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In this paper we study the problem of representing probabilistic independence models, in
particular those closed under graphoid properties. We focus on acyclic directed graph
(DAG): a new algorithm to build a DAG, given an ordering among random variables, is
described and peculiarities and advantages of this approach are discussed. Moreover, we
provide a necessary and sufficient condition for the existence of a perfect map representing
an independence model and we describe an algorithm based on this characterization.
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1. Introduction

Graphical models [7,8,11–13,17,21,26,31,34–39,44] play a fundamental role in probability and multivariate statistics, as
well as in artificial intelligence, since they are used as a tool for representing conditional independence models. The useful-
ness of graphical models is not limited to the probabilistic setting, indeed they have been extended also to other frameworks
such as possibility, belief function, credal set and lower probability [1,5,6,9,10,14,20,22,27,40,42].

An important problem is to find for a given independence model J all the independence statements h which are implied by
J, i.e. which hold under any probability distributions agreeing with J. This problem, called implication problem, has not been
solved yet and perhaps is undecidable. However it is possible to study its syntactical counterpart, i.e. to find if h can be
derived from J using some axiomatic system.

In particular, we deal with conditional independence models which are closed with respect to the graphoid properties.
These models can be generated by a strictly positive probability under the classical notion of independence [12].

It is then interesting to find the closure J of J with respect to graphoid properties, but since this set can be exponentially
larger than J, a suitable set J� (‘‘fast closure”) of J, gathering the same information as J, has been introduced [34,35,2].

Another relevant problem is to represent a set J of conditional independence relations by means of an acyclic directed
graph (DAG). We recall that a DAG gives a very compact and human-readable representation, unfortunately it is known that
there are sets of independencies which admit no perfect maps. The problem of the existence of a perfect map has been
studied by many authors by providing partial answers in terms of necessary conditions (see for instance [26]), or complete
solutions [30], which require to solve a large number of implication/deduction problems.

In [3] we introduced a sufficient condition for the existence of a perfect map in terms of existence of a certain ordering
among the random variables, and we described the procedure BN-DRAW which builds the corresponding independence map
given an ordering. This condition, as well as BN-DRAW, uses the ‘‘fast closure” [2].

For semi-graphoid structures a construction, similar to the fast closure, is given in [34] and it is used in [15] to introduce a
necessary condition for the existence of a perfect map.
. All rights reserved.
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In [3] we also defined a correct, but incomplete, algorithm to find a perfect map. A backtracking-based procedure searches
for a suitable ordering which satisfies the sufficient condition. If such an ordering exists, a perfect map for the independence
model can be found by using the procedure BN-DRAW. Since the above condition is not necessary, but only sufficient, as shown
in Example 3 and in Example 4, it can fail even if a perfect map exists.

The main result of this paper is to provide a necessary and sufficient for the existence of a perfect map, which character-
izes the orderings on which BN-DRAW extracts a perfect map, starting from the fast closure. These conditions rely on some
constraints among the triples of the set J� and their components.

The paper is structured as follows. In Section 2 we recall the concept of graphoid and the generalized rules, as introduced
in [2]. In Section 3 we give some experimental results on the computation of the fast closure. In Sections 4 and 5 we recall
some useful notions of graphs. Section 6 is devoted to discuss and to prove the characterization of DAG representability. In
Section 7 an algorithm based on the previous result is described and some empirical results are given. Sections 8 finally
describes some connections with the related literature and draws some conclusions.
2. Graphoid

Let eS ¼ fY1; . . . ;Yng be a finite not empty set of variables and S = {1, . . . ,n} the set of indices associated to eS.
Given a (coherent) probability P on eS, a conditional independence statement YA �YBjYC, compatible with P, is simply

denoted by the ordered triple (A,B,C), where A, B, C are disjoint subsets of S. Then, in the following we do not distinguisheS from S.
Furthermore, S(3) is the set of all (ordered) triples (A,B,C) of disjoint subsets of S, such that A and B are not empty. A

conditional independence model I is a subset of S(3). In particular, as claimed in the introduction, we refer to a graphoid
structure, which is a couple ðS; IÞ, where I is a ternary relation on S satisfying the following properties (where A,B,C,D
are pairwise disjoint subsets of S):

G1 if ðA;B;CÞ 2 I , then ðB;A;CÞ 2 I (Symmetry);
G2 if ðA;B [ C;DÞ 2 I , then ðA;B;DÞ 2 I Decomposition);
G3 if ðA;B [ C;DÞ 2 I , then ðA;B;C [ DÞ 2 I (Weak Union);
G4 if ðA;B;C [ DÞ 2 I and ðA;C;DÞ 2 I , then ðA;B [ C;DÞ 2 I (Contraction);
G5 if ðA;B;C [ DÞ 2 I and ðA;C;B [ DÞ 2 I , then ðA;B [ C;DÞ 2 I (Intersection).

A semi-graphoid is a couple ðS; IÞ where I satisfies only the properties G1–G4.
Given a triple h = (A,B,C) we denote by hT the triple obtained by applying G1 to h (called the transpose of h), i.e. hT = (B,A,C).

2.1. Generalized inference rules and fast closure

Given a set J of conditional independence statements, compatible with a probability, a relevant problem is to find the clo-
sure of J with respect to G1–G5
J ¼ h 2 Sð3Þ : h is obtained from J by G1—G5
n o

:

A related problem, called deduction, concerns to establish whether a triple h 2 S(3) can be derived from J, see [4,45]. It is clear
that the deduction problem can be easily solved once the closure has been computed. But, the computation of J is infeasible
because its size can be exponentially larger than the size of J. In [2] we described how it is possible to compute a smaller set
of triples having the same information as the closure. The same problem has been already faced successfully in [35], with
particular attention to semi-graphoid structures.

We recall in the following subsections some definitions and properties (see for more details [2]), which are used in the
rest of the paper.

2.1.1. Generalized inclusion
Given a pair of triples h1, h2 2 S(3), we say that h1 is generalized-included in h2 (briefly g-included), in symbol h1 v h2, if h1

can be obtained from h2 by a finite number of applications of the unary rules G1, G2 and G3.

Proposition 1. Given h1 = (A1,B1,C1) and h2 = (A2,B2,C2), then h1 v h2 if and only if the following conditions hold:

(i) C2 # C1 # (A2 [ B2 [ C2);
(ii) either A1 # A2 and B1 # B2, or A1 # B2 and B1 # A2.

Generalized inclusion is strictly related to the concept of dominance [34,35] where h1 is said to be dominated by h2 (in
symbol h1 v ah2) if the condition (i) of Proposition 1 holds and, moreover, A1 # A2 and B1 # B2.

The definition of g-inclusion between triples can be extended to sets of triples:
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Definition 1. Let H and J be subsets of S(3). J is a covering of H (in symbol H v J) if and only if for any triple h 2 H there exists a
triple h0 2 J such that h v h0.
2.1.2. Generalized rules
By using the relation v it is possible to define a generalization of the binary rules G4 and G5.
Given h1 = (A1,B1,C1) and h2 = (A2,B2,C2) in S(3), let X i ¼ ðAi [ Bi [ CiÞ for i = 1, 2. Now, let:
WCðh1; h2Þ ¼ s : h01; h
0
2‘G4s; with h01vah1; h

0
2vah2

� �
;

where h01; h
0
2‘G4s means that s is obtained by applying G4 to h01 and h02.

In [2] we proved that WC(h1,h2) is not empty if and only if the following conditions hold:

(1) (A1 \ A2) – ;;
(2) C1 #X2 and C2 #X1;
(3) (B1nC2) – ;;
(4) B2 \ X1–;;
(5) jðB1 n C2Þ [ ðB2 \ X1ÞjP 2.

Moreover, if WC(h1,h2) is not empty, then the triple:
gc h1; h2ð Þ ¼ A1 \ A2; B1 n C2ð Þ [ B2 \ X1ð Þ; C2 [ A2 \ C1ð Þð Þ;
is in WC(h1,h2) and g-includes any triple belonging to WC(h1,h2).
By denoting with GC(h1,h2) the set formed by the possible (i.e. belonging to S(3)) triples among gc(h1,h2), gcðh1; h

T
2Þ,

gcðhT
1; h2Þ and gcðhT

1; h
T
2Þ, it is possible to state a generalization of the inference rule G4:
G4� \generalized contraction" : from h1; h2 deduce any triple s 2 GCðh1; h2Þ:
Note that G4* can be seen as a generalization of G4, which also uses G1–G3. In fact, if it is possible to apply G4 to h1, h2,
obtaining s, then s = gc(h1,h2) and so s is deducible from h1, h2 also through G4*. Otherwise, each triple deduced through G4*
g-includes all the possible triples generated from h1, h2 through repeated applications of G1–G4.

A similar result, related to intersection property (see [2]) is given by considering the set:
WIðh1; h2Þ ¼ s : h01; h
0
2‘G5s; with h01vah1; h

0
2vah2

� �
;

where h01; h
0‘G5s means that s is obtained by applying G5 to h01 and h02.

In particular, in [2] we proved that, given h1 = (A1,B1,C1),h2 = (A2,B2,C2), the set WI(h1,h2) is not empty if and only if the
following conditions hold:

(1) A1 \ A2 – ;;
(2) C1 #X2 and C2 #X1;
(3) B1 \ X2–;;
(4) B2 \ X1–;;
(5) jðB1 \ X2Þ [ ðB2 \ X1ÞjP 2.

Moreover, if WI(h1,h2) is not empty, then the triple:
gi h1; h2ð Þ ¼ A1 \ A2; B1 \ X2ð Þ [ B2 \ X1ð Þ; C1 \ A2ð Þ [ C2 \ A1ð Þ [ C2 \ C1ð Þð Þ
is in WI(h1,h2) and g-includes any triple in WI(h1,h2).
By denoting with GI(h1,h2) the set formed by the possible triples among giðh1; h2Þ; giðh1; h

T
2Þ; giðhT

1; h2Þ and giðhT
1; h

T
2Þ, it is

possible to state a generalization of the inference rule G5:
G5� \generalized intersection" : from h1; h2 deduce any triple s 2 GI h1; h2ð Þ:
Note that G5* generalizes G5 in the same sense that G4* generalizes G4.

2.1.3. Fast closure
It is possible to compute the closure of a set J of triples in S(3) with respect to the generalized rules G4* and G5*, i.e. the set:
J� ¼ s : J‘�Gs
� �

; ð1Þ
where J‘�Gs means that s is obtained by applying a finite number of times the rules G4* and G5*.
In [2] the relationship between the two closures J* and J is studied, in particular, we proved that J� # J and J v J�.
Note that J* is a subset of J and it has the same information of J. However, J* can contain some ‘‘redundant” triples, i.e.

some triples which are g-included in some other ones. Therefore, the set J* can be reduced by using the concept of ‘‘maximal”
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(with respect to g-inclusion) triple: given a set J of triples, a triple s is maximal in J if there is no �s 2 J with �s–s; sT such that
s v �s. Actually, such reduction requires to delete the triples obtained through G1–G3.

We denote with J/v the subset of J composed only by its maximal triples, moreover in the case that s and sT are both max-
imal triples in J, then only one of them, arbitrarily chosen, is kept in J/v. The function which computes J/v from a set J is called
FINDMAXIMAL.

By using J=v instead of J there is no loss of information, in fact (see [2]):
J v J=v:
Then, given a set J of triples in S(3), we compute J* (see Eq. (1)) and then we take only its maximal triples, i.e. J�=v. The set J�=v is
called ‘‘fast closure” and it is denoted, for simplicity, with J�.

2.2. Unique rule and algorithm FC1

A faster way to compute the fast closure is to exploit the property that the fast closure {h1,h2}� of a given pair h1, h2 2 S(3) is
composed by a maximum of 9 extra triples, no matter how many variables occur in h1 and h2, as proved in [2]. In particular,
let K(h1,h2) be the set:
h1; h2;u h1; h2ð Þ;u hT
1; h2

� �
;u h1; h

T
2

� �
;u hT

1; h
T
2

� �
;u h2; h1ð Þ;u hT

2; h1
� �

;u h2; h
T
1

� �
;u hT

2; h
T
1

� �
; m h1; h2ð Þ

� �
;

where
u h1; h2ð Þ ¼ A1 \ A2;B1 [ B2 \ X1ð Þ;C1 n B2ð Þ;
and
m h1; h2ð Þ ¼ A1 \ B2ð Þ [ A2 \ B1ð Þ; A1 \ A2ð Þ [ B1 \ B2ð Þ;C1 [ C2ð Þ:
Note that:
uðh1; h2Þ ¼ gc gcðh1; h2Þ; giðh1; h2Þ½ �;
and
m h1; h2ð Þ ¼ gi u h1; h2ð ÞT ;u hT
1; h

T
2

� �T
h i

:

In [2] we proved that {h1,h2}� v K(h1,h2)/v and K(h1,h2)/v v {h1,h2}*.
The set K(h1,h2) can be used for computing {h1,h2}* ‘‘at once” and this feature is exploited in [2] where we introduced the

function FC1, (described in Algorithm 1), which implicitly uses the following unique inference rule.
U : from h1; h2 deduce any triple s 2 fh1; h2g � :
Note the {h1,h}� is obtained from K(h1,h2) by applying the function FINDMAXIMAL.
Actually, FC1 uses K(h1,h2) instead of {h1,h2}� for sake of efficiency.
FC1 can be enhanced by observing [2] that if h01 and h0 belong to {h1,h2}�, then fh01; h

0g� is g-included to {h1, h2}�. The validity
of this observation follows easily since:
fh01; h
0g� v fh

0
1; h

0g� v fh1; h2g� v fh1; h2g�:
Therefore, it is not necessary to apply the inference rule U to a pair h01 and h0, generated by U from the same two triples h1 and
h2, since h01 and h0 generate only redundant triples, which would be discarded by the function FINDMAXIMAL.

Algorithm 1: Fast closure by U

1: function FC1 (J)
2: J0 J
3: N0 J
4: k 0
5: repeat
6: k k + 1
7: Nk :¼

S
h12Jk�1 ;h22Nk�1

Kðh1; h2Þ

8: Jk FINDMAXIMAL (Jk�1 [ Nk)
9: until Jk = Jk�1

10: return Jk

11: end function



For the same reasons, we do not need to apply the rule U between a triple h and another one h0 generated from h (by com-
00 0 00 0 00
bining h with another triple h ): in fact if h 2 {h,h }�, then {h,h } # }* and so:
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Table 1
Fast clo

r

10
10
10
10

15
15
15
15

20
20
20
20

25
25
25
25

30
30
30
30
h; h0f g� v fh; h
00g�;
which implies that no maximal triple can be obtained.
Then, the use of the inference rule U in FC1 can be enhanced by keeping track of the ‘‘parents” of each triple and by

neglecting the pairs which satisfy the two previously described situations (‘‘sibling” triples and ‘‘father–child”).

3. Experimental results

In this section we shortly discuss some experimental results obtained with an implementation in C++ of the algorithm
FC1, as well as an implementation of an algorithm to compute the complete closure (with respect to G1–G5). The main pur-
pose of these experiments is to prove the viability of the fast closure computation. Some preliminary results, with different
experimental settings, have already been given in [2].

The first aspect, that arises from experiments, is to show the computational cost of the fast closure. In fact, this problem is
a computationally hard problem, for which no efficient (i.e. polynomial time) solution can exist as already noted in [34,35].
Therefore an empirical evaluation is necessary in order to establish whether the computation of the fast closure is reasonably
fast and uses an acceptable amount of memory.

The other question is to provide a comparison in size and in computation time of the fast closure with respect to the com-
plete closure. The fast closure is clearly smaller than the complete closure (each triple h 2 J� corresponds to several triples in
J), but we have not been able to find any theoretical bounds for the size of J� with respect to the size of J.

The experiments were performed on an AMD Dual Core Opteron running at 1.8 GHz with 2 GByte main memory. We ap-
plied a cut-off of 5,000,000 triples that can be stored (to avoid problems with memory) and a time-out of 3600 s.

In the first set of experiments, we have generated 200 random sets of triples having v variables and r triples, for r = 10, 15,
20, 25, 30 and v = b0.5 � rc, r, b1.5 � r c, 2r. and we have computed the fast closure by means of FC1.

In the Table 1, the value perc is the percentage of the sets for which FC1 has been able to compute the fast closure, within
the limits of time and memory, time is the average computation times in seconds, size is the average size of the fast closure,
iter is the average number of iterations needed to find the closure, and gen is the average number (rounded to the nearest
integer) of the overall generated triples.

The behavior of FC1, as explained in the following, is influenced by many factors. Note that as r grows, instances with a
small value for v

r become more difficult: with r = 30 and v = 15 FC1 has not been able to solve any instance. On the other hand,
when the ratio v

r is large, instances get easier to solve. In this experiments we have no evidence on how sharp the transition
from difficult to easy instances is. It would be investigated in a future work.

The first behavior can be explained as follows: by generating instances with few variables, with respect to the number of
relations, can produce many triples where it is possible to repeatedly apply the generalized inference rules. In these cases,
the computation of the fast closure requires several iterations and a large number of triples can be generated (most of them
are discarded). These kinds of instances seem to be the hardest to solve, in comparison with other kinds.
sure FC1.

v perc time size iter gen

5 100 0 10.83 3.99 202
10 100 1.06 95.93 6.42 27524
15 99 44.43 226.08 6.263 241219
20 98.5 22.16 153.54 4.81 115006

7 100 9.11E�02 46.84 5.50 5841
15 63 500.42 982.68 10.03 1926990
22 80.5 111.49 365.29 6.63 359213
30 98 9.77 72.14 3.25 32615

10 100 79.19 433.835 7.41 652608
20 27.5 376.43 921.47 10.2 1105693
30 93.5 84.64 305.21 5.58 240052
40 98.5 3.64 54.95 2.20 16514

12 49.5 1383.23 1354.33 8.3 5231558
25 35 254.46 719.69 9.04 720993
37 97.5 14.25 124.42 3.8 62761
50 100 1.1E�03 29.685 1.445 84

15 0 – – – –
30 51.28 118.59 514.58 7.65 3631898
45 100 0.03 48.38 2.41 1063
60 100 8.55E�05 31.06 1.12 7
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At the same time, when the number of variables becomes too large, since we generate triples which could contain disjoint
set of variables and in this case the opportunity for applying the inference rules becomes very low. This is proved by the
average size of the fast closure (which is roughly similar to nr) and the number of generated triples (which is rather small).
In these cases, the closure often coincides (or almost coincides) with the initial set of triples and therefore can be computed
with a little computational effort.

In the second set of experiments we compare the computation time needed for finding the complete closure and its size
with respect to the time and size of the fast closure. The complete closure is obtained by using an algorithm similar to FC1,
which uses all the inference rules G1–G5, without calling FINDMAXIMAL. Furthermore, we did not apply for it any cut-off with
respect to the number of triples.
Table 2
Fast closure with FC1.

r v time size iter gen res

4 4 0 3.95 2.75 12.1 20
4 6 0 5.85 2.95 29.2 20

7 7 2E�03 18.65 4.95 559.25 20
7 10 1.8E�02 32.05 4.7 1756.15 20

10 10 0.6755 86.9 5.95 18415 20
10 15 42.7225 320.45 6.7 335910.5 20

Table 3
Complete Closure.

r v time size iter gen res

4 4 0 64 7 57 20
4 6 0.05 527 8.9 899 20

7 7 1.75 3282 13.15 9526 20
7 10 248 28808 13.89 147249 19

10 10 603 50760 16.67 268381 15
10 15 3513 159164 14 683991 1

Fig. 1. Comparison of average sizes of the closure.



Fig. 2. Comparison of average computation times.
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Since we expect that the complete closure is much larger than its fast version, we have performed these new experiments
with smaller instances, instead of using the previous one. In particular, we generate 20 sets of r triples and v variables, for
r = 4, 7, 10 and v = r, b1.5 � rc. Note that all the instances are solved by FC1 while this does not happen for complete closure.

In Table 2 the results for the fast closure are reported, the average values by FC1: the average computation time is neg-
ligible, except that in the last row, where we obtain results similar in magnitude order, as those displayed in Table 1. The
algorithm FC1 has been able to build the closure for each instance.

In Table 3 we show the results related to the complete closure. The last column contains the number of instances for
which the algorithm has been able to compute the complete closure within an hour of computation. Note that for r = 10
and v = 15 we could solve only one instance, which almost reached the time limit, while the fast closure of this instance
has only 27 triples and has been found in a negligible amount of time. The values in the last column are used to compute
the average values shown in Table 2.

The comparison of the size between fast and complete closure is impressive, as shown in Fig. 1 (the last rows of both ta-
bles have been ignored).

Clearly also the computation times for computing the complete closure are much higher than the time needed to compute
the fast closure (see Fig. 2).

4. Graphs and maps

In this section we recall some notions about graphs and the representation of an independence model by an acyclic di-
rected graph (DAG) [26]. We denote by G ¼ ðU; EÞ a graph with a set U of nodes and a set E of directed arcs. For any u 2 U, as
usual, we denote with pa(u) the parents of u, ch(u) the children of u, ds(u) the sets of descendants and an(u) the set of ances-
tors. We use the convention that each node u belongs to an(u) and to ds(u), but not to pa(u) and ch(u).

Definition 2. If A, B and C are three disjoint subsets of nodes in a DAG G, then C is said to d-separate A from B (in symbol
(A,B,C)G) if for each non-directed path between a node in A and a node in B, there exists a node x in the path which satisfies
one of these two conditions:

(1) x is a collider (i.e. both edges point to x), x R C and ds(x) \ C = ;;
(2) x is not a collider and x 2 C.

In order to study the representation of a conditional independence model, we need to distinguish between dependence
maps and independence maps, since there are conditional independence models that cannot be completely represented by a
DAG (see e.g. [21,26,35]).

Definition 3. Let J be a set of conditional independence relations on S. A DAG G ¼ ðS; EÞ is a dependence map (briefly a D-
map) for J if for each triple (A,B,C) 2 S(3):
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ðA;B;CÞ 2 J ) ðA;B; CÞG:
Moreover, G ¼ ðS; EÞ is an independence map (briefly an I-map) for J if for each triple (A,B,C) 2 S(3):
ðA;B;CÞG ) ðA;B;CÞ 2 J:
G is a minimal I-map of J if deleting any arc, G is no more an I-map.G is said to be a perfect map (briefly a p-map) for J if it is
both a I-map and a D-map.

The next definition and theorem [26] provide a method to build a DAG given an independence model J.

Definition 4. Let J be an independence model defined on S and let p = hp1, . . . ,pni be an ordering of the elements of S. The
boundary strata of J, relative to p, is an ordered set of subsets hBp

ð1Þ;B
p
ð2Þ; . . . ;Bp

ðnÞi of S such that each Bp
ðiÞ is a minimal set

satisfying Bp
ðiÞ# Sp

ðiÞ ¼ fp1; . . . ;pi�1g and either Bp
ðiÞ ¼ Sp

ðiÞ or ci ¼ ðfpig; Sp
ðiÞ n Bp

ðiÞ;B
p
ðiÞÞ 2 J.

The DAG created by setting each Bp
ðiÞ as parent set of the node pi is called boundary DAG of J, relative to p.

It is important to notice that, under graphoid axioms, the minimal set Bp
ðiÞ is unique (see [26]).

Moreover, Definition 4 is a reformulation of that given in [26]: we have (as in the cited paper) a minimal set for each
nodes, but some of them would generate an illegal triple (i.e. a triple which does not belong to S(3)) and then they could
not be in J.

In the rest of the paper, Sp
ðiÞ and Bp

ðiÞ will be denoted, when it is clear from the context, simply as S(i) and B(i), respectively.
The triple ci is known as basic triple.

The next theorem is an extension of Verma’s Theorem [41] stated for conditional independence relations (see [26]).

Theorem 1. Let J be an independence model closed with respect to the graphoid properties. If G is a boundary DAG of J, relative to
any ordering p, then G is a minimal I-map of J.

Theorem 1 helps to build a DAG for an independence model J (induced by a probability P on S) given an ordering p on S. In
the rest of the paper, given an ordering p on S, Gp is the corresponding I-map of J with respect to p.

Finally it is worth to notice that Theorem 1 can also be formulated for semi-graphoid, but this is out of the aims of this
paper.

5. BN-DRAW function

The aim of this section is to review the procedure BN-DRAW introduced in [3], which builds the minimal I-map Gp of J (see
Definition 3) given the fast closure J� (introduced in Section 2.1) of J and an ordering p on S.

Note that the standard procedure to draw an I-map (see [19,26]), described in Definition 4, cannot be applied to J�. In fact,
as shown in Example 1, the basic triples, related to an arbitrary ordering p, could not belong to J�, but they could be just g-
included into some triples of J�.

Example 1. Given J = {({1}, {2}, {3,4}), ({1}, {3}, {4})}, the aim is to find the corresponding basic triples and to draw the
relevant DAG Gp related to the ordering p = h4,2,1,3i (see Fig. 3). By the closure with respect to graphoid properties we
obtain:
J ¼ fðf1g; f2g; f3;4gÞ; ðf1g; f3g; f4gÞ; ðf1g; f2;3g; f4gÞ; ðf1g; f2g; f4gÞ; ðf1g; f3g; f2;4gÞ;
ðf2g; f1g; f3;4gÞ; ðf3g; f1g; f4gÞ; ðf2;3g; f1g; f4gÞ; ðf2g; f1g; f4gÞ; ðf3g; f1g; f2;4gÞg
and the set of basic triples (related to p) is
C ¼ fðf1g; f2g; f4gÞ; ðf3g; f1g; f2;4gÞg:
Fig. 3. I-map related to Examples 1 and 2.
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By FC1 we obtain J� = {({1}, {2,3}, {4})} and it is simple to observe that C v J�.
However, we show in Proposition 2 how to extract the basic triples from the fast closure.

Proposition 2. Let J be a set of independence relations on S, J� its fast closure and p an ordering on S. For each i 2 S, the set:
Bi ¼ fig;B;Cð Þ 2 S 3ð Þ : B [ C ¼ S ið Þ;9h 2 J� with fig;B;Cð Þ v h
n o
is not empty if and only if the basic triple ci = ({i}, S(i)nB(i),B(i)) exists (i.e. ci 2 S(3)), and coincides with the unique maximal triple �ci of
Bi.
Proof. Suppose that Bi is not empty. Let us show that in Bi there is a unique maximal triple. If Bi has only one element, the
claim is trivially true. Otherwise, for each h0; h00 2 Bi, it is possible to apply the rule G5* (Generalized intersection) to h0, h00, and
we obtain h000. Now, h000 belongs to Bi: in fact, h000 is g-included in a triple obtained by applying G5* to some pairs of triples in J�.
Moreover, both h0 and h00 are g-included in h000. Note that jC000j < jC0j and jC000j < jC00j. By iterating this process, we terminate (since
S is finite) by finding a maximal triple �ci of Bi. This triple is clearly unique and coincides with ci. In fact, by supposing the
contrary by definition of ci, it would follow that jBij < jB(i)j. But this is impossible, otherwise there should exist a triple in
J� g-including �ci.

Vice versa, if the basic triple ci = ({pi},S(i) nB(i),B(i)) for pi exists, then it is straightforward to see that ci 2 Bi. h

In order to describe a new version of BN-DRAW we need to introduce the following operation: for each h = (A,B,C) 2 S(3), for
any x 2 S and T # S, define:
Pðh; T; xÞ ¼
T \ ðA [ CÞ if C # T # A [ B [ C and x 2 A

T \ ðB [ CÞ if C # T # A [ B [ C and x 2 B

T otherwise:

8><
>:
Then, the function P(h,S(x),x) computes the set of potential parents of x in Gp when the basic triple cx is g-included in h. In the
case that no basic triple is g-included in h, then P(h,S(x),x) = S(x).

The function PARENTS, as shown in Algorithm 2, finds the smallest set of potential parents.

Algorithm 2: The set of parents of x

function PARENTS (x,T,K)
pa T
for all h 2 K do

p P(h,T,x)
if jpj < jpaj then pa p

end for
return pa

end function

Note that the procedure BN-DRAW applies, for each pi, the function PARENTS in order to find the parent set of pi.
Given p, BN-DRAW builds the minimal I-map Gp in linear time, with respect to the cardinality m of J� and the number n of

random variables. In fact, it is based on the function PARENTS, which computes the set of parents of a given variable in O(m)
steps. In each step, some set operations must be executed and this can be efficiently performed by using a compact repre-
sentations for sets (e.g., as bit vectors). The space needed in memory by BN-DRAW is almost exclusively used to store the fast
closure.

Algorithm 3: DAG from J� given an ordering p of S

function BN-DRAW (n,p, J�)
T ;
G a graph with S as vertex set and no edges
for i 2 to n do

T T [ {pi�1}
pa PARENTS (pi,T, J�) draw an arc in G from each index in pa to pi

end for
return G

end function
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The next example compares the standard procedure recalled in Definition 4 with BN-DRAW to build the I-map, given a sub-
set J of S(3) and an ordering p among the elements of S.

Example 2. Consider the same independence set J of Example 1 and the ordering p = h4,2,1,3i, we compute the basic triple
by applying BN-DRAW to J� = {h} with h = ({1}, {2,3}, {4}).

For i = 2, S(2) = {4}, 2 2 B and P(2, {4},h) = {4}. For i = 1, S(1) = {2,4}, 1 2 A and P(1, {2,4},h) = {4}. For i = 3, S(3) = {1,2,4}, 3 2 B
and P(3, {1,2,4},h) = {2,4}.

The basic triple for 2 does not exist because B \ S(2) = ;, while for 1 and 3 the corresponding basic triples are
respectively ({1}, {2}, {4}) and ({3}, {1}, {2,4}). Therefore, we obtain the same set C given in Example 1 and the I-map shown in
Fig. 3.
6. Existence of Perfect map

6.1. Sufficient condition

We recall, for sake of completeness, the result described in [3], which ensures the existence of a perfect map, by using the
notation of this paper. For the proof see the quoted paper, however it can also be easily deduced from the proof of the suf-
ficient implication of Theorem 2. Nevertheless, this result is interesting because the latter is a generalization of the former.

Proposition 3. Let J be a set of conditional independence relations. Given an ordering p on S, let Gp be the corresponding I-map.

If for any triple h = (A,B,C) 2 J� the following conditions hold (where X ¼ A [ B [ C):

(1) S(c) \ A = ; or S(c) \ B = ; for each c 2 C;
(2) SðxÞ #X for each x 2 X ;

then the related I-map Gp is a perfect map.
Next examples show that even if the conditions (1) or (2) of Proposition 3 are not satisfied, a perfect map could exist.

Example 3. Let us consider the set:
J ¼ f f2g; f5g; ;ð Þ; f4g; f5g; f2gð Þ; f1g; f2g; f4;5gð Þ; f3g; f4;5g; f1;2gð Þg:
The associated fast closure is J� = {h1, . . . ,h4} with:
h1 ¼ f3g; f4;5g; f1;2gð Þ;
h2 ¼ f5g; f2;4g; ;ð Þ;
h3 ¼ f2g; f1;5g; f4gð Þ;
h4 ¼ f5g; f2;3g; f1;4gð Þ:
The I-map Gp (see Fig. 4), related to the ordering p = h2,4,5,1,3i, is a perfect map. Anyway, Proposition 3 does not hold.
Indeed, by looking for orders satisfying condition (2), the only possibilities consist into taking any permutation of {2,4,5}
Fig. 4. P-map related to Example 3.



Fig. 5. P-map related to Example 4.
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followed by 1 and then by 3. In all these 6 orderings, condition (1) is always violated for h4, because S(1) = {2,4,5},
S(1) \ {5} – ;, and S(1) \ {2,3} – ;.

The following example shows that Condition (2) of Proposition 3 is too strong.

Example 4. Let us consider the set J = {h1,h2} with h1 = ({1,2,3}, {4,5,6,7}, {8,9}) and h2 = ({1,4}, {2,5,8}, {6,9}). The related
fast closure is J� = {h1,h2, . . . ,h7} with:
h3 ¼ f1g; f2;4;5;6;7;8g; f9gð Þ;
h4 ¼ f2g; f1;4;5;6;7g; f8;9gð Þ;
h5 ¼ f4g; f1;2;3;5;8g; f6;9gð Þ;
h6 ¼ f5g; f1;2;3;4g; f6;8;9gð Þ;
h7 ¼ f2;4g; f1;5g; f6;8;9gð Þ:
Conditions (2) of Proposition 3 do not hold: in fact, by considering the triples h3 and h5 it is simple to observe that 7 2 X3, but
7 R X5 and 3 R X3, while 3 2 X5. Then, there is no ordering p satisfying conditions (1) and (2) of Proposition 3 for any h 2 J�.

Nevertheless, by considering the ordering p = h1,9,2,8,3,5,6,4,7i, the related I-map Gp (represented in Fig. 5) is perfect,
i.e. it represents each triple of J�.
6.2. A necessary and sufficient condition

Now, we provide one of the main results of this paper, which is a necessary and sufficient condition for the existence of a
perfect map. This result gives a characterization of those orderings generating a perfect map. This result has been obtained
by studying the violations of conditions in Proposition 3 in the cases where a perfect map does exist. Indeed, each time the
conditions (1) or (2) are not satisfied, the existence of a perfect map is guaranteed if a weaker condition is met.

Theorem 2. Let J be a set of independence relations. Then, J is representable by a p-map if and only if there exists an ordering p
such that for each h = (A,B,C) 2 J� the following conditions hold:

C1: for each c 2 C such that S(c) \ A – ; and S(c) \ B – ;, there exists a triple hc 2 J� such that P(hc, S(c), c) \ A = ; or
P(hc, S(c), c) \ B = ;;
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C2: for each a 2 A such that S(a) \ B – ; or SðaÞ \ ðS n XÞ–; there exists a triple ha 2 J� such that Pðha; SðaÞ; aÞ \ ½B [ ðS n XÞ� ¼ ;;
C3: for each b 2 B such that S(b) \ A – ; or SðbÞ \ ðS n XÞ–; there exists a triple hb 2 J� such that Pðhb; SðbÞ; bÞ \ ½A [ ðS n XÞ� ¼ ;;
C4: for each c 2 C such that SðcÞ \ ðS n XÞ–;, there exists a triple h0c 2 J� such that Pðh0c; SðcÞ; cÞ \ ðS n XÞ ¼ ;.

where X ¼ ðA [ B [ CÞ.
Proof. ()) Let us suppose that Gp is a p-map for J�. We need to prove that p satisfies the conditions C1–C4.
Let h = (A,B,C) be a triple in J�. Under the hypotheses, h is represented in Gp. Let us prove by absurd that all the conditions

C1–C4 are satisfied for h.
If condition C1 is not satisfied, then there exists an index c 2 C, with S(c) \ A – ; and S(c) \ B – ;, but, for all triples h0 2 J�, it

happens that P(h0,S(c),c) \ A – ; and P(h0,S(c),c) \ B – ;. Hence, there exists an element a in pa(c) \ A and an element b in
pa(c) \ B such that the path a ? c  b is not blocked by C, contradicting the fact that A is d-separated from B by C.

If condition C2 is not satisfied, then there exists an index a 2 A, with S(a) \ B – ; or SðaÞ \ ðS n XÞ–;, but, for all triples h0 2 J�,
it happens that Pðh0; SðaÞ; aÞ \ ½B [ ðS n XÞ�–;. Hence, there exists either an element b in pa(a) \ B or an element d in
paðaÞ \ ðS n XÞ. In the former case, there exists an arc between an element of A and an element of B, and h is not represented
in the graph. In the latter case, we prove that �h ¼ ðfdg [ A;B;CÞ is represented in Gp. Any path from d to an element of B is
blocked by C, otherwise that path could be extended to a, but then it would not be blocked by C (d is not collider). But this is
impossible because, being Gp a p-map, �h 2 J and h v �h, so this contradicts the maximality of h.

The proof of the validity of condition C3 goes along the same line.
If condition C4 is not satisfied, then there exists an index c 2 C, with SðcÞ \ ðS n XÞ–;, but, for all triples h0 2 J�, it happens

that Pðh0c; SðcÞ; cÞ \ ðS n XÞ–;. Hence, there exists an element � in paðcÞ \ ðS n XÞ. Now, either h0 = ({�} [ A,B,C) or
h00 = (A, {�} [ B,C) is represented in Gp, otherwise, there would be a path q0 from b 2 B to � and a path q00 from � to a 2 A
not blocked by C. Indeed, the path obtained by concatenating q0 to q00 connects B to A and it is not blocked by C, since � is a
parent of C. Being Gp a p-map for J, therefore also for J�, we have that h0 2 J or h00 2 J. Since, by construction, h v h0 and h v h00,
this contradicts the maximality of h in J.

(�) It is easy to see that conditions C1–C4 imply that for each h = (A,B,C) 2 J� in Gp the following conditions hold:

(a) for each a 2 A, pa(a) # A [ C;
(b) for each b 2 B, pa(b) # B [ C;
(c) for each c 2 C, either pa(c) # A [ C or pa(c) # B [ C.

As a consequence, for each x 2 X ; paðxÞ#X .
Now, let us show that each h = (A,B,C) 2 J� is represented in Gp. Let q = (u1, . . . ,ul) be a path in Gp from u1 2 A to ul 2 B. Put

j = max{i: ui 2 A} and l = min{i: ui 2 B}. Then, j + 1 6 l � 1, otherwise there would be an element of A having parents in B or
vice versa. If uj+1 2 pa(uj), then uj+1 2 C and, since it is not a collider, it blocks q. Similarly, if ul�1 2 pa(ul).

Now, let us suppose that uj+1 2 ch(uj) and ul�1 2 ch(ul). Let r be an index such that ui precedes ur in p for each i = j, . . . , l.
Clearly r – j and r – l. Moreover, ur is a collider. If ur 2 C, then it is impossible that j + 1 = r = l � 1, otherwise ur would have
parents both in A and in B. So, at least one between ur�1 and ur+1 is a parent of ur and then blocks q, since belongs to C.

On the other hand, if ur R C, then it is impossible that a descendent of ur belongs to C (because all ancestors of elements of
C belong to X). Therefore ur blocks q. h

7. Implementation and experimental result

In this section we describe an algorithm which is based on Theorem 2 to check whether a set J� is representable by a
graph, and in the affirmative case, to find a perfect map.

This algorithm is not based on a direct implementation of Theorem 2, because it would require the validity of conditions
C1–C4 for every possible ordering among the variables.

Hence, a not naive implementation exploits two important features of conditions C1–C4. First of all, they can be used for
building a partial ordering. If the ordering is built in a sequential way, i.e. selecting the first variable, then the second one, and
so on, it is possible to determine, at each step, the set S(x) for the last chosen variable x. Then, the conditions C1–C4 can be
checked only for x, by verifying, only for each triple h 2 J� where x appears, the existence of a suitable triple hx (in the cases
requested by each condition).

However, it is not necessary to search such triples. Indeed, from S(x) it is possible to compute the parent set pa(x) of x by
means of function PARENTS. Hence, for instance, to test Condition C1 for x it is sufficient to check for each triple h = (A,B,C),
such that x 2 C, whether pa(x) \ A = ; or pa(x) \ B = ;. In fact, if pa(x) \ A = ; or pa(x) \ B = ; are true, then the triple h0 from
which pa(x) is taken (i.e. pa(x) = P(h0,Sx,x)), is such that P(h0,Sx,x) \ A = ; or P(h0,Sx,x) \ B = ;. On the other hand, if for some
triple h0 it happens that P(h0,Sx,x) \ A = ; or P(h0,Sx,x) \ B = ;, then the same relation holds for pa(x) since it is a subset of
P(h0,Sx,x). The same consideration holds for C2, C3 and C4.

These remarks greatly simplify the algorithm, because the computation time needed to check all the conditions reduces to
O(m) instead of O(m2) as required by a direct implementation, where m is the cardinality of J�.



14 M. Baioletti et al. / International Journal of Approximate Reasoning 52 (2011) 2–18
In the affirmative case, the procedure continues with the remaining variables, extending the ordering. Note that the con-
ditions need not be verified again for x. In the negative case, any total ordering which extends the current partial order will
not satisfy the conditions. Therefore the procedure comes back to the previous position and makes a new choice for x. In this
way, conditions make an early pruning on the orderings and thus it is not necessary to search in the space of total orderings.

The other important feature is the particular structure of C2, C3 and C4. Let us examine as an example, condition C2. For a
given triple h = (A,B,C), no element of B [ ðS n XÞ can be parent of any a 2 A, otherwise C2 would be violated. The conditions
C3 and C4 behave in a similar way. This fact can be exploited by computing, before starting the search process, the set of
forbidden parents, denoted as NP(x), for each x 2 S, as shown in Algorithm 4. Note that the particular form of condition C1
(it is a disjunction and A and B are disjoint) makes impossible to exclude any variable from being a parent of other variables.
Hence the preprocessing phase (Algorithm 4) does not take into account condition C1.

Algorithm 4: Preprocessing for conditions C2–C4

function PREPROCESS (K)
for all x 2 S : NP(x) ;
for all h = (A,B,C) 2 K do
X  A [ B [ C
R  S n X
for all x 2 A:NP(x) NP(x) [ B [ R
for all x 2 B:NP(x) NP(x) [ A [ R
for all x 2 C:NP(x) NP(x) [ R

end for
end function

Once the element x is selected and pa(x) is computed, conditions C2–C4 are checked by simply verifying that pa(x) does
not contain any element of NP(x). Hence, the filter for the partial order is described in Algorithm 5.

Algorithm 5: Checking conditions C1–C4

function CHECK–CONDS (p, i,K)
T p[1, . . . , i � 1]
x pi

Q PARENTS (x,T,K)
if NP(x) \ Q – ; then return FALSE
for all h = (A,B,C) 2 K do

if (x 2 C) ^ (Q \ A – ;) ^ (Q \ B – ;) then return FALSE
end for
return TRUE

end Function

The rest of the algorithm, which we propose here, is a standard backtracking-based search procedure, as described in
Algorithm 6, in which the symbol ; denotes an empty sequence of integers.

Algorithm 6: Main function for representability

function REPRESENT (J�)
PREPROCESS (J�)
return SEARCH (;,1,S, J�)

end function

The recursive function SEARCH incrementally tries to build an ordering p satisfying conditions C1–C4 of Theorem 2. It
returns the element ? if it fails into finding such an ordering. At the ith recursive call it attempts to choose the ith element
in p, by selecting each of the remaining variables. A simple strategy, which somehow implements the well known principle
fail first, is to choose the not already selected variable x having the largest value of jpa(x)j. For each possible variable x, the
procedure CHECK–CONDS checks whether the conditions C1–C4 are not violated by setting pi as x. In the positive case, it calls
itself until a complete ordering is obtained. If no variable can be set at the ith place of p, then the recursive call fails and a
revision of the previously chosen variables is performed (backtracking).



M. Baioletti et al. / International Journal of Approximate Reasoning 52 (2011) 2–18 15
The number of the steps of SEARCH is in the worst case exponential in n, but as already seen backtracking can perform an
early pruning on orderings. Finally, note that SEARCH can avoid at all to call BN-DRAW by storing, for each x 2 S, the sets Q
computed in the function CHECK–CONDS.

The algorithm has been implemented in C++ and has been tested, to show the potential applicative use of Theorem 2.
The experimental setting is the following: for each n = 10,15, . . . , 40 and pe = 0.2, 0.4, 0.6, 0.8 we have generated Ng = 25

random DAGs having n nodes and pe as edge occurring probability. Then, for each DAG G, REPRESENT has been called on C�,
where C is the set of the basic triples extracted from G. The expected answer is hence always positive and the obtained
graph must be equivalent [29] to G. The computer used is the same as the experiments described in Section 3. However,
the time-out was now set to 10,800 s.

Algorithm 7: Backtracking procedure

function SEARCH (p, i,V,K)
if V = ; then

return BN-DRAW (p,K)
else

for all x 2 V do
pi x
if CHECK–CONDS (p, i,K) then

G SEARCH(p, i + 1,Vn{x},K)
if G – ? then return G

end if
end for
return ?

end if
end function

In Table 4 we report for each combination of n and pe: the average number of the basic triples jCj, the average size of the
fast closure jC�j, the average time T1 to compute C�, the number of instances solved within the time-out nr and finally the
average computation time T2 spent by REPRESENT.
Table 4
Experimental result for graph searching.

n pe jCj jC*j T1 nr T2

10 0.2 8.72 67.28 0.5 25 0.03
10 0.4 8.36 29.32 0.01 25 0
10 0.6 7.56 11.76 0 25 0
10 0.8 5.48 6.0 0 25 0

15 0.2 13.76 350.76 22.1 25 17.05
15 0.4 13.44 88.56 0.17 25 0.02
15 0.6 12.36 30.68 0 25 0.01
15 0.8 9.6 10.2 0 25 0.01

20 0.2 18.84 1718 1552.53 20 31.17
20 0.4 18.48 249.36 3.7 25 0.1
20 0.6 17.48 57.16 0.02 25 0.03
20 0.8 15.08 17.12 0 25 0.07

25 0.2 23.64 1879 877.98 1 2.26
25 0.4 23.4 592.24 37.84 25 0.75
25 0.6 22.44 83.12 0.05 25 0.11
25 0.8 20.04 24.52 0 25 0.4

30 0.2 28.72 – – 0 –
30 0.4 28.44 888.12 78.47 25 0.93
30 0.6 27.36 137.84 0.18 25 0.42
30 0.8 24.96 32.2 0 25 2.05

35 0.2 33.84 – – 0 –
35 0.4 33.44 1601.28 459.44 25 13.45
35 0.6 32.68 173.92 0.23 25 1.32
35 0.8 29.92 41.0 0 25 8.83

40 0.2 38.76 – – 0 –
40 0.4 38.44 1787.08 462.72 24 51.69
40 0.6 37.8 231.48 0.5 25 4.74
40 0.8 34.6 48.48 0 25 48.85
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It is important to notice that for pe = 0.2 the procedure has been able to solve 20 instances on 25 only for n = 20, while for
higher value of n no instance was solved, except one instance for n = 25. This is only due to the time needed to compute the
fast closure: the time limit was always reached while computing C�. The reason is that for low values of pe the basic triples
have a large fast closure, while as pe increases the size of C� strongly decreases. The overall result is that search procedure
REPRESENT is faster with respect to fast closure computation, taking only a small part of the total computation time, for
sparse graphs, i.e. for pe 6 0.4. On the other hand, as the probability of edge occurrence increases, T2 becomes larger than
T1, which tends to 0.

Another aspect which would be worth to be investigated is that the computation time T2 appears to be non monotone
with respect to pe: the values for pe = 0.4 and pe = 0.8 are higher than the value for pe = 0.6. A sort of phase transition phe-
nomenon might be the explanation of this behavior. Anyway, this could be the subject of a future work.
8. Related works and conclusions

In this section we firstly provide a short survey about the problem of representing a set of conditional independencies
with a graph. In [28] the problem has been solved for undirected graphs by providing a necessary and sufficient condition
which ensures the existence of a graph representing exactly a given model. This condition requires the properties of Sym-
metry, Decomposition, Intersection and.

� if (A,B,C) 2 J then (A,B,C [ C0) 2 J for any C0 disjoint from A, B and C (Strong Union).
� if (A,B,C) 2 J then (A, {x},C) 2 J or ({x},B,C) 2 J (Transitivity).

However the representation through an undirected graph is not satisfactory because it is not able to represent ‘‘induced”
conditional dependencies, i.e. those models for which (A,B,C) 2 J but (A,B,C [ C0) R J.

The representation through a directed acyclic graph does not suffer of this specific problem, even if there are undirect
graphs which can faithfully represent conditional dependence models, that cannot be represented by DAGs. In [26] a neces-
sary condition, based on the following statements, for the representability of a model by a DAG is described: Symmetry,
Weak Union, Contraction, Intersection and.

(1) (A,B1 [ B2,C) 2 J if and only if (A,B1,C) 2 J and (A,B2,C) 2 J (Composition/Decomposition);
(2) if (A,B,C) 2 J and (A,B,C [ {c}) 2 J, then either ({c},B,C) 2 J or (A, {c},C) 2 J (Weak Transitivity);
(3) if ({a}, {b}, {c,d}) 2 J and ({c}, {d}, {a,b}) 2 J then either ({a}, {b}, {c}) 2 J or ({a}, {b}, {d}) 2 J (Chordality).

Note that the above condition (1) is a reinforcement of Decomposition rule G2.
These conditions are only necessary, as shown in [26]. Moreover, as already noticed by Pearl [26] and in Geiger’s

thesis [18] and confirmed by Studený’s paper [33], it is unlikely that the DAG representability may have a finite
axiomatization.

From the papers of Pearl and Verma [43,30], an algorithm able to verify whether a model admits a p-map has been
designed, furtherly refined in [16,32,27]. This algorithm draws an undirected graph (the so called skeleton), provides direc-
tion to some edges creating the so called v-structures, and finally selects the directions of the remaining edges according to
some suitable propagation rules, which avoid the formation of loops or other v-structures. The obtained graph is then
checked whether it is a p-map. In the negative case, it can be proved that no other graph can represent completely the
model.

Another compact way of representing conditional independencies is through annotated graphs, introduced by Paz et al. in
2000 [25] and further extended in [24], where it is provided an algorithm which checks whether the independence relations
encoded in an annotated graph can be represented through a DAG.

The problem has been faced in [15] by exploiting the presence of stable independencies [23] in the model, obtaining new
necessary conditions, which include all the semi-graphoid properties.

In our work, we provide a mathematical full characterization of sets of independence relations (closed with respect to the
graphoid properties) which can be represented through a DAG. As expected, these conditions cannot be reduced in an
axiomatic form. Indeed, Theorem 2 requires the existence of a suitable ordering among the variables, which satisfies some
conditions, strictly related to the fast closure.

As a corollary of Theorem 2 we also obtain a new characterization of perfect maps (explicitly described in the proof of the
theorem), which can be used, as an alternative way with respect to d-separation, to check whether an I-map is also a D-map.
Again, this property is expressed in terms of the fast closure.

The algorithm described in Section 7 can be improved in many ways. First of all, by using suitable data structures, we can
reduce the time needed to search variables occurring in set of triples, for instance representing J� as a bipartite graph, where
each variable is linked to the triples in which appears and each triple is linked to the variables which contains.

Moreover, the applications of some techniques, used in other constraint satisfaction problems, to the search algorithm
can be tested. Indeed, it would be possible to use more enhanced forms of backtracking and variable selection. Also the pre-
processing phase could be extended in order to exploit further information from J�.
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Finally, another point of further investigation is the integration of our approach, based on the fast closure, with the
theoretical aspects of [30,32]. Indeed, one of the most important drawbacks of Pearl and Verma’s algorithm is the need
of performing several ‘‘queries” on a given model, i.e. to check whether some triple (A,B,C) is implied by J. Even if some
of the required queries have a particular form and are computational easy, the overall cost of the algorithm is huge. In
our framework, we can exploit the fast closure as a compact representation of the closure and these queries could be
quickly solved.
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