
Electronic Notes in Theoretical Computer Science 68 No. 6 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume68.html 15 pages

Rewriting in the partial algebra of
typed terms modulo AC

Thomas Colcombet

Irisa Campus universitaire de Beaulieu, 35042 Rennes, France

Abstract

We study the partial algebra of typed terms with an associative commutative and
idempotent operator (typed AC-terms). The originality lies in the representation
of the typing policy by a graph which has a decidable monadic theory.

In this paper we show on two examples that some results on AC-terms can be
raised to the level of typed AC-terms. The examples are the results on rational
languages (in particular their closure by complement) and the property reachability
problem for ground rewrite systems (equivalently process rewrite systems).

1 Introduction

Exact verification of programs is known for long to be undecidable. To bypass
this limit, a solution is to abstract programs into weaker formal models on
which decision procedures are possible. A system is such a formalism: it is
defined by a given set (which can be infinite) of states and labelled transitions
between those states describe the possible evolutions of the system.

The first study of a family of infinite systems has been presented by Muller
and Schupp [14] on the family of pushdown processes. Each state is a word
and the transitions are defined by a finite set of prefix rewriting rules. Push-
down processes model faithfully the control flow and the stack mechanism of
programs. Highly complex properties can be automatically checked on such
systems (e.g. monadic second order theory [14] and model checking of the
µ-calculus). However those systems lack parallelism features. More general
systems extend this approach with infinite number of rules. The first family
of such systems were the HR-equational graphs introduced by Courcelle[4].
Caucal extended them to prefix recognizable graphs[1]. Those two family of
graphs share the same strong decidability properties as pushdown automata.

Independently, studies were pursued on Petri nets. Petri nets can be de-
fined as systems of addition of vectors. Each state is a vector of naturals and
each transition adds a fixed vector of integers to the state. Another equivalent
definition of petri nets is by rewriting rules applied on a multiset. As what

c©2002 Published by Elsevier Science B. V.

40

CC BY-NC-ND license. Open access under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82564975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Colcombet

happens in each dimension of the vector is dissociated from the other compo-
nents, petri nets possess subtle parallelism facilities. On the other hand the
expressiveness over control flow is quiet weak (e.g. it is impossible to encode a
stack). The fundamental result over petri nets is the problem of reachability
[12,9] (given two states, is it possible to find a path of transitions leading from
the first to the second one). However the properties decidable over Petri nets
are far more simple than the one decidable for pushdown systems (for instance
checking whether the set of states reachable by two Petri nets coincide on some
given dimensions is not decidable[7]).

Despite those fundamental differences, pushdown processes and Petri nets
have been combined by Mayr into process rewrite systems [13](PRS). PRS are
defined by rewrite systems in an algebra of closed terms with an associative
and commutative operator (which can be understood as the + in systems of
addition of vectors, or as the ∪ operator when dealing with the multiset point
of view) and an associative operator for sequence (which can be seen as the
concatenation of words: the basic operation over stacks). The PRS have a
decidable reachability problem as well as Petri nets.

Separately, in the context of formal languages as well as compilation of
λ-calculus, pushdown systems were extended to higher order pushdown sys-
tems (processes with stacks of stacks of stacks . . .). This definition lead to
a hierarchy of systems (or graphs) having a decidable monadic second order
theory [8,2] as well as pushdown systems. It is natural to try to combine those
¡¡higher order systems¿¿ with Petri nets and thus obtain ¡¡higher order process
rewrite systems.¿¿ The present paper is devoted to such a study.

To perform this extension, we slightly transform the original definition of
PRS and use the unifying notion of ground rewriting: each state is a closed
term and each transition replaces a subterm by another according to a set of
rewrite rules (it amounts to replace the sequence operator by the composition
of symbols). The main parameter left in this description is the algebra of
term itself and the congruence relation allowed. Here, we allow an associa-
tive and commutative operator (written +). To obtain an higher order PRS,
we restrict the language of branches of the terms by an infinite deterministic
top down automaton (called the typing policy). In this work, we show that
the reachability and property reachability remain decidable when lifted to the
higher order. The proof techniques share many common points with the orig-
inal study of PRS, however some simplifications are obtained by an extensive
use of the notion of rationality (regularity). For this reason, a great part
of the paper is devoted to the notion of rationality and culminates with the
proof of closure by complement of rational languages in algebras containing
an associative and commutative operator.

The remaining of the paper is divided as follows. In Section 2 we study
the untyped AC terms and the corresponding rational languages. In Section 3
the corresponding study is performed for typed terms. In Section 4 we study
the typed process rewrite systems.

41

Colcombet

2 Untyped AC terms

2.1 Terms with an AC symbol

In this section, we introduce typed terms with an associative commutative
symbol.

From now on, A stands for a finite set of symbols. We consider the alge-
bra T (A) of (finite) terms built with the constant 0, the unary symbols a ∈ A
and the binary operator +:

t ::= 0 | a(t) | t+ t .

The terms are considered modulo associativity and commutativity of the +
operator and neutrality of 0 for +:

t+ t′ = t′ + t, t+ (t′ + t′′) = (t+ t′) + t′′ and t = 0 + t .

For any unary symbol a ∈ A and any term t ∈ T (A), we write a instead
of a(0) and call such terms constants. We say that a term t is rooted if it has
a symbol of A at its root (and not 0 or +). We also use the notation Σn

i=1ti
to denote t1 + . . . + tn and the notation nt for Σn

i=1t. With this notations, it
is natural to decompose a term t as Σn

i=1ti where all the ti are rooted. This
decomposition is at the core of most inductive proofs presented in this paper.

The branches of a term t are the words in br(t) defined inductively by
br(0) = {ε}, br(t+ t′) = br(t) ∪ br(t′) and br(a(t)) = {aw | w ∈ br(t)} ∪ {ε}.
One can notice that the branches are by definition prefix closed and do not
rely on any choice of associativity, commutativity and neutrality of 0 for +
(this is why the ∪{ε} is present in the definition). The height of a term is the
greatest length of its branches.

2.2 Rational sets of terms

In this section, we study rational (or equivalently regular) languages of the al-
gebra T (A). In [3], many equivalent definitions of rational languages of terms
in free algebras (without associativity or commutativity) are given: regu-
lar grammars, regular expressions and their automata-theoretic counterparts.
Those equivalences remain valid when the algebra is not free anymore, and in
particular in the case of T (A). The only result which does not hold anymore
in the T (A) case concerns recognizable languages: recognizable languages are
strictly contained in rational ones (see Example 2.1) while both notion are
equivalent in free algebras. The main contribution of this work concerning
rational languages of T (A) is their closure by complementation (Corollary
2.4).

A (bottom-up tree) automaton is a triple (Q, δ, F) where Q is a finite set
of states, δ is a set of transitions of the form 0 → q or a(q′) → q or q+ q′ → q′′

42

Colcombet

(where q,q′,q′′ belong to Q and a to A) and F is a subset of Q of accepting
states.

We define
δ→ as the smallest relation between states and terms closed by

the following deduction rules:

0
δ→ q

if 0 → q ∈ δ , t
δ→ q t′ δ→ q′

t+ t′ δ→ q′′
if q + q′ → q′′ ∈ δ ,

t
δ→ q

a(t)
δ→ q′

if a(q) → q′ ∈ δ .

A term t of T (A) is accepted by the automaton if there exists an accepting

state q ∈ F such that t
δ→ q. A subset of T (A) is rational if it is the language

of terms accepted by an automaton.

The main goal of this part is to prove the closure of rational languages
of T (A) by complement (and consequently by all boolean operations). Fol-
lowing the classical approach, the proof gives a deterministic and complete
representation to rational languages: an automaton is deterministic and com-
plete if the set of rules δ is a mapping (in this case, from {0} ∪ {a(q) | q ∈
Q} ∪ {q + q′ | q, q′ ∈ Q} into Q).

However, determinism defined in this way strictly diminishes the expres-
siveness of automata (the languages of terms accepted is lowered from ratio-
nality to recognizability). The following example illustrates this fact.

Example 2.1 Let us suppose that there is a deterministic and complete au-
tomaton A = (Q, δ, F) accepting the language of terms L = {na+nb | n ∈ N}.
Let us write δ(t) the mapping which associates to a term t the only state q

such that t
δ→ q. As there is a finite number of states, there exists two distinct

naturals n and n′ such that δ(na) = δ(n′a). By consequence δ(na + nb) =
δ(n′a + nb). Let q be this state. As na + nb ∈ L, q ∈ F , but similarly, as
n′a + nb
∈ L, q
∈ F . Thus, L cannot be accepted by a deterministic and
complete automaton, though it is obviously rational.

This problem is inherited from the associativity and commutativity of +
and arise already in commutative monoids: recognizable languages are strictly
included in rational ones. Even though, rational languages of finitely gener-
ated commutative monoids are closed by all boolean operations as shown by
Ginsburg and Spanier[15]. The idea of the present proof of closure by comple-
ment of rational languages of T (A) is to use a proper definition of automata
including the notion of rationality over commutative monoids: multiset au-
tomata. Multiset automata are automata with multiset as states (thus having
an infinite number of states and an infinite number of transitions). Multiset
automata can be seen as an extension of automata with arithmetic constraints
working on flat trees [10]: flat trees correspond to the algebra T (A) (extended
with non unary symbols), however automata with arithmetic constraints are

43

Colcombet

intrinsically restricted to the power of recognizability.

Given a finite set Q, we consider M(Q) the set of multisets with elements
in Q. The union operation is simply written + and the neutral element is
denoted 0. Elements of M(Q) can naturally be written Σn

i=1qi for qi ∈ Q.
The rational languages of M(Q) have the property to be closed by all the
boolean operations (and in particular complementation [15]).

A multiset automaton is a triple A = (Q, (Rq,a)q∈Q,a∈A, F) where Q is a
finite set of state constants, for any state constant q and any symbol a ∈ A,
Rq,a is a rational language of M(Q), and F is a rational language of M(Q)
of accepting states. We call state of the automaton the elements of M(Q).

We define the relation
A→ between a state u in M(Q) and a term t in T (A)

by the following inference rules:

t1
A→ q1 . . . tn

A→ qn

Σn
i=1ti

A→ Σn
i=1qi

, (1)

u ∈ Rq,a t
A→ u

a(t)
A→ u

. (2)

The multiset automaton accepts a term t if t
A→ u for some u ∈ F . We write

as usual LA the set of terms accepted by the automaton. It is important to

notice that for t
A→ u then t is a rooted term iff u is a singleton. More generally,

if Σk
i=1ti

A→ Σk′
i=1qi for ti rooted terms, then k = k′ and, up to permutation of

the indices, ti
A→ qi for all i.

The following lemma justifies the use of those automata.

Lemma 2.2 A subset of T (A) is rational iff it is accepted by a multiset au-
tomaton.

We say that a multiset automaton is deterministic if for a fixed, the
sets Rq,a are disjoint. The direct consequence of determinism is that for all

term t ∈ T (A) there is at most one state u ∈ M(Q) such that t
A→ u. A mul-

tiset automaton is complete if for all a, ∪q∈QRq,a = M(Q). The direct conse-
quence of completeness is that for any t ∈ T (A), there is some u ∈ M(Q) such

that t
A→ u. Under both constraints,

A→ is a mapping from T (A) to M(Q).

Lemma 2.3 Every rational language in T (A) is accepted by a deterministic
and complete multiset automaton.

Proof Let (Q,R, F) be a multiset automaton. We construct a deterministic
and complete multiset automaton (Q′, R′, F ′) which accepts exactly the same
terms.

As for determinizing finite automata, we set Q′ = 2Q.

44

Colcombet

For R a subset of M(Q), we define R↑⊆ M(Q′) by

R↑= {(Σn
i=1si) ∈ M(Q′) | ∃(Σn

i=1qi) ∈ R, ∀i, qi ∈ si} .

Notice that if R is rational then R↑ also is.

For s ∈ Q′ a state constant and a ∈ A a symbol, we set the corresponding
transition by:

R′
s,a = {v ∈ M(Q′) | ∀ q ∈ Q, q ∈ s⇔ v ∈ Rq,a↑} . (3)

The set of accepting states is F ′ = F ↑.
Validity: To make this construction valid, we need to ensure that the

subsets used are rational. If the set R is rational then R↑ also is 1 . Hence, F ′

is rational. Using the equality (equivalent to the definition)

R′
s,a =

⋂

q∈s

Rq,a↑ −
⋃

q∈Q−s

Rq,a↑ ,

it follows that R′
s,a is rational.

Determinism of A′: Let v be in R′
s,a and R′

s′,a, then for all q ∈ Q, q ∈ s
iff v ∈ Rq,a ↑ (definition of R′

s,a) and q ∈ s′ iff v ∈ Rq,a ↑ (definition of R′
s′,a).

Thus, s = s′.
Completeness of A′: Let v be a state in M(Q′) and a a symbol. Let s

be {q ∈ Q | v ∈ Rq,a ↑}, then v ∈ Rs,a (definition of Rs,a).

Correctness: We prove the two following properties simultaneously by in-
duction on the height h of t:

• for s a constant state of Q′ and t a rooted term, then

t
A→

′
s ⇔ s = {q ∈ Q | t A→ q} , (4)

• for a state v in M(Q′) and a term t such that t
A→

′
v,

∀R ⊆ M(Q), v ∈ R↑ ⇔ (∃u ∈ R, t A→ u) . (5)

For h = 0, there is no rooted terms: (4) is satisfied. By (1), 0
A→ v iff v = 0.

By definition of ↑, 0 ∈ R↑ iff 0 ∈ R. Hence (5) is satisfied.

Let h ≥ 1 be an integer, we suppose that properties (4) and (5) are satisfied
by all terms of height < h.

(4) Let a(t) be a rooted term of height h. By completeness, there is a s ∈ Q′

such that a(t)
A→

′
s. Let v be such that v ∈ R′

s,a and t
δ→
′
v. Such a v exists

(2). By definition (3), for all q, q ∈ s iff v ∈ Rq,a ↑. Applying hypothesis

of induction (5), q ∈ s iff there is some u ∈ Rq,a verifying t
A→ q. Thus by

rule (2), q ∈ s iff t
A→ q.

(5) Let t be a term. It can be written Σn
i=1ti with the ti rooted. Let v be such

that t
A→

′
v. By (1), there is n state constants s1,. . . ,sn such that v = Σn

i=1si

1 It can be shown using e.g. a formula of the arithmetic of Pressburger.

45

Colcombet

and for all i, ti
A→

′
si. By definition of ↑, v ∈ R ↑ iff there is Σn

i=1qi ∈ R

with for all i, qi ∈ si. But by (4), si = {q | ti A→ q}. Hence, v ∈ R↑ iff there

is Σn
i=1qi ∈ R with for all i, ti

A→ qi, or equivalently by (1), iff there is u ∈ R
with t

A→ u.

Property (5) together with the definition of F ′ gives LA′ = LA. ✷

Corollary 2.4 The rational languages in T (A) are closed by complement.

According to (5), it is sufficient to replace the set of accepting states by its
complementary in a deterministic and complete multiset automaton accepting
a rational language to obtain a multiset automaton accepting the complement
of the rational subset.

3 Typed AC terms

3.1 Partial algebra of typed terms with an AC symbol

A typing policy is described by a set (which can be infinite) of types Θ, and
a typing function τa from types to types for all symbol a ∈ A. The intended
meaning is that the symbol a, when applied to an argument of type τa(θ)
has type θ. We will often refer to the typing policy as a graph: the vertices
are the types, and there is an edge between type θ and type θ′ labelled by a
if τa(θ) = θ′. Notice that it does not correspond to the arrow notation used
in classical function types. As τ is a function, the graph is deterministic.

We say that a term t has type θ for the typing policy (Θ, τ), written (Θ, τ) �
t : θ if one can derive the judgment (Θ, τ) � t : θ by the following rules:

θ ∈ Θ

(Θ, τ) � 0 : θ
,

(Θ, τ) � t : τa(θ) a ∈ A
(Θ, τ) � a(t) : θ

,
(Θ, τ) � t : θ (Θ, τ) � t′ : θ

(Θ, τ) � t+ t′ : θ
.

The second rule can only be applied if τa is defined. For this reason, some terms
may not be typable. We call typed term the couple of a term t and a type θ,
and we write it t : θ. The set of typed terms t : θ such that (Θ, τ) � t : θ is
written T Θ,τ (A). We write T Θ,τ

θ (A) the restriction of T Θ,τ(A) to typed terms
of type θ.

The following property gives a simple graphical interpretation of typing.

Proposition 3.1 The terms in T Θ,τ
θ (A) are the terms such that all branches

corresponds to a path of origin θ in the graph (Θ, τ) 2 .

Example 1: If Θ = {θ} and τa(θ) = θ for all a ∈ A then T Θ,τ
θ (A) = T (A)

(up to type removal). It corresponds to the domain of (untyped) process
rewrite systems.

2 Notice that, as the graph is deterministic, there is no ambiguity about those paths.

46

Colcombet

Example 2: Let Θ be the natural integers, A be {a, b} and τ be such that
τa(n) = n+ 1, τb(n + 1) = n. Graphically,

1 20
aaa

b b b

The paths of origin 0 in this graph contain more a’s than b’s. Reciprocally,
to any word over {a, b} such that all prefixes contain more a’s than b’s corre-
sponds a path of origin 0 in the graph. Thus, according to Proposition 3.1,
terms of type 0 are such that all the branches contain more a’s than b’s (recall
the branches are prefix closed). This is an example of an infinite typing policy.

From now and on, the typing policy is fixed. Thus, we simplify slightly the
notation (Θ, τ) � t :θ by writing � t :θ . Furthermore, by convention, we will
suppose that there is a type • ∈ Θ of out-degree 0 (no term but 0 has type
•), and for any newly introduced symbol q, τq(θ) = • for θ ∈ Θ − {•}. Thus,
all newly introduced symbol behaves like a constant of any type (but •).

We need now a way to perform computations on the typing policy, even if
there is an infinite number of types. The monadic second order logic presented
in the next section serves this purpose.

3.2 Monadic second order logic

In this part, we briefly recall the basis of monadic second order logic (MSO).

The MSO logic expresses properties on graphs. Our purpose is to apply
it to the typing policy. We thus adapt slightly the usual notations to fit with
this use. A MSO formula follows the syntax:

Φ ::= ∃θ,Φ | ∀θ, Φ

| ∃X,Φ | ∀X, Φ

| τa(θ) = θ | θ ∈ X
| Φ ∧ Φ | Φ ∨ Φ | ¬Φ | true | false .

The first order variables (θ,θ′,. . .) range over types while the monadic second
order variables (written in capital letters X,Y ,. . .) range over sets of types.
All the boolean connectives are allowed as well as any quantification over first
and second order variables. Atomic predicates allow to test the typing policy
(θ = τa(θ

′)) and the membership of a first order variable to a second order
variable (θ ∈ X). We allow ourselves to use some more complex notations.
For instance we can use variables over known finite domains (e.g the states
or the rules of an automaton) and use quantification over them. In any case
those extensions can be encoded into standard MSO formulas.

Whenever a typing policy (Θ, τ) satisfies a MSO formula Φ, we say that
(Θ, τ) is a model of Φ and write (Θ, τ) |= Φ. A typing policy is said to have

47

Colcombet

a decidable MSO theory if one can decide, given a MSO formula, whether the
typing policy is a model of the formula. The typing policy being fixed, we just
write |= Φ instead of (Θ, τ) |= Φ.

As a useful example, we define for any term t the predicate hastype t such
that for any type θ, |= hastypet(θ) iff � t :θ. The predicate is built by induction:

hastypeΣn
i=1ai(ti)

(θ) ≡ ∀i ∈ [1, n], ∃θ′, τai
(θ) = θ′ ∧ hastypeti

(θ′)

The MSO logic has been extensively studied and many classes of (possibly
infinite) graphs are known to have a decidable MSO theory [14,5,1,8,2]. The
infinite typing policy of Example 2 belongs to the simplest of those families:
pushdown graphs.

3.3 MSO-guarded rational languages of typed terms

In this section we extend the notion of rational languages of T (A) to MSO-
guarded rational languages of T Θ,τ (A). To this purpose, we introduce MSO-
guarded automata: automata such that transitions can be applied if and only
if a certain MSO formula is satisfied by the type of the terms involved in the
transition. Apart from this distinction, the techniques involved in this section
are very similar to the ones of Section 2.2.

Formally, a MSO-guarded automaton over T Θ,τ (A) is a triple (Q, δ, F)
where Q is a finite set of states, δ is a finite set of transitions of the form 0 →Φ

q, q + q′ →Φ q
′′ or a(q) →Φ q

′ with q, q′ and q′′ states and Φ a MSO formula,
and F ⊆ Q is the set of accepting states. The MSO formulas Φ are called
guards. Each guard Φ has precisely one free variable and we can bind it by
using a functional notation: Φ(θ). The MSO-guarded automata behave like
standard automata, the only difference being that transitions can be applied
if and only if the guard is satisfied by the type of the term involved.

We define the relation
δ→ between typed terms and states as the smallest

relation satisfying:

0 :θ
δ→ q

if 0 →Φ q ∈ δ and |= Φ(θ) ,

t :τa(θ)
δ→ q

a(t) :θ
δ→ q′

if a(q) →Φ q
′ ∈ δ and |= Φ(θ) ,

t :θ
δ→ q t′ :θ δ→ q′

t+ t′ :θ δ→ q′′
if q + q′ →Φ q

′′ ∈ δ and |= Φ(θ) .

A typed term t : θ is accepted by the automaton if there is an accepting

state q ∈ F such that q
δ→ t : θ. We will write Lδ(q) the set of typed terms

t : θ such that q
δ→ t : θ. A set of typed term R ⊆ T Θ,τ(A) is MSO-guarded

rational if there is a MSO-guarded automaton accepting exactly the typed

48

Colcombet

terms of R. A term can be present with different types in the same rational
language, but, as the type information is always kept along with the term, no
confusion arises. On the contrary, the states of the automaton are not typed:
it is not necessary. The important point is that the satisfaction of the guard
depends only of the type of the term but not at all of the term itself. We will
furthermore suppose that the rules enforce the typing of terms: if there is a

rule of the form q
δ→Φ a(q

′), then for all type θ, |= Φ(θ) ⇒ hastypea(θ). Thus,
this rule can be applied only if it is sensible to consider a term of root a.

The following theorem extends naturally the previous one to MSO-guarded
rational sets.

Theorem 3.2 The MSO-guarded rational languages of T Θ,τ(A) are closed by
complementation.

The proof works as in the untyped case. One defines similarly MSO-
guarded multiset automata. We first remark that there is only a finite number
of possible valuations for (Φ1(θ), . . . ,Φk(θ)) for a given type θ (where Φ1,. . . ,Φk

are the guards of an automaton). Given such a valuation v, by combining
together the guards using the boolean connectives, it is easy to obtain a new
guard Φv such that Φv(θ) is satisfied if and only if (Φ1(θ), . . . ,Φk(θ)) = v. It
is then sufficient to apply the techniques of the previous demonstration for
each of this new guards.

Lemma 3.3 If R is a MSO-guarded rational language of T Θ,τ (A), then there
is a MSO formula emptyR such that:

|= emptyR(θ) iff R ∩ T Θ,τ
θ (A) = ∅ .

Proof Let (Q, δ, F) be a MSO-guarded automaton. The principle is to com-

pute the sets of types Xq for q ∈ Q such that θ ∈ Xq if and only if t : θ
δ→ q

for some t.

emptyR(θ0) ≡ ∀(Xq)q∈Q,

∀0 →Φ q ∈ δ, ∀θ, Φ(θ) ⇒ θ ∈ Xq (a)

∧ ∀q + q′ →Φ q
′′ ∈ δ, ∀θ, (Φ(θ) ∧ θ ∈ Xq ∧ θ ∈ Xq′) ⇒ θ ∈ Xq′′ (b)

∧ ∀a(q) →Φ q
′ ∈ δ, ∀θ, θ′, (Φ(θ) ∧ τa(θ) = θ′ ∧ θ′ ∈ Xq) ⇒ θ ∈ Xq′ (c)

⇒ ∃q ∈ F, θ0 ∈ Xq

The sets (Xq) such that θ ∈ Xq iff t : θ
δ→ q for some t are the smallest

sets solution of constraints (a), (b) and (c). For instance constraint (a) can
be read: ¡¡if there is a transition 0 →Φ q in the automaton, then, for all
type θ such that the guard is satisfied, there is a term of type θ in Lδ(q).¿¿
As the constraints are continuous (in the meaning of complete partial orders),
testing if θ0 ∈ Xq for the smallest solution of (a), (b) and (c) amounts to verify

49

Colcombet

that θ0 ∈ Xq for all solution of (a), (b) and (c). This is what performs the
universal quantification over (Xq). ✷

Corollary 3.4 If the typing policy has a decidable monadic theory then the
emptyness of R is decidable.

4 Ground rewrite systems

4.1 Typed process rewrite systems

In this section, we introduce MSO-guarded rational process rewrite systems.
It is a natural extension to types of process rewrite systems. Following the
scheme of Mayr’s proof [13], we then state a normalization lemma.

Definition 4.1 A MSO-guarded rational process rewrite system over T Θ,τ(A)
labelled by E is a finite set ∆ of rules of the form R

e→ R′ where R and R′

are MSO-guarded rational languages of T Θ,τ(A) and e is a label in E.

A transition of the process rewrite systems corresponds to the replacement
of a subterm by another according to the set of rules: we define inductively
between typed terms of same type t1 :θ and t2 :θ the rewrite judgment t1

e⇒∆

t2 :θ by

t1 :θ ∈ R1 t2 :θ ∈ R2 R1
e→ R2 ∈ ∆

t1
e⇒∆ t2 :θ

,

� t :θ t1
e⇒∆ t2 :θ

t+ t1
e⇒∆ t+ t2 :θ

,
t1

e⇒∆ t2 :τa(θ)

a(t1)
e⇒∆ a(t2) :θ

.

We also define the reflexive and transitive closure
∗⇒∆ of

e⇒∆ by:

� t :θ
t

∗⇒∆ t :θ
,

t
∗⇒∆ t

′ :θ t′ e⇒∆ t
′′ :θ

t
∗⇒∆ t′′ :θ

.

When t
∗⇒∆ t′ : θ, we will say that there is a path of type θ between t and

t′ for the rules ∆. We will omit to specify the set of rules when there is no
ambiguity about it.

Definition 4.2 A MSO-guarded rational process rewrite system ∆ is normal-
ized if for all rule R1

e→ R2 ∈ ∆ there is a MSO formula Φ and two terms t1,
t2 such that R1 = {t1 : θ | |= Φ(θ)}, R2 = {t2 : θ | |= Φ(θ)} and (t1, t2) has
one of the following forms:

• sequential rules: (a, b(c)) or (a(b), c)

• parallel rules: (a, b+ c), (a+ b, c), (0, a), (a, 0) or (a, b).

In this case, we write ∆seq the set of sequential rules and ∆par the set of
parallel rules. We also use notations similar to MSO-guarded automata for
rules: a

e→Φ b(c) ∈ ∆, a(b)
e→Φ c ∈ ∆, . . .

50

Colcombet

Proposition 4.3 Given ∆ a MSO-guarded rational process rewrite system
over T Θ,τ(A), there is a MSO-guarded normalized process rewrite system ∆′

over T Θ,τ (A ∪ C) (where C is a finite set of new constants of any type) such

that for all typed terms t :θ, t′ :θ ∈ T Θ,τ (A), t
∗⇒∆ t

′ :θ iff t ∗⇒∆′ t′ :θ.

Proof Let R1
e1→ R′

1, . . . , Rk
ek→ R′

k be the rules in ∆ with Ri = L(Qi,δi,Fi)

and R′
i = L(Q′

i,δ
′
i,F

′
i)
. We assume, without loss of generality, that the Qi’s,

the Q′
i’s and A are all disjoint. Let C be Q1 ∪ · · · ∪ Qk ∪ Q′

1 ∪ · · · ∪ Q′
k. We

define now ∆′ by:

∆′ = {t $→Φ q | ∃i, q δ→Φ t ∈ δi}
∪ {q e→true q

′ | ∃i, q ∈ Fi, e = ei, q
′ ∈ F ′

i}
∪ {q $→Φ t | ∃i, q δ→Φ t ∈ δ′i}

The normalized process rewrite system mimics the behavior of the automata
by using exactly the same rules (labelled by a dummy symbol $). Obviously,

if t
∗⇒∆ t

′ :θ then t
∗⇒∆′ t′ :θ. The other direction is more technical, we do not

show it here. ✷

4.2 Reachability in typed process rewrite systems

In this section we show that (providing that the typing policy has a decidable
monadic theory) the reachability problem between constants is decidable for
typed process rewrite systems.

Many proofs of reachability in infinite state systems rely on the rationality
of the set of reachable states (for instance [6] for ground rewrite systems or [11]
for PA processes). Such an approach cannot be used in the case of process
rewrite systems (typed or not): the closure properties of rational language
would give the decidability of the equivalence of reachable sets for process
rewrite systems and this problem is not decidable (it has been proved for the
subclass of Petri Nets [7]).

The core of our approach is a direct translation to typed terms of [13]. The
idea is to obtain a representation of the (potentially infinite) set:

Λ∆ = {(a, b, θ) | a ∗⇒∆ b :θ}

To this purpose, we use the following lemma:

Lemma 4.4 The set Λ∆ is the smallest set satisfying:

a
e→Φ b(c) ∈ ∆ |= Φ(θ) (c, c′, τb(θ)) ∈ Λ∆ b(c′) e′→Φ′ a′ ∈ ∆ |= Φ′(θ)

(a, a′, θ) ∈ Λ∆
,

a
∗⇒∆′ b :θ ∆′ = ∆par

θ ∪ {c $→ d : θ | (c, d, θ) ∈ Λ∆}
(a, b, θ) ∈ Λ∆

.

51

Colcombet

The first rule states that a path of type θ between a and b can start with a

rule a
e→Φ b(c) and end with a rule b(c′) e′→Φ′ a′ providing that the guard are

satisfied and that there is a path of type τb(θ) between c and c′. The second
rule states that if there is a path of type θ between a and b using the parallel
rules and what is already known in Λ∆, then there is a path of type θ between
a and b. As a consequence, the second rule inserts all the paths of length 0
(i.e. (a, a, θ) with � a : θ). The test a

∗⇒∆′ b : θ performed by the second rule
is handled by the following lemma:

Lemma 4.5 If ∆ contains only parallel rules then a
∗⇒∆ b :θ is decidable.

This problem is an instance of the reachability problem for Petri nets for
each possible valuation of the guards. It is decidable [12,9].

In Mayr’s proof, the set Λ∆ is finite (there is no type information) and a
saturation algorithm is sufficient for computing it. In our case, we can define
this set by monadic formulas:

Lemma 4.6 Given a normalized MSO-guarded process rewrite system ∆ over
T Θ,τ (A), there is |A|2 monadic formulas λa,b for a, b in A such that:

(a, b, θ) ∈ Λ∆ iff |= λa,b(θ)

The set Λ∆ can be represented by |A|2 second order variables (Xa,b)a,b∈A

such that θ ∈ Xa,b iff (a, b, θ) ∈ Λ∆ .

Lemma 4.4 describes the set Λ∆ as the smallest set satisfying some MSO-
expressible constraints. Thus, a technique similar to the proof of Lemma 3.3

can be used. The test a
∗⇒∆′ b :θ with ∆′ = ∆par

θ ∪ {c $→ d : θ | (c, d, θ) ∈ Λ∆}
can be performed using Lemma 4.5 and the remark that there is only a finite
number of possible parallel rules for a given set of symbol A. Thus all the
cases can be treated in a MSO formula of exponential size (one for each of the
possible sets of parallel rules).

4.3 Property reachability

In this section we show that (providing that the typing policy has a decidable
monadic theory), the reachable property problem is decidable (Theorem 4.8).

Given a MSO-guarded rational process rewrite system ∆ with labels in E,
a property has the following syntax:

φ ::= e | ¬φ | φ ∨ φ | φ ∧ φ ,

with e ∈ E. An atomic property e is satisfied by a typed term t :θ if there is
some t′ : θ such that t

e⇒∆ t
′ : θ. The boolean connectives have their standard

semantic. An instance of the reachability property problem is: ¡¡given a MSO-
guarded rational process rewrite system ∆, a typed term t :θ and a property φ,

52

Colcombet

is it possible to reach a typed term satisfying φ from t :θ by using the rewriting
rules in ∆?¿¿.

To show this result, it is sufficient to prove that the set of typed terms
satisfied by a property is MSO-guarded rational. This can be reduced to
atomic properties according to the closure by boolean connectives of MSO-
guarded rational languages.

Lemma 4.7 Given a label e ∈ E, the set of typed terms t : θ such that t e⇒∆

t′ :θ for some term t′ is MSO-guarded rational.

Proof Thanks to the closure of MSO-guarded rational languages by union,
it is sufficient to show the result for only one rule labelled by e. Let R1

e→ R2
be such a rule. One can apply this rule on a typed term t : θ if and only if
it contains a subterm t′ : θ′ in R1 and there is a term of type θ′ in R2. Let
A = (Q, δ, F) be the automaton accepting R1. We construct the automaton
(Q′, δ′, F ′) accepting the language of typed terms such that t

e⇒∆ t′ : θ for
some term t′ by (ε-transitions are used here only for convenience):

Q′ = Q ∪ {q0, q1}
δ′ = δ

∪ {q →φ q1 | q ∈ F, Φ(θ) = ¬emptyR2
(θ)}

∪ {q0 + q1 →true q1}
∪ {a(q0) →true q0 | a ∈ A} ∪ {0 →true q0, q0 + q0 →true q0}

F ′ = {q1}

The states in Q perform the same computation as in A. The state q0 accepts
any term of T Θ,τ (A). Notice the use of the empty predicate for checking that
there is a term of type θ in R2. ✷

Theorem 4.8 If the typing policy has a decidable monadic theory then the
reachable property problem of typed process rewrite systems is decidable.

Proof Given a tree t and a type θ, then the set R1 = {t :θ} is MSO-guarded
rational. According to Lemma 4.7, the set R2 of typed terms satisfying the
property is MSO-guarded rational. We add to the system the new symbols a1
and a2 and the transitions a1 →true R1 and R2 →true a2. Then, the satisfac-
tion of the property reachability problem amounts to check the satisfaction of
λa1,a2(θ). ✷

References

[1] D. Caucal. On infinite transition graphs having a decidable monadic theory. In
ICALP’96, volume 1099 of LNCS, pages 194–205, 1996.

53

Colcombet

[2] D. Caucal. On infinite terms having a decidable monadic theory. In MFCS’02,
2002.

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

[4] B. Courcelle. The monadic second-order logic of graphs, ii: Infinite graphs of
bounded width. Mathematical Systems Theory, 21:187–222, 1989.

[5] B. Courcelle. The monadic second order logic of graphs ix: Machines and their
behaviours. In Theoretical Computer Science, volume 151, pages 125–162, 1995.

[6] M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In
Fifth Annual IEEE Symposium on Logic in Computer Science, pages 242–248,
1990.

[7] M. Hack. The recursive equivalence of the reachability problem and the liveness
problem for petri nets and vector addition systems. In 15th annual symposium
on switching and automata theory, New York, 1974.

[8] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are
easy. In M. Nielsen, editor, FOSSACS’02, LNCS, 2002.

[9] S. Kosaraju. Decidability of reachability in vector addition systems. In 14th
Annual Symposium on Theory of Computing, 1982.

[10] D. Lugiez and J.-L. Moysset. Complement problems and tree automata in ac-
like theories. In P. Enjalbert, A. Finkel, and K.W. Wagner, editors, STACS’93,
volume 665, pages 515–524, Würzburg (Germany), February 1993. LNCS.

[11] D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-processes. In
Proc. 9th Int. Conf. Concurrency Theory (CONCUR’98), Nice, France, Sep.
1998, volume 1466, pages 50–66. Springer, 1998.

[12] E. Mayr. An algorithm for the general petri net reachability problem. SIAM
Journal on computing, 13:441–460, 1981.

[13] R. Mayr. Process rewrite systems. Information and Computation, 156(1):264–
286, 2000.

[14] D. Muller and P. Schupp. The theory of ends, pushdown automata, and second-
order logic. Theoretical Computer Science, 37:51–75, 1985.

[15] E. Spanier S. Ginsburg. Semigroups, presburger formulas and languages.
Pacific J. Maths 16, pages 285–296, 1966.

54

