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Introduction 

In the first section we introduce the concept of algebraic theory with iterate 
(Definition 1.4). This concept is more general than the concept of rationally closed 
algebraic theory of the ADJ-group and the concept of generalized iterative algebraic 
theory of l~sik [3]. Although our concept arises from C~z~nescu and Ungureanu's 
study concerning flowcharts [1], we now use it as a tool to study context-free trees. 
In this paper we study different methods to obtain the subtheory with iterate 
generated by a given set of morphisms only. 

The context-free trees are a very useful tool to study recursive programs. For 
motivation, examples and semantics, see [6] or [5]. 

Let V be the set of variables. Let V' be the set of all the trees o'(xb x2 , . . . ,  x,), 
where tr is an operation symbol and the xi are distinct variables. As above, finite 
trees are written as expressions. 

By the iteration of the operation symbol tr of arity n in the tree t we understand 
the least solution of the context-free equation tr(Xl, x2 , . . . ,  xn)= t. For example, 
the iteration of t~ in the tree f(x~, x2, o'(d(x~, x2), x2)) is the following tree: 

• f  

//l f 
d• . f  

• 

d• " 1 "  

X 1 " ' ~ 2 /  l "X2" " "" 

/ /1  
x I •x2 

• f  

" 0  

~O 
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Let us now substitute g(x, y) for xl and x for x2. The result is the following tree: 

• f  

. / i  

x • y  

X 

The latter tree is a substitution of trees for the variables in the iteration of  tr in the 
tree f (x l ,  x2, or( d (x,, x2), x2)). 

By substitution of the tree t'. for the operation symbol o- of arity n in the tree t 

we understand that we use (tr(xl, x 2 , . . . ,  x,), t') as a rewriting rule for all the 
occurrences of  tr in t. For example, the substitution of the tree g(u(x2), v~l)) for 

f in the tree f(g(x, y), f(x, z)) is g(u(g(u(z), v(x))), v(g(x, y))). 
Theorem 2.1 gives the following four different ways to generate all context-free 

trees. 

(A) The set of  generators is V u  V'. The trees are generated by two operations: 
- substitution of  trees for the variables of another tree, 

- iteration of  one operation symbol in one tree. 

(B) The set of  generators is V. The trees are generated by two operations: 
- application of  the usual operations of the algebra of  trees, 

- substitution of  trees for the variables in the iteration of one operation symbol in 
one tree. 

(C) The set of  generators is V. The trees are generated by three operations: 
- application of  the usual operations of the algebra of trees, 

- iteration of  one operation symbol in one tree, 

- substitution of  a tree for one operation symbol in another tree. 

(D) The set of  generators is Vw V'. The trees are generated by one operation: 

- substitution of  trees for the variables in the iteration of one operation symbol in 
one tree. 

Let us say something on the applications of these generation methods. 
Every generation method gives a structural method to prove properties of  context- 

free trees. The classical structural induction says that if a set of trees includes V 
and is closed under  the usual operations of the algebra of trees, then the set contains 
all total finite trees. The classical structural induction may be used to prove properties 
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of total finite trees but it is not sufficient to prove properties of context-free trees 
because the structure of context-free trees is not the same as the structure of total 
finite trees. Then, the classical structural induction must be adapted to context-free 
trees. The adaptation is obtained by the generation methods. 

On the other hand, these generation methods give the theoretical ground for 
defining finite expressions for context-free trees. Perhaps it is not uninteresting to 
study the computation rules for such expressions. 

1. Algebraic theories with iterate 

For each nonnegative integer n, let [n] denote the set {1, 2 , . . . ,  n}. Let S be the 
set of sorts. Let S* be the free monoid generated by S. The length of u e S* is 
denoted by [u[ and u itself will be denoted by 

U-----U lu  2 . . . u l u [ ,  

where ui ~ S for all i ~ [[u[]. 

Let T be an S-sorted algebraic theory, i.e., T is a category whose class of objects, 

denoted IT[, is the set S* and in which every u ~ S* is the coproduct of ui for i ~ [lull. 
The empty word of S*, denoted A, is an initial object of  T. For each u ~ S*, we set 

O. :A--> u 

the unique morphism from A to u. For each u ¢ S*, let 

w U U 
X l ,  X 2 , "  . . ,  X l u [  

be the distinguished morphisms of the coproduct u. If  [u[ 1, then u -  = xl - 1 u where 
1,, is the identity morphism of u. If  v ¢ S *  and f~: ui-~ v for every ie l lu l l ,  then 

(A, A , . . . ,  u v, 

the tupling o f f , , f2 , . . .  ,)~l, is the unique morphism such that 

x '~(A, f2 , . . .  ,3~,,I) = fi 

for all iellul]. If u, v~ S*, we denote 

lu+0  '°, X 2  , . . . , X l u l )  

and 
lID igD UU Ou + lv = (XM+b xluvl). X l u l + 2 ,  • . . , 

If u, v, w ~ S*, f ~  T(u, w), and g ~ T(v, w), then the source pairing o f f  and g, 

(f, g>: uv---, w, 

is the unique morphism with the following properties" 

(lu+O~)(f,g)=f and (Ou+I~)(f,g)=g. 
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If f :  u--} v and g :p-} q, then the sum o f f  and g, 

f + g : up--> vq, 

is defined b y f + g  =(f(lv+Oq), g(Ov+ lq)). 
A subcategory of T is called an algebraic subtheory of T if it has the same class 

of objects, contains all the distinguished morphisms, and is  closed under tupling. 
The morphisms from the least subtheory of T are called base morphisms. 

A family G = {G(s, u)[s ~ S, u ~ S*} is called a genus if G(s, u) c T(s, u) for every 
s e S and u e S*. For a genus G let us define 

G°(u, v)=  {(f~,f2,. . .  ,flul)[fi~ G(ui, v) for all i~ [lull} 

for every u, v ~ S*. It is easy to see that G O includes G and is closed under source 
pairing and under left composition with base morphisms. 

If G is an algebraic subtheory or T, then its genus {G(s, u).[ (s, u)e  S x S*} has 
the following properties: 

(S1) x ~ G ( u i ,  u ) fora l lueS*andie[[u l ]  , 

($2) if s ~ S, u, v ~ S*, f e  G(s, u) and g ~ G°(u, v), then fg ~ G(s, v). 

Conversely, if the genus G has properties (S1) and ($2), then G O is an algebraic 
subtheory of T. 

An S-sorted algebraic theory is said to be ordered if, for each u, v ~ S*, T(u, v) is 
a partially ordered set with least element -k,v such that 

(a) the composition of morphisms is monotonic, 
(b) .k,,~f=_k.,w for all u, v, w e S* and all f e  T(v, w), 
(c) the tupling operation is monotonic. 
A rationally closed S-sorted algebraic theory T is an ordered S-sorted algebraic 

theory equipped with a function 

*: T(u, uv)"* T(u, v) 

for all u, v ~ S*, where f is called the i terate of  f :  u - ,  uv and must satisfy the 
following conditions for all g:  u - ,  v and h : v--, w: 

(R1) f ( f t ,  l~)=f*, 

(R2) ( f (1 ,+h))+=f fh ,  

(R3) if f (g, Iv) ~<g, then f ~<g. 

Note that f~ is the least solution for x in the equation 

Proposition 1.1. Let f :  u --} uv and g: v ~ w be morphisms in a rationally closed algebraic 
theory. The morphism f* g is the least solution for x in the equation 

f(x,  g) = x. 
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Proof. The above equation is equivalent to 

f(  1. + g)(x, 1 . )= 

Therefore, the least solution is (f(1.  +g)) t  =f tg .  [] 

Proposition 1.2. For al l  f :  u --> uvw and g : v--> uvw in a rationally closed algebra ic  

theory, 

(f, g)t = ( f t (h  t, 1 ~), hi), 

where 

h = g(ft ,  lvw). 

Proof. Let i=  (f*(h +, l w), ht). It follows that 

(/, lw) = (f*(h *, 1~), (hi, 1~))= (f*, lw)(h t, 1~). 

The equalities 

(f, g)(i, lw) = ( f ( f t ,  l~,)(ht, 1~), g(f t ,  lv~)(h +, lw)) 

= (f*(h t, lw), h(ht, 1~))= i 

show that (f, g)t<~ i. 
Let x = ( 1 , + 0 ~ ) ( f , g ) t  and y=(0 , ,+ l~) ( f ,g ) t .  It follows 

(f, g)((f, g)t, lw) that 

(x, y) = (f(x, y, 1 ~), g(x, y, 1 ~)). 

Therefore, 

x =f(x, (y, 1~)) and y = g(x, (y, 1~)). 

From Proposition 1.1 we deduce that f t (y ,  1~)~ < x. From 

h(y, 1~)= g ( f t ,  l~)(y,  1~)= g(ft(y, lw), (y, lw)) 

<~ g(x, (y, 1 ~))= y 

it follows that 

h+<~y 

from (f, g)t = 

and f t (h t ,  1 w) <~ft(y, lw) <~ x. 

Therefore, i ~< (x, y) = (f, g)t. 
From i = (f, g)t we obtain 

( f , g ) t = ( f t ( h t ) l w ) , h t ) .  [] 

Proposition 1.3. Let f :  u -> uv and i: w --> u be  morphisms in a rationally c losed  a lgebra ic  
theory. 

(a) I f  j:u--> w andj i<,  l~, then ( / f ( j+lv)) t~</f  t. 
(b) I f  i is an isomorphism, then 

(/f(i-1 + lv))t  = / f  t. 
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Proof. (a) It follows from 

if(j+ lo)(if*, 1~)= if(jif*, 1~)<~ if(f*, lo)= if* 

that 

and 

(b) 

( / f ( j  + 1~))* ~</f*. 

From (a) we infer 

(if(i-l+l,,))*<~if * 

( i - l ( / f ( i - t  + lv))( i  + 1,,))* <~ i-'(if(i-~+ 1~))*. 

Therefore, 

i f =  i(i-l(if(i -1 + 1~))(i + 1~)) t <~ (/f(i-I  + 1~)) t. 

For every u, v ~ S* we define the morphism 

S~" uv--> vu 

by S~ = (0~ 

[] 

+ 1.,, lv+0u).  Notice that S~S: = 1,,~. Therefore, S:  is an isomorphism. 

Definition 1.4. An S-sorted algebraic theory is said to be with iterate if, for every 
u, v ~ S*, a mapping 

*: T(u, uv)~ T(u,v) 

is given, 

(I1) 

(I2) 

(13) 

(14) 

called iterate, and satisfying the following axioms: 

f(f*, 1~)=f* for e v e r y f e  T(u, uv), 

(f(1,,+g))*=f*g f o r e v e r y f a  T(u, uv) and ge T(v, w), 

(f, g)t=(ft(h, lw), h), where h = ( g ( f t ,  l~w))* 
for every f ~  T(u, uvw) and g~ T(v, uvw), 

(f, g ) t=  S~((g,f)(S~ + 1,))  t f o r f ~  T(u, uvw) and g~ T(v, uvw). 

Let us give some intuitive explanations. A morphism f e  T(u, uv) may be thought 
of as a system of equations where u represents the unknowns and v represents some 
parameters. One may refer to the systems associate to context-free grammars, to the 
systems whose solutions are rational trees, or to the systems whose solutions are 
context-free trees as in Section 2. The iterate f ,  represents the least solution of the 
system f Axiom (I1) says that f ,  is a solution of the system f The morphism 
g ~ T(v, w) from axiom (I2) represents a substitution of new parameters represented 
by w for the old parameters. Axiom (I2) is a commutative law: we may replace the 
parameters first and then solve the system or vice versa. Axiom (I3) permits to split 
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the system (f, g) into two subsystems f and g. To obtain the solution (f, g)+ we have 
in axiom (I3) the following algorithm: introduce the solutionf t of the first subsystem 
f in the second subsystem g and get the solution h of this new system g(ft, lvw); 
the solution of if, g) is given by the substitution f ( h ,  lw) of h in the solution of the 
first subsystem and by h itself. Axiom (I4) is another commutative law. It says that 
the solution of a system does not depend on the order of the equations into the 
system. The identities (1.1), (1.2), (1.3), and (1.4) below may be interpreted in a 
similar way. 

We mention that, in the above definition, axiom (I2) may be replaced by its 
particular case: (f+0w)+ =f++O~ for every f ~  T(u, uv) and w e S*. 

The proof that every generalized iterative theory is an algebraic theory with iterate 
may be found in [3]. 

Theorem 1.5. Every rationally closed algebraic theory is an algebraic theory with iterate. 

Proof. Proposition 1.2 proves axiom (I3). Axiom (I4) is an easy consequence of 
Proposition 1.3(b). [] 

In the sequel, T will be an S-sorted algebraic theory with iterate. 
I f f s  T(u, v), then 

(0. +f)+ =f. (1.1) 

Indeed, we deduce from axiom (I1) that 

(0. +f)+ = (Ou +f)((O., +f)+, lv)=f. 

I f f ~  T(u, uw) and g~ T(v, vw), then 

i f ( l , ,  +Or + lw), O. + g)+=(f+, g+). (1.2) 

Indeed, as (Ou+g)((f(1, ,+O~+lw)) t, l~w)=g, we deduce from axioms (I3) and 
(I2) that 

( f ( lu  +0~+ lw), 01, + g)t = ((f(1. +0~+ 1 ~))t(g t, lw), gt) 

= (ft(ov + lw)(g t, lw), g+) = (f+, g+). 

If g ~ T(v, u) and f ~ T(u, uvw), then 

(gfr)+ = g(f ( lu  +0~, g + lw))*. (1.3) 

Indeed, using in turn axiom (I3), axiom (I4), axiom (I3), and identity (1.1) we 
deduce 

(gf+), = ((g + O~)(f*, l~w)) *= (0,, + 1 ~)(f, g +0~)+ 

=(0,. + l~)S~,((g+O,,w,f)(S[ + lw)) + 

= (lv + O,,)(Ov + g +O~,f(S~ + lw)) t 

= (0~ + g + Ow)f((f(S~, + 1 ~)((0~ + g+Ow) +, 1.w)) +, lw) 

= (g + Ow)((f(S~ + 1.)(g +0~, 1. +0~, 0,. + lw)) +, 1~) 

= g(f(1,. +0~, g +0~, 0,. + 1.)) + = g( f ( l~  +0~, g + 1~)) +. 
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I f f e  T(u, uv) and i •  T(w, u) is an isomorphism, then 

i f f  = ( if( i-l + 19))*. 

Indeed, using (1.1) and (1.3) we deduce 

( i f ( i - l+ l~ ) )  * 

= (i(O,, + f ( i  -1 + 1 o))*)* 

= i((O., + f ( i - l +  lv))(l~ +0~, i+  19))*= i ( f ( i -~+ lv)(i + lv)) ~=/ft.  

(1.4) 

[.emma 1.6. Let G be a genus such that 

($3) for  all (s, v) • S x S*, i f f ~  G(s, sv), then f*  • G(s, v), 

and 

($4) g •  G(s, tv) a n d f ~  G(t, tv) imply g(f*, 19)• G(s, v) 
for  all s, t ~ S and all v • S*. 

I f  g ~ G°(u, uv), then 
(a) g* • G°(u, v), 
(b) i f  s ~ S and h ~ G(s, uv), then h(g*, 19) • G(s, v). 

ProoL The lemma follows by induction on [u[. For ]u] = 1, the conclusion immedi- 
ately follows from the hypothesis. 

Let g • G°(su, suv) where s e S, and u, v • S*. Since g = (x~Ug, (Os + l~)g), axiom 
(I3) implies 

g*= ((x~Ug)*(h *, 1~), h*), 

where h = (0~ + lu)g((x~'g)*, lug). It follows from ($3) that (x~"g)*• G(s, uv) and 
from ($4) that h e G°(u, uv). We deduce from the inductive hypothesis that 

h*• G°(u, v) and (x~"g)*(h*, 1~)~ G(s, v). 

Therefore, g* • G°(su, v). 
If t •  S and i •  G(t, suv), then 

i (g*, l~)=i((x~Ug)t , l~v)(h*, lv)~G(t ,v) .  [] 

An algebraic subtheory of T is said to be an algebraic subtheory with iterate of T 
if it is closed under iterate. 

If G is the genus of an algebraic subtheory with iterate, then G has properties 
($1), (S2), ($3), ($4), 

($5) ifs ,  t ~ S , u • S * , f ~ G ( t ,  su) a n d g • G ( s , u ) ,  

and 

(S6) 

then f (g ,  1,,) ~ G(t, u) 

if  s • S, u, v, w ~ S* and f~  G(s, uv), then f ( l u  + Ow + 19) • G(s, uwv). 
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Theorem 1.7. Let G 

conditions: 
(SA) : ($1), ($2), 
(SB) : (S1), ($2), 

(SC) : ($1), ($3), 

be a genus in an algebraic theory with iterate. Each of  the following 

and ($3), 
and ($4), 

($5), and ($6), 
(SD): ($1), ($4), and ($6) 

is sufficient for G O to be an algebraic subtheory with iterate. 

Proof. We first prove the equivalence of conditions (SA), (SB), (SC), and (SD). 
Case [(S1) and ($2) imply ($5)]: With the same notation as in ($5) we remark 

u u M 

that f(g, 1~) =f(g ,  x~, x 2 , . . . ,  xl,i). 
Case [($1) and ($2) imply ($6)]: With the same notation as in ($6) we remark that 

f ( 1 . , + 0 ~ +  lv) 

Case [(S1) and (S4) 

that f , =  x ~ ( f , ,  lv). 
Case [($3) and ($5) 
Case [($4) and ($6) 

= f(x'~ w~', , " ~  ,,~ ,,~ 
• . . X l u  I , X l u w l + l ,  • . . , X l u w l + l v l ) "  

imply ($3)]: With the same notation as in (S3) we remark 

imply ($4)]: Obvious. 
imply ($5)]: With the same notation as in ($5) we remark 

that f(g, 1,,) =f((g(0s  + 1,,))*, 1.,). 
Case [($5) and ($6) imply ($2)]: Let f ~  G(s, u) and g~ G°(u, v). From ($6), 

f(1,, + 0~) ~ G(s, uv). For every i ~ [lull let wi = ui+~u,+2.., ulu I and hi = xUg(0~i + 1~). 
As hi ~ G(ui, wiv), by ($6) the conclusion follows from ($5) and the equality 

fg  =f(1.,  + 0o)(hl, 1~1~)(h2, 1~2~)... (hi, I, 1~). 

The conclusion follows from (S1), ($2), ($3), ($4), and Lemma 1.6. [] 

The latter theorem may be used to obtain the least algebraic subtheory with iterate 
which includes a given set of morphisms. Of course, each morphism f :  u-~ v is 
replaced by the set of its components {x~ f l i  ~ [] u[]}. Then, one of the four conditions 
of Theorem 1.7 may be used. 

Condition (SD) seems to be preferable because if G has properties ($1) and ($6), 
then the least genus which contains G and has property ($4) will have properties 
($1) and ($6), too. For ($6), the proof is by induction on the number of applications 
of rule ($4). Indeed, for s, t e S, u, v, w e S*, f :  t ~ tuv, and g: s -* tuv we notice that 

g(f*, 1.,v)(1, + 0w + lv) = g(f*(1,, +0w + 1~), 1,, +0~ + lv) 

= (g(l,. +0~ + 1 ~))((f(It. +0~ + 1 ~))*, I,,~). 

This remark may be used when G is the genus of an algebraic subtheory because 
in this case G has properties (S1) and ($6). 

Another way to obtain the least algebraic subtheory with iterate which includes 
a given set of morphisms is given in the following theorems which are similar to 
the main result in [2]. 
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Elgot [2] introduced the concept of iterative algebraic theory, where the iterate 
is only a partial function, but if f :  u .-, uv has an iterate, then it is the unique solution 
of the equationf(x, 1 o) = x. We mention that the iterate of a pointed iterative algebraic 
theory may be extended to obtain an algebraic theory with iterate. The main result 
of Elgot [2] gives, in an iterative algebraic theory, two methods to obtain the least 
algebraic subtheory which is closed under the iterate and includes a given set of 
morphisms. 

If G is a genus, let us denote, for every u, v e S*, 

IG(u, v) = {(1,, +Ow)f*l f  ~ G°(uw, uwv), w ~ S*}. 

Theorem 1.8. / f  the genus G is closed under right composition with base morphisms, 
then IG includes G and is closed under composition, source pairing, and iterate. If, 
moreover, G has property (S1), then IG is the least algebraic subtheory with iterate 
which includes G. 

Proof. As G is closed under right composition with base morphisms, we deduce 
that G O is closed under right composition with base morphisms and under sum. 

Let f ~  G°(u, v). It follows from (1.1) that 

f = ( 0 u  +f )*  = (lu + 0~)(f(0u + lo))* ~ IG(u, v). 

Therefore, IG includes G °, hence IG includes G. 
I f f  = ( 1 ,, + 0p )g* with g ~ G°( up, upv) and h = ( 1 o + 0q ) i* with i ~ G°( vq, vqw), then 

fh = (1., + 0p)g*(lo +Oq~)(i*, 1~) (by (I2)) 

=(1,,+O~)((g+Oq~)*(i*, lw), i*)  (by (I3)) 

= (1., + 0~q)(g(1.,~ + 0q~), i(0,,p + 1 ~q~))* ~ IG(u, v). 

If f = (lu + 0p)gt with g e G°(up, upw) and h = (lo + 0q) i* with i ~ G°(vq, vqw), 
then 

(f, h )=  (lu +0p + lo +0q)(g*, i*) 

= (luo + 0pq)(1,, + S~ + lq)(g(lup + 0~q + lw), 0,,p + i)* 

= ( luo + 0po)(( 1,, + S~ + 1 q)(g(1,, +00 + lp +0q + lw), 

i(0u + lo +Op + 1 qw)))*. 

Therefore, (f, h)~ IG(uv, w). 
If f =  (1,, +0o)g t with g ~ G°(uv, utmw), then we deduce 

f* = (lu + 0v)(g(luo +0~, lu +0,~ + 1~))* (by (1.3)). 

Therefore, f* ~ IG(u, w). 

(by (1.2)) 

(by (1.4)) 

G contains all base morphisms.Therefore, If, moreover, G has property (S1), then o 
IG contains all base morphisms. [] 
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Theorem 1.9. Let G be a genus which is closed under right composition with base 
morphisms. If, for all ( s, u) ~ S x S*, 

R(s, u)= {x~f* l f  ~ G°(sv, svu), ve  S*}, 

then R °= IG. 

Proof. It follows from the definitions that R(s, u) = IG(s, u) for every (s, u) ~ S x S*. 
As IG is closed under source pairing, we deduce that IG includes R °. 

We prove by induction on lu I that IG(u, v)c_ R°(u, v) for all u, v ~ S*. Let f ~  
IG(us, v) with s e S. Then, f =  (1,,s +0w)g*, where g ~ G°(usw, uswv). By inductive 
hypothesis, (1,, + 0sw)g* e R°(u, v). Therefore, (1,, +0s) f~  R°(u, v). As 

(0,, + l s ) f =  (0~ + 1~ + 0w)g* = (1~ +0,,w)(S~ + lw)g t (by (1.4)) 

= (1~ + O,,~)((S~ + 1 ~)g(S~, + l~v))*, 

we deduce that (0,, + l s ) f e  R(s, v), and therefore f ~  R°(us, v). [] 

2. The theory with iterate of context-free trees 

Let T and T' be two S-sorted algebraic theories. A theory morphism F: T-> T' is 
a functor satisfying the following conditions: 

(a) F(u) = u for all u e S*, 
(b) F(xT)=x? for all u~S*  and i~[[u[]. 
We notice that if f :  u-~ v and g: w--> v are morphisms in T, then F((f ,  g))= 

(F( f ) ,F(g)) .  
Let Z be a set and let a : 2 --> S x S* be a function. If T is an S-sorted algebraic 

theory, then h : 2  --> T is an interpretation of 2 iff h(tr) ~ T(a(tr)) for all or ~ ,~. Let 
Tz denote the free S-sorted algebraic theory generated by Z and let Iz : Z --> Tz be 
its standard interpretation. Then, for each S-sorted algebraic theory T and for each 
interpretation h : 2  --> T there exists a unique theory morphism h': T~ --> T such that 
Izh'=h, i.e., h'(Iz(tr))=h(tr) for all t r y2 .  

Let T and T' be ordered S-ordered algebraic theories. An ordered theory morphism 
F:  T--> T' is a theory morphism such that for all u, v ~ S* the restriction of F to 
T(u, v) is a monotonic and strict (f(_L,,o) = -l-uv) function. 

An to-continuous S-sorted algebraic theory T is an ordered S-sorted algebraic theory 
satisfying the following conditions: 

(a) for each u, v ~ S*, T(u, v) is to-complete, i.e., each to-chain has a least upper 
bound, 

(b) the composition ofmorphisms is to-continuous, i.e., the composition preserves 
least upper bounds of to-chains. Every to-continuous S-sorted algebraic theory is a 
rationally closed S-sorted algebraic theory. 
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Let T and T' be to-continuous S-sorted algebraic theories. An to-continuous theory 
morphism F: T--> T' is an ordered theory morphism such that for all u, v e S* the 
restriction of  F to T(u, v) is an to-continuous function. We order the set of all 
to-continuous theory morphisms from T to T' by the natural pointwise ordering: 
for F, G:  T-~ T', F<~ G iff, for all f~  T(u, v), F(f)<~ G(f). This ordering is to- 
complete. Indeed, if {Fn}.~, is an to-chain and, for u, v e S* and f :  u -> v, 

F ( f )  = V {F,,(f)lneto}, 

then F is an to-continuous theory morphism. Every to-continuous theory morphism 
F :  T-> T' preserves the iterate, i.e., F(f*)= F(f)* for each f~  T(u, uv). 

Let CT~ denote the free to-continuous theory generated by Z and let J~ : 2 -> CT~ 
be its s tandard interpretation. Without loss of generality we assume that T~ is an 
algebraic subtheory of CT~ and Iz is the co-restriction of J~. If T is an to-continuous 
S-sorted algebraic theory and f :2--> T an interpretation, then we denote by 
f #  : CT~ -> T the unique to-continuous theory morphism such that J.v.f # = f  If we 
pointwise order the set of all the interpretations from 2 to T, then the applications 
" # "  is an isomorphism of partially ordered sets. 

In the sequel, we denote by T the to-continuous (S x S*)-sorted algebraic theory 
which is used for solving systems of context-free equations. We give its definition. 
Letters p, q, and r will denote elements of (S x S*)*. For all p, let 

and let 

ap : Zp-  S x S* 

be the function defined for all i e  [[P[] by 

a p  = p,.  

By definition, T(p, q) is the set of all interpretations of ,~p in CT~¢ The set T(p, q) 
is ordered pointwise: if f, g ~ T(p, q), then f<~ g iff f( t r i  v) <~ g(tr f) in CT~(p i )  for 
all i~[IPl]- This ordering is to-complete and T(p, q) has a least element _Lpq. The 
composition of morphisms is defined by 

fg=fg#, 

where f ~ T(p,  q) and g ~ T(q, r). The composition is associative and to- continuous; 
for each p, the morphism lv =J~p is an identity and -Lvqg=±vr for all g e  T(q, r). 
For all p and i e [IPl] the distinguished morphism 

yi v :pi ~ p  

is defined by 

= 
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Iff~ :p~-* q for all i~ [Ipll, then their tupling is defined by 

(A,  A , - . - ,  = f,(or ' ) 

for all i~ [Ipll- The tupling is monotonic. 
As in the right-hand side of a context-free equation we usually have a finite total 

tree, we need a subtheory of T. For all p, q, let T'(p, q) be the set of all the 
interpretations f of .Yp in CTr., such that f(or~) ~ T:~(p~) for all ieIlpll. It is easy 
to see that T' is an algebraic subtheory of T. 

Let CFT be the least algebraic subtheory with iterate of T which contains T'. In 
fact, CFT is the algebraic theory of context-free trees. We shall give in this special 
case a better construction of CFT than the general one presented in Section 1. We 
shall begin with some intuitive explanations and some notations. 

For some s e S and u ~ S*, the elements of CT~(s, u) are .Y-trees (trees with 
symbols of operations from .Y) of sort s and with ]u I variables x~,~, x~.2,..., x~.l,, I of 
sorts ul, u2, . . . .  Ulu I. The subset Tr.(s, u) contains all total finite trees of the same 
kind. If u~ S* and i~[lull, then the .Y-tree x~e Tr.(u~, u) is equal to the variable 
x~,~. If Ore .Y and a(or)= (s, u), then Ir.(or)=Jr(or) is the following .Y-tree: 

r 

Or(X~,l, x~.2, • • •, x~l., I) = 

Or 

Xu,  l Xu,2 • • • Xu, lul 

If (s, u) e S x S*, an element of T((s, u), p) may be identified with an element a '  
of CTr.p(s, u), i.e., with a .Y -tree of sort s and with variables x~,~, Xu,2,..., xu, lul, but 
it is perhaps better to think of it as the equality 

or s 'U)( Xu,1 ,  Xu ,2 ,  . . . , Xu,  lul ) ~-- a ,  

which gives a definition of the operation symbol Or~s,..) with the aid of the .Yp-tree 
a', i.e., in terms of the operation symbols of Zp. 

A morphism f e  T(p, q) then gives a definition of the operation symbols of .?p in 
terms of the operation symbols of Zq. In this way, a system of context-free equations 
is a morphism f e  T(p, pq) where Or~q, Or2~,..., Oral are unknown operation symbols 
and Oral+l,..-, O'~'~+lql a r e  known operation symbols, because when we compute 
f*, the operation symbols Or~q,..., Or~gl are identified with operation symbols 

Or p,. 
For each p, each u ~ S*, and each iellull, let 

p~ U x,  :(u,, u)->p 

be the morphism of T' defined by 

= xT. 

The morphism xf"  shows that the operation Or~u,.u) is the ith projection. 
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For each u e S* and each t = (s, s i s2 . . .  Sn) E S X S* let 

r=(s , ,  u)(s2, u) . . . (s,, u)t 

and let M~'" (s, u) ~ r be a morphism of T' defined by 

r r r M~'(o@ ~>) -- Jz,(o'.+l)(Jz,(°'l), • • •, Jz,(° ' ,)  ). 

The above equality shows that 

or(S,U)[ ... 
1 ~, .~u, l ,  X u , 2 ,  • • • ~ X u ,  Jul) 

= cr~ ,+~(o ' ; (x , . . , , . .  • ,  x,, .M), • • • ,  o - ~ , ( x ~ . , . . . ,  x~.,,,,)). 

For each t ~ S x S *  and each p we assume G ( t , p ) c  T( t ,p)  and we list some 

conditions on the genus G: 
(1) xf'Us G((ui, u ) ,p )  for all u~S* ,  i~Ilu[l and p, 
(2) y f e  G(pi, p) for all p and isllpl],  
(3) for each u ~ S * ,  t=(s ,  h s 2 . . . s , ) ~ S x S * ,  and p, if f ~ G ( t , p )  

G ( ( s , ,  

( 4 )  

G ( ( s , ,  

(5 )  

all j e 
(6 )  
(7) for each p and each t, t ' e  S x S*, i f f e  G(t', tp) and g e G(t, p), thenf(g,  lp) e 

G(t ' ,p) ,  
(8) for each t~  S x  S* and each p, q, i f f ~  G(t ,p) ,  then Oq+f~ G(t, qp). 
We first notice that condition (2) equals (S1), (6) equals ($3), (7) equals ($5) 

and that ($6) implies condition (8). Then we give some intuitive explanations, where 

the elements of G(t,  p) are thought of as Zftrees .  
Condition (1) says that G contains the variables. 
Condition (2) says that for each p and i e [IP[], ifpi = (s, u), then G(pi, p) contains 

~f (xu ,~ ,  x~2 ,  • • . ,  x,,,i,,I). 
Condition (3) says that G is closed under substitution for variables. 
Condition (4) says that G is closed under substitution for variables in an iteration. 

and fi 

u), p) for all i~[n] ,  then M~(fl , f2,  . . . , f , , f ) ~  G((s, u), p), 
for each u ~ S*, t = (s, s is2. . ,  s,)  ~ S x S*, and p, if f ~  G(t, tp) and f~ E 

u), p) for all i ~[n], then M~(fl , f2,  . . . , f , , f * )~  G((s, u), p), 
for each u e S*, p, and i ~ []p[l, ifpi = (s, s~s2.., s,)  and iffj ~ G((s~, u), p) for 

|n], then M~,,(f~,f2, . . . , f , ,  YP)~ G((s, u), p), 
for each p and each t e S x S*, i f f ~  G(t, tp), then f* ~ G(t, p), 

Condition (5) says that G is closed under the algebraic operations. 
Condition (7) says that G is closed under substitution for an operation symbol. 

Theorem 2.1. The genus of  CFT is equal to the least genus satisfying any (hence each) 

of  the following conditions: 
(A) conditions (1), (2), (3), and (6), 
(B) conditions (1), (4), and (5), 
(C) conditions (1), (5), (6), and (7), 
(D) conditions (1), (2), and (4). 
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Proof. The proof is divided into five parts. 
P a r t  I. For each s ~ S, u ~ S*, p, and f ~  T ( ( s ,  u), p), 

M" " P'" x~'" x~,;]',f) =f.  ( s , u ) ~ X l  , , ' ' ' ,  
t 

Indeed, if r = ( u l ,  u ) ( u 2 ,  u )  . . . (ul,,i, u ) ( s ,  u ) ,  then 
U p,U 

( M ( s . , , ) ( x l  , x ~ ' " , . ,  p u (~,,) • ,xl;~l,f))(o', '  ) 

, ' ' ' , ' ~ l u l , J l  ~,lr* (s,u)~,° ! 11 

= (XPl .U , .  X~u~ ' # r r r • . ,  f )  (Jx,(crl,,l+l)(J~,(or,), • • •, J~,(arl.,I))) 
_ ( s , u ) \ /  p, u l _ _ ( u , , u ) ~  

u 

= f(cr{*'"))(x~ ', x ~ , . . . ,  xl,,,) = f(o'{*'")). 

P a r t  II. We prove some implications between the previous eight conditions. 
(a) [(1) and (5) imply (2)]: Follows from Part I with y~ for .f 
(b) [(2) and (4) imply (5)]: Since y~= (y~_~)*. 
(c) [(2) and (3) imply (5)]: Obvious. 
(d) [(3) and (6) imply (4)]: Obvious. 
(e) [(1) and (4) imply (6)]: With the same notation as in (6) and with t = (s, u) 

it follows from Part I that 

f "f ~ • ~ u  s p , u  p , u  .aa (, ,, fl x , , x 2 , . . . , x~;,'~, f * ) .  

[(4) and (8) imply (3)]: With the same notation as in (3) it follows from (1.1) (f) 
that 

M ' / ( f b f 2 , . . . ,  f,,, f )  = M ' / ( f l , f 2 , . . .  ,f,,, (0, +f)+). 

(g) [(5), (7), and (8) imply (3)]: With the same notation as in (3)i t  suffices to 
notice the equality 

M t ( f l , . . .  , f , , f ) =  M ' / ( O ,  + f l ,  . . . , O, +f, ,  y?)(f, lp). 

P a r t  III. It follows from implications (a) and (b) that conditions (B) and (D) 
are equivalent. 

Let GA, GB, and GC be the least genera satisfying conditions (A), (B), and (C), 
respectively. 

It follows from (d) that (A) implies (D). Therefore, (A) implies (B), hence GA 
includes GB. 

It is easy to show that the genus of CFT fulfills conditions (C). Therefore, the 
genus of CFT includes GC. 

P a r t  IV. We prove that GB includes the genus of CFT. 
It is known that, for each u e S*, the £ :a lgebra  

({ u)L s, 
is freely generated by {M'] ie[]u]]}, where, for all i~[]p]l, if Pi = (s, s i s 2 . . ,  s , , )  and 
h~ ~ Tx, (s~, u) for every j ~ [ n I, then 

o ' , ( h b  h 2 , .  . . , h , ) =  I ~ , ( o ' ~ ) ( h ~ ,  h 2 , . .  . ,  h . ) .  
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Since there exists a natural bijection between Tz,(s,  u) and T'((s,  u), p),  it follows 
that the Zp-algebra 

({ T'((s, u),p)}s~s, {O,}i~tlpl]) 

is freely generated by {x{'"[ i e []u[]}, where, for all i e [Ipll, ifpi = (s, s~s2. . ,  sn) and 
f j~  T'((sj, u ) , p )  for every j e [ n ] ,  then 

O,(f,,f2, . . . ,jr.) = f 

if and only if 

tri(f/(~r~S"u)), f2( o'~S2'")),-.., f ,  (cr~ s'u)) ) = f(o'~'")). 

The following calculation (where r = (s l ,  u)(s2,  u ) . . .  (s,,, u)pi): 

u , f , ,  yi))(tr  I ) ( M p , ( f , , A , .  . . P ("") 

i f ,  A , . . . , f , ,  " "")  = Yi) ( M p , ( O ' l ' ) )  

= (A , f2 , . . -  ,f,,, Y~)#(J~,(o'r,,+,)(J~,(o'~),..., J~,(o'~,))) 

P Pi (sl ,  u) =y,(o-, )(A(", 

= I:~, (tr{)(A ( t ry* ' ' ) ) , . . . ,  f .  (tr~-'"))) 

= °ri(A (tr{*'')), f2( o '{" 'O) , . . . ,  f,, ( tr~ *''0)) 

shows that Oi( f , , f 2 , . . .  , f , )  " M~,( f l , f2 , . . .  , f , ,  y~). 
As the genus GB fulfills conditions (1) and (5), it follows that GB includes the 

genus of T'. 
It follows from implications (a) and (e) that GB fulfills conditions (2) and (6), 

i.e., ($1) and ($3). We shall prove that GB fulfills condition ($2) as well. 
We first prove by induction that GB fulfills conditions ($6), i.e., with y =  

lq +Op,+ 1,, 

h ~ GB(t', qr) implies hy~ GB(t', qp'r) 

for all t' ~ S x S* and q, p', r e (S x S*)*. 
If h q"" = x i  , where u~  S*, iellull ,  and t ' = ( u s  u), then 

hy = x~",U ~ GB(  t', qp' r). 

With the same notation as in (4), where p = qr and t ' =  (s, u), if 

h =  M T ( f ~ , A , . . . , f , , f * ) ,  

then 

h y =  M'/(f~y,  f 2 y , . . .  , f . y ,  ( f ( l t  + y)),) 

= M'/(f~y,  f 2 y , . . .  ,f,,y, (f(l tq + 0 , , +  1,))*). 
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Therefore, since by the inductive hypothesis, 

f0,~GB((s~, u), qp'r) and f ( l t q + 0 p , + l , ) ~ G B ( t ,  tqp'r), 

it follows that hy ~ GB(t ' ,  qp'r). 
With the same notation as in (5), where t ' =  (s, u) and p = qr, if 

h = M~,,(f~,f2,... , f , ,  yV), 

then 

hy=~M~,(f~y, f 2 y , . . _ _  .,f,d,,y~'r> i f  i e [Iqll, 

• .,f~,Ylp'l+,) iflql<i<~lPl. I.M~,_,q,(f ly, fEy, ~"~ 

Therefore, it follows from the inductive hypothesis that 

hy ~ GB(t' ,  qp'r). 

As ($6) implies (8), it follows from (f) that GB fulfills condition (3). 
For technical reasons, we shall prove by induction on h that GB fulfills a stronger 

condition than ($2), i.e., for each t' ~ S x S* and each q, p', r e (S x S*)*, if 

h e G B ( t ' , q r )  and h, eGB(r~,p')fori~[Irl],  

then 

h(lq +(h~, h2 , . . . ,  hlrl))e GB(t' ,  qp'). 

Let z = lq +(h~, hE, . . . ,  hlrl). If h = x7 r'u, where u ~ S*, i ~ [lu[], and t ' =  (u~ u), then 

hz = x~"" e GB(t ' ,  qp'). 

With the same notation as in (4), where p = qr and t ' =  (s, u), if 

h = M ~ ( f b f 2 , . . .  , f , , f* )  

then 

hz= M~(flz ,  f2z , . . .  , f ,z ,  (f(1, + z))*) 

= M~(f~z, f2z , . . .  , f ,z ,  (f(1,q +(h , ,  h2, • • •, hi,i)))*). 

Therefore, it follows from the inductive hypothesis that hz ~ GB(t',  qp'). 
With the same notation as in (5), where p = qr and t ' =  (s, u) ,  if 

h = M~,,(f~,f2,... , f , ,  y~) 

then 

h z  = f 2 z ,  . . . , f . z ,  y z> 

u qp' 
=~Mq,( f tz ,  f 2 z , . . .  , f , z , y ,  ) if ie[lqll, 

[M _Lq (flz, Az,. . . ,f .z,  Oq+h,-,q,) iflql<i<-lpl. 
If i ~ [Iqll, the inductive hypothesis and (5) imply that hz ~ GB(t' ,  qp'). If  Iq[ < i-< Ipl, 
then hz e GB(t ' ,  qp') by the inductive hypothesis, and conditions (8) and (3). 
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Since GB fulfills conditions (S1), ($2), and ($3), it follows from Theorem 1.7 
that GB includes the genus of CGT. 

Part V. We still have to show that GC includes GA. We shall prove that GC 
fulfills condition (A). 

It follows from (a) that GC fulfills (2). 
We shall prove by induction that GC fulfills ($6). We shall use the same notation 

as in the similar proof for GB and omit the identical cases. 
If h =f*,  where f :  t '~ t'qr, then 

hy=(f(1, ,+ y))*=(f(lt,q+Ol,,+ 1,))*. 

Therefore, it follows from the inductive hypothesis that hy ~ GC(t', qp'r). 
With the same notation as in (7), where p = qr, if h =f (g ,  lp), then 

hy = f(gy, y)= ( f(  ltq + 0 v, + 1,))(gy, 1 qp,,). 

Therefore, it follows from the inductive hypothesis that hy ~ GC(t', qp'r). 
Since ($6) implies (8), it follows from (g) that GC fulfills (3). [] 
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