb, for different values of the aspect ratio b/h is plotted in
Fig. 11.

The comparison of Figs. 9–11 with Figs. 5–7 respectively, shows
that the effective bending modulus varies analogously to the effec-
tive compression modulus. It follows that for the effective bending
modulus can be repeated the same considerations provided for the
compression case (see paragraph 2.5).

3.4. Horizontal displacements and shear stresses in the elastomer

The displacements u0 and v0 can be obtained from Eqs. (55) and
(13) by utilizing Eq. (61):

u0 ¼ �
t2

8G

X1
n;m¼1

pnm
np
b

cos
np
b

x
� �

cos
mp
2h

y
� �

þ ht
8

ð65Þ

v0 ¼
t2

8G

X1
n;m¼1

pnm
mp
2h

sin
np
b

x
� �

sin
mp
2h

y
� �

ð66Þ

Shear stresses sxz and syz are given by Eq. (65) with Eq. (54), and
by Eq. (66) with Eq. (11), respectively:
Fig. 9. Variation of normalized effective bending modulus with ab and bb.
sxz ¼ z
p
b

X1
n;m¼1

npnm cos
np
b

x
� �

cos
mp
2h

y
� �

ð67Þ

syz ¼ �
zp
2h

X1
n;m¼1

mpnm sin
np
b

x
� �

sin
mp
2h

y
� �

ð68Þ

Substituting Eq. (61) into Eq. (26) and integrating along x direc-
tion, leads to the expression u1 for the fiber x-displacement:

u1 ¼ �
2t

Ef tf

X1
n;m¼1

pnm
b

np
cos

np
b

x
� �

cos
mp
2h

y
� �

þ AðyÞ ð69Þ

The fiber displacement in the x direction, u1, has been deter-
mined to within a function, A(y). This indeterminacy has no effect
on strains and stresses, because these are determined deriving the
function u1 with respect to x.

Substituting Eq. (61) into Eq. (27) and integrating with respect
to the y direction leads to:

v1 ¼
4ht
Ef tf

X1
n;m¼1

pnm

mp
sin

np
b

x
� �

sin
mp
2h

y
� �

þ BðxÞ ð70Þ

Applying symmetry condition, v1(x,0) = 0, it is obtained B(x) = 0.
Therefore:

v1 ¼
4ht
Ef tf

X1
n;m¼1

pnm

mp
sin

np
b

x
� �

sin
mp
2h

y
� �

ð71Þ

Differentiating Eqs. (69) and (71) with respect to x and y respec-
tively, and substituting in Eqs. (16) and (17) the normal forces per
unit length acting on the fiber reinforcing sheet in x or y direction,
are obtained:
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Fx ¼ t
X1

n;m¼1

pnm sin
np
b

x
� �

cos
mp
2h

y
� �

ð72Þ
Fy ¼ t
X1

n;m¼1

pnm sin
np
b

x
� �

cos
mp
2h

y
� �

ð73Þ
Fig. 12. Effective compression modulus: analytical and numerical test results.
4. Comparison of analytical solution and Finite Element
analysis

Static behavior of some samples of rectangular fiber-reinforced
isolator layers have been numerically analyzed. The geometry of
the isolator and the mechanical properties of the elastomer are as-
sumed to coincide with those used by Kelly and Takhirov (2002) in
their experiments. The layer side lengths parallel to the x and y axis
are 2b = 0.183 m and 2h = 0.377 m respectively (b/h = 0.48). The
elastomeric layer thickness is t = 0.003 m. The elastomer shear
and the bulk modulus are assumed to be G = 0.69 MPa and
K = 2000 MPa respectively. The reinforcement thickness is
tf/2 = 0.00027 m in both x and y directions. More than one value
for Ef has been considered in the numerical analysis; the first
one, Ef = 14,000 MPa, actually unrealistic for carbon fiber
reinforcement, is the value estimated by Kelly and Takhirov
(2002) from their experimental compression tests on elastomeric
isolation bearings. For the above mentioned values it is obtained
ab = 2.47 and bb = 1.96. The numerical analysis has been carried
out by means of the ALGOR FEMPRO 13.28-WIN 13-JAN-2003 ver-
sion. The elastomeric layer has been modeled through 3D elements
(‘‘brick’’ elements), whereas the reinforcement has been modeled
with 1D elements (‘‘truss’’ elements). A ‘‘Static Stress with Linear
Material Model Analysis’’ type was carried out.
Fig. 13. Distribution of normalized pressure p with x, at y = 0.

Fig. 14. Distribution of normalized pressure p with y, at x = 0.
4.1. Compression

Normalized effective compression modulus Ec and pressure p
values obtained by means of this numerical analysis have been
compared with those analytically obtained from. Eqs. (41) and
(37) reported in the previous paragraphs.

The normalized effective compression modulus (41) is plotted
vs. ab in Fig. 12. Two curves have been obtained from Eq. (41):
the upper one relates to an incompressible elastomer, i.e. K ?
(bb = 0), which cannot be numerically analyzed because of numer-
ical instabilities, and the lower one relates to an elastomer with
K = 2000 Mpa (bb = 1.96).

For the previously mentioned case (ab = 2.47 and bb = 1.96)
numerical analysis leads to a normalized compression modulus
Ec/GS2 value equal to 1.12 (point A in Fig. 12). The value obtained
by means of the proposed Eq. (41) results 1.10. The difference be-
tween these values is 2%.

Since the above used Ef value is very low for carbon fiber rein-
forcement, as stated by Kelly himself, fiber reinforcement stiffness
(Eftf/2) 4, 8 and 16 times greater than that relating to the first case,
are considered. The normalized effective compression modulus
values obtained by means of numerical analyses are represented
in Fig. 12 by the points B, C and D respectively. It can be observed
that the analytical curve plot is very close to the four numerically
obtained points, thus evidencing the validity of the proposed ana-
lytical model.

For the case ab = 2.47 and bb = 1.96 point A in Fig. 12, the nor-
malized pressure distributions p/(Ec�D/t) along x direction for y = 0
and along y for x = 0, are shown in Figs. 13 and 14 respectively.
Continuous lines represent distribution derived analytically from
Eq. (37), whereas isolated points show numerical results obtained
from FE analysis.
The curves obtained by means of the proposed model are very
close to numerical values, thus confirming the validity of the pro-
posed model.
4.2. Bending

The effective normalized bending modulus Eb/GS2 for the values
ab = 2.47 and bb = 1.96 provided by the proposed Eq. (64) results
0.65, whereas using the numerical analysis it results 0.68. Latter
value is reported by point A in Fig. 15. The difference between
the values is 5%.



Fig. 15. Effective bending modulus: analytical and numerical test results.

Fig. 16. Distribution of normalized pressure p with x, for y = 0.
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Points B, C and D in Fig. 15 show numerically normalized effec-
tive bending moduli obtained considering the reinforcement to be
4, 8 and 16 times stiffer.

For the case ab = 2.47 and bb = 1.96 (point A in Fig. 15), the nor-
malized pressure distribution p�qEb�b) along x direction, is shown
in Fig. 16 for y = 0. Continuous line represents analytical distribu-
tion derived from Eq. (61), whereas isolated points show distribu-
tion of pressure p obtained from FE analysis.

Also in the bending case, numerical and analytical results are
very close, thus confirming the validity of the proposed model.

5. Conclusions

An analytical analysis on the behavior of elastomeric rectangu-
lar isolators, with carbon fiber reinforcement and subjected to
compression and bending loads, has been carried out. In particular
the behavior of a single elastomeric layer bonded to fabrics consti-
tuted with carbon fibers laid out in two orthogonal directions has
been considered. The elastomer has been assumed to be linear
elastic and compressible. The fibers have been supposed flexible
in extension.

Two new solutions in form of Fourier series expansion have
been found, for compression and bending respectively. The results
derived in terms of stresses, displacements and stiffness have been
compared with FE numerical analysis results. Excellent agreement
between analytical and FE approaches results for stresses, displace-
ments and stiffness moduli. In particular the maximum errors have
been obtained for the analytical evaluation of the compression and
bending effective moduli, and it is about 2% and 5% respectively.

For design purposes, the most valuable results are formulas for
predicting the compression and bending effective moduli. Regard-
ing to these formulas, it can be concluded that:

– compression and bending stiffness moduli can be expressed
as Fourier series expansions;

– the series are rapidly convergent, so that only few terms
may be considered in the calculus.

Both previous conclusions makes the calculus very easier com-
pared with FE one, the latter requiring a new numerical model
when a single geometric parameter is changed.
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