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Abstract 

Let b(n) be the number of bipartite Steinhaus graphs with n vertices. We show that bin) 
satisfies the recurrence, b(2)=2,  b(3)=4,  and for k>~2, b(2k+ 1 ) = 2 b ( k +  1)+ 1, 
b(2k) = b(k) + b(k + 1). Thus b(n) <<, ~zn - ~ with equality when n is one more than a power of 
two. To prove this recurrence, we describe the possible generating strings for these bipartite 
graphs. 

1. Introduction 

Let T =  a~la12 . . .a~,  be an n-long string of zeroes and ones. The Steinhaus graph 

generated by T has as its adjacency matrix the Steinhaus matr ix  A = [aij], where 

I 0 if l ~ < i = j ~ < n ;  

aij =- 1 (ai-  1, j -  1 -~" ai-  1, j )  (mod 2) if 1 < i < j ~ n; 
aji if 1~< j < i ~ < n .  

The vertices of a Steinhaus graph are usually labelled by their row number.  In Fig. 1, 

the graph generated by 011000 is pictured. A Steinhaus triangle is the upper- tr iangular  
part  of a Steinhaus matrix (excluding the diagonal) and hence is generated by a string 

of length n - 1. 

Steinhaus in [11] asked if there were Steinhaus triangles containing the same 
number  of zeroes and ones and Harbor th  [8] answered this in the affirmative by 

showing that for each n, n = 0, 1 (mod 4), there are at least four strings of length n - 1 
that  generate such triangles. W a n g  [13] named these triangles after Steinhaus and 

Chang  [4] investigated the possible number  of ones in these triangles. Molluzzo [9] 

recognized that graphs could easily be made from Steinhaus triangles and proved 
several results on the complements  of Steinhaus graphs. The complements  of 
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Fig. 1. 

Steinhaus graphs were further studied in [5] and conditions and a conjecture on the 
existence of regular Steinhaus graphs were given in [1]. Brigham and Dutton [3] 

conjectured that almost all Steinhaus graphs have diameter two and this was proved 
in [2]. In [6] it was shown that a Steinhaus graph is bipartite if and only if the graph 
contains no triangles and that a bipartite Steinhaus graph has a perfect matching if 
and only if the sizes of the two sets in the partition are equal. In this paper, we 
characterize the binary strings that generate bipartite Steinhaus graphs and give 
a recurrence for the number  of such strings. 

It is not difficult to see that deleting the first row and column or the last row and 
column of a Steinhaus matrix results in another Steinhaus matrix and that the only 
disconnected Steinhaus graphs are those generated by the sequences that are all 
zeroes. Recall that any connected bipartite graph can be 2-colored in essentially only 
one way and that any subgraph of a bipartite graph is bipartite. We color our graphs 
with colors c~ and/3 and vertex 1 is always colored e. In this paper, 7/is the set of 
integers and if A _c 77, then ~i  = {x ~ A: x ~> i}. For  example, 770 is the set of 

non-negative integers, N = Z1 is the set of positive integers, and if O is the set of odd 
positive integers, then 0 3 is the set of odd positive integers larger than 1. As is usual, 
L x J is the floor of x and F x -] is the ceiling of x. We denote log2(x) by lg(x) and if T is 
a string of zeroes and ones, then T k is the string Tconcatenated with itselfk - 1 times. 
(For example, if T = 01, then T 3 = 010101.) 

We now present some facts concerning Pascal's rectangle modulo two (see Fig. 2) 
that will be needed in Section 2. The rows of the rectangle are labelled R*, R* . . . .  and 
so the kth element of R* is 0 i lk  > n and is (~_- l )(mod2) if 1 ~< k ~< n. We denote by 
Rn, k the string formed by the first k elements of R* and we set R, = R,, ,. We start with 
Lucas's theorem. 

Theorem (Lucas). L e t  p be pr ime  and  n = no + n l p  + n2p 2 + "'" + nkp k and  m =  

mo + m l p  + m z p  2 + ' ' '  + mkp k w i th  O <~ ni < p and  O <~ mi < p f o r  O <~ i <~ k. Then  

(;)  (;°) (:) (m";) 
where  (2) = 0 i f  b > a. 
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R] ---~1 0 0 0 0 0 0 
R~ ---~1 1 0 0 0 0 0 
R~ --01 0 1 0 0 0 0 
R4 --~[1 1 1 1 1 0  0 0 
R5,3---.11 0 0 ] 0 1 0 0 

1 1 0 0 1 1 0 

, , 

0 . ,  

0 . .  

0 . .  

0 . .  

0 . .  

Fig. 2. Pascal's rectangle modulo 2. 

A short  p roof  of this theorem can be found in [7] and for a visual version see [12]. 

M a n y  references to this and related results can be found in [10] but for our  purposes, 
we need only consider the case p = 2. In this case, for r ~> 0 and 0 ~< m ~< 2 r - 1, (2~ ~) 

is odd and for 0 < m < 2 r, (2~) is even. This proves the following result. 

Fact  1.1. For me  2[0 and k <~ 2", R 2 , , k  = 1 k and also, R 2 ~ + l  = 1 ( 0 2 "  1)1. 

Facts 1.2 and 1.3 follow easily from the latter part  of Fact  1.1. 

Fact  1.2. / f 2  m-I < k ~< 2", then R2m+j,k = Rs, k and so, for k fixed, Rs.k is periodic" of 
period 2". 

F a c t  1.3. For  k < 2 m, R k + 2  m ~- Rk(O2=-k)Rk and so Rk+2m ' 2 . . . .  (Rk02,,, k)2. 

Fact  1.4. For j, k s  N, R2k( 2~_ l ) + l , 2k+S  = (R1,2k) 2j. 

Proof. We use induct ion on j. By Fact  1.1, R2k+ 1 = 102k- 1 1 and so 
R 2 k + l , 2  . . . .  1 0 2 k - 1 1 0 2 k - 1  = (R1,2k) 2. But this is just Fact  1.4 w h e n j  = 1. 

N o w  assume that j > 1. Hence R2kt2s -~_  1)+ 1, 2k+s -~ = (RI ,  2k) 2 j - :  and therefore 

R2k(2s l _ 1)+ 1 z (RI, 2k) 2j-I 11. Using this and Fact  1.3 gives 

R 2 k ( 2 J  1 ) + 1 ,  2k+J ~ R 2 k + J - l + { 2 k + J - t - - 2 k + l L  2 k+ j  

= ( / 2 ~ + j _  1 _ 2 k +  1 0 2 k -  1)  2 

= ( ( R 1 , 2 k ) 2 Y '  t l 0 2 k  1)2 

= ((Rx, 2k) 2' *-l  R1 ' 2k)2 

= ((R1 ' 2k)2s-*)2 

= (R1, 2k) 2s, [ ]  
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2. Characterization of bipartite strings 

A string that generates a bipartite Steinhaus graph is called a bipartite string and 

a bipartite string T is maximal if for both 7 = 0 and 7 = 1 the string T~ obtained by 

concatenat ing 7 to the r ight-hand side of  T is not  a bipartite string. We show in this 

section that all bipartite strings are prefixes of  those of  the form Ok TJo m, where Tis  the 

first 2Dglk)7-elements of  row 2 [lg(k)7- k 4- 1 of  Pascal 's  rectangle. Note  that  this 

implies that  a bipartite string with one leading zero is of the form 01J0 ". It is also the 

case that m depends on j for i f j  is not  a power of  two, then m is at most  the largest 

power of  two dividingj  and ifj is a power of  two, then m is arbitrary. We start with the 

following lemma. 

Lemma 2.1. For k, m 677 o and j 6  03 ,  02k(R1,2k)J '2"02k÷m is a maximal bipartite 

string. 

Proof. In Fig. 3, excluding the last column, such a string is illustrated for k = 2, m = 1, 

and j = 3. We show that such a string is bipartite by showing that the vertices can be 

colored in the following way: 

color  ~: { 1 . . . . .  2 k, 2 k 4- j .  2 k + m 4- 1, . . . ,  2 k 4- J" 2 k + m 4- 2 k + m }, 

color fl: {2 k + 1 , . . . , 2  k + j . 2 k + " } .  

It is cear that the vertices {1 . . . . .  2 k} are adjacent to only those vertices colored ft. By 
Fact  1.1, row 2 k of the matrix consists of l 's  in columns 2 k + 1 to 2 k + j .  2 k ÷". Hence 

none of  the vertices colored fl are adjacent to each other. In the matrix, columns 
2 k 4- j .  2 k + m "JI- 1 to 2 k 4- j" 2 k + m 4- 2 k + m and rows 2 k + 1 to 2 k 4- j .  2 k + m are simply the 

first 2 k+" columns and j . 2  k+" rows of  Pascal 's  rectangle. By Fact  1.2, row 

2 k + j .  2 k+" 4- 1 is zero to the right of the main diagonal  and therefore, none of  the 
vertices {2 k + j .  2 k+" + 1 . . . . .  2 k + j .  2 k+" + 2 k+ '}  are adjacent to each other. 

If  a 1 were added to such a string, then the resulting vertex, say v, is one 
vertex on the triangle (2 k,2 k + 1, v) and so the string is not  bipartite. If  a 0 were 

added to the string, then the resulting vertex is adjacent to exactly the 
vertices {2 k 4- (2r -- 1 ) .2  k+m 4- i: 1 ~< r ~ ( j  + 1)/2, 1 ~< i ~ 2k+m}. Since the vertices 
{2k+ 1 . . . . .  2 k + j . 2  k+m} are all adjacent to vertex (2 k + j . 2 k + ' +  1), we have the 

triangle (v,2 k + j . 2  k + " + 1,2 k + 2 k + " + 1). Therefore, the original string is 

maximal.  [] 

Corollary 2.2. For k e N ,  m ~ Z o ,  j 6 0 3 ,  and 0 ~ < r < 2  k, the string 
02k-V(Rr+ 1, 2k) j'2m02k+m is a maximal bipartite string. 

Proof. Delete the first r rows and columns from the matrix generated by the string in 
Lemma 2.1. Subtract ing r from each vertex in the proof  of  Lemma 2.1 will give the 
corresponding proof. [] 
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Color a fl a 
000 ~ O0 0 0 0 

O0 O0 0 O0 
O0 0000 

0 0000 
1000 

0 0 0 1 1 1 0 0  
0 0 1 1 0 1 0  

0 [ 1 1 1 1  
0 0 0 0  

0 0 0  
0 0  

0 

(a) (b) 

/3 a c~ fl 
0 0 0 0 0 ! ] 1 1 1 1 1 1 1 1 1  
0 0 0 0  1 0 0 0 ] 0 0 0 0  
0 0 0  1 1 0 0 [ 0 0 0 0  
0 0 1 0 1 0 1 0 0 0 0  
0 1 1 1 1 1 0 0 0 0  
0 0 0 0 0 [ 1 0 0 ! ]  
0 0 0 0 [ 1 1 0  
0 0 0  1 0 1  
1 0 1 1 1  
1 0 0 0 0  
1 0 0 0  
1 0 0  

-6- o 

Fig. 4. 

Corollary 2.4. For k ~ t~, m ~ Zo, and for  0 <~ r < 2 k, OZk-~(Rr+ L 2k)0" is a bipartite 

strin 9. 

Proof. The proof is the same as that of the Corollary 2.2. [] 

We are now ready to state the two lemmas that characterize most bipartite 
Steinhaus graphs. For Lemmas 2.5 and 2.6, if k e I% then let K = 2 [-Ig(k)7 and 
T =  RK_k+I, g. 

Lemma 2.5. A string o f  the form OkT j" 2rooK" 2m is a maximal bipartite stirng for  j e  03  

and m ~ 270. 

Proof. This is just Corollary 2.2. [] 

Lemma 2.6. Any  strin9 of  the form OaT2JO" is a bipartite string for  any j, m ~ 2;'0. 

Proof. By Fact 4, 02k(R1, 2k)2J0 m is the same as 02k(R2k+J-2k+l, 2k+./)0 m. If 2 -- k + j  
and r = 2 ~+~ - 2 k, then this string is 02~ - r(Rr + 1,200" and hence by Corollary 2.4, the 
string is bipartite. Now the string 02k r(Rr+,, 2k)2J0 m is the result of deleting r rows 
from the matrix generated by the string 02~(R1, 2k)2dO m a n d  hence is bipartite. This 
concludes the proof since all strings of the form OkT2JOm c a n  be written as 
0 2~ - ~(Rr + l, 2x) 2i0m' [] 

We next show that the strings described in Lemmas 2.5 and 2.6 are essentially the 
only bipartite strings. 
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Lemma 2.7. I f  T is a bipartite string with one leading zero, then T i.s a prefix o]'a string 
described in the statements of Lemmas 2.5 and 2.6. 

Proof. We use induction on the number  of vertices, n. Suppose that T is an 

n-long bipartite string with one leading zero. Then the string T', resulting 

from deleting the right-most element of T, must  also be a bipartite string with one 

leading zero and hence must be a prefix of a string described in Lemmas 2.5 and 2.6. 

F r o m  both lemmas, it is easy to see that  a bipartite string with one leading zero is of 
the form 

01 ...1 0 . . . 0  ~--..--2 ~-,r---J ' 
j. 2" M 

w h e r e j ~  ©, m ~ Zo, M ~> 0, and i f j  > 1, then M ~< 2". Thus if M = 0, then Tgener -  

ates either K I . ,  1 (if the r ight-most  element of  T is an 1) or Kz, , -  2 (if the right-most 
element of T is a 0). If M > 0, then the right-most element of T must  be a 0, for 

otherwise T generates a graph with the triangle (1,2, n). By Lemma 2.5, i f j  > I and 

M = 2", then T' is a maximal bipartite string which contradicts T being a bipartite 

string. So i f j > l ,  t h e n M < 2  m a n d s o  M +  1<~2 m. [-J 

Theorem 2.8. A Steinhaus graph is bipartite if and only if it is generated by a prefix ~] 
a string described in Lemmas 2.5 and 2.6. 

Proof.  We proceed by induct ion on the number  of leading zeroes, k, in the bipartite 

strings. By inspection this is true for graphs with less than six vertices. The case k = 1 
is Lemma 2.7. Assume now that Tis  a bipartite string with k > 1 leading zeroes. Let 

G be the graph generated by T, let G' be the graph G with vertex 1 deleted, and let T' 

be the generating string of G'. There are two cases depending on whether or not k - 1 

is a power of two. 

Case 1: k - 1 is not  a power of two. Since T has k leading zeroes, T' has 2 = k - | 
leading zeroes. If K = 2 [-lg(;~)7' then by the inductive hypothesis, T' is a prefix of 

a sequence of the form O~(RK_~+ 1, K) j2m0~ where j ~ O, m ~ Yo, and M is arbitrary if 

j = 1 and M ~ K .  2" otherwise. N o w  let R' = RK ~+ 1. K and so the row preceding R' 
in Pascal 's  Rectangle is R = RK-k+1,K. Hence the first two rows of the matrix of 
G must  be prefixes of 

O0. . .OR. . .  RO.. .O 
O...OR' . . .R 'O. . .O 

k -  1 j , 2  ~ M. 

Hence T = Ok(RK_k+ 1, K) j'2mOM as desired. 
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Case 2: k -  1 is a power of two. Let 2 2 = k - 1 and so G' must  be generated by 

a prefix of a sequence of the form 

j .2 m 

2 a 2;' 2; 

0 . . . 0  1 0 . . . 0 . . . 1 0 . . . 0 ~ . _ O ,  

M 

where j E 0 ,  m ~ 77o, and 0 ~< M ~< 2 2+" if j > 1 and M is arbitrary otherwise. There 

are two subcases. The first subcase is if m = 0 and the second subcase is if m > 0 or  if 

T' is a prefix of  the sequence with M = 0. The first subcase is illustrated in Fig. 4(b) 
with k = 5 and j = 1. In this case, the graph is not  bipartite since the last 2 2 vertices 

must  be be colored with both colors, e and ft. In the second subcase, G must  be 
generated by a prefix of  0 k (Rz~,2~.~J)J2~-'O M which is 0 k (RK-k+ 1.K)J'2"-'0 M where 

K = 2 z+l. N o w  if j > 1, then 0 ~< M ~< 2 2+m = K . 2  " - l .  Hence the string is as 

described in either Lemma 2.5 or  Lemma 2.6. 

3. The number of bipartite strings 

Let b(n, 2) be the number  of bipartite strings of  length n with exactly 2 leading 

zeroes and let 

b(n) = ~ b(n, 2). 
2 = 1  

In this section we give a tight upper bound  and a recurrence for b(n). First, the 

recurrence. 

Theorem 3.1. I f  b(n) is the number of bipartite strings of length n, then b(2 )=  2, 

b(3) = 4, and for k >i 2, 

(a) b(2k + 1) = 2b(k + 1) + 1, 

(b) b(2k) = b(k) + b(k + 1). 

The proof  of this theorem divides naturaly into several lemmas, each of which 

further divides into three cases. For  the string 02TJ0 ", the cases are: 
Case 1. m > 0 a n d )  is a power of two; 

Case 2. m > 0 and j is not  a power of two; 
Case 3. m = O. 
In Case 3, the string Twill appear  ( j  -- 1)-times but it is not  necessary for the entire 

string to appear  the j th  time. Note  too  that the string may end in zeroes because 
T may  end in zeroes. 
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For  7~  {1,2,3}, let br(n, 2) be the number  of bipart i te  strings of length n with 
2 leading zeroes of the form given in Case 7- By Theo rem 2.8, for 1 ~< ), ~ n, 

b3(n,,~) = 1. (1) 

T h r o u g h o u t  the p roof  of Theo rem 3.1 we need the following result. 

Fac t  3.2. For k ~ Z2, 

[-lg(Zk - 1) 7 = [-lg(2k)],  

[-lg(2k + I)7 = [-lg(Zk)-]. 

L e m m a  3.3. For k ~ 7/z, b(2k + 1, 1) = b(k + 1, 1) + 2. 

Proof.  The  strings counted by bz(n, 1) are of  the form 01 j 2m0s where m e 2-o, J e •3 
and s~< 2". So the string 01J'2~0 ~ is counted by bz(k + 1,1) if and only if 
j . 2 "  + s + 1 = k + 1, or j . 2 "  +1 + 2s + 1 = 2k + 1. The latter occurs if and only if 
the string 0lJ'2m+102s is counted by h2(2k + 1, 1). Since 012k-~0 is also counted by 

b2(2k + 1, 1), we have 

b2(2k + 1, 1) = b2(k + 1, 1) + 1. (2) 

By Theorem 2.8, all bipart i te  strings with 1 leading zero are of the form 0 l J0 ". Hence, 
hi(n, 1) is the number  of  powers  of two not exceeding n - 2, namely  

b~(n, 1) = 1 + [_ lg(n - 2)J .  (3) 

Using (3) and Fact  3.2 gives 

b~(k+ 1 , 1 ) =  1 + [ _ l g ( k -  1)J 

= [_ lg(Zk - 2) J 

= [_ lg(Zk - 1) J 

= b~(2k + 1, 1) - 1. (4) 

To  finish the proof,  just add the appropr ia te  form of (1) to the sum of (2) and (4). E 

L e m m a  3.4. For k ~ 2-2, b(2k, 1) = b(k + 1, 1) + 1. 

Proof.  Using (3) and Fact  3.2, we have 

bl(2k, 1) = 1 + [_ lg(Zk - 2)_J 

= 1 ÷ 1 + L l g ( k -  1)J 

= 1 + bl(k + 1, 1). (5) 
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N o w  suppose  that  0 lJZm0 s ( j  E O 3, s ~< 2 m) is counted by b z(2k, 1). No te  that  m ~ 0 for 
i fm  = 0, s = 1 and 1 + j  + s = 2k, a contradict ion.  To  show that  01J'2m0 ~ is counted 
by bz(2k, 1) if and only i f01  j'2m 10t (t = (s + 1)/2) is counted by bz(k + 1,1), we must  

check to see that  1 + j .  2 " -  1 + t = k + 1 and that  t ~< 2 " -  ~. Since 1 + j .  2" + s = 2k, 
s + l = 2 ( k - j . 2 m - 1 ) ,  and so l + j . 2 m - l + t = k + l .  Now t=(s+l ) /2<~ 
(2" + 1)/2 = 2 " -  1 + ½ and hence t ~< 2 " -  1. Thus  

b2(2k, 1) = b2(k -I- 1, 1). (6) 

To  finish the proof,  just add the appropr ia te  form of (1) to the sum of (5) 
and (6). [] 

L e m m a  3.5. For k, 2 6 7]2, b(2k + 1, 2) = b(k + 1, [- 2/2 7)- 

Proof.  By Theo rem 2.8, a string is counted by bl(n,2) if and only if it has the form 
0aT2~0" with the length of T being K = 2 I-~g~)~)q. Thus n = 2 + K .  2 J + m with m >/ 1 

and j / >  0. Any j betwen 0 and l g ( ( n -  2 -  1)/K) determines exactly one string 
Ncoun ted  by bl(n,2) and all strings counted by bl(n,2) have j in this range. Hence 

bl(n, 2) = 1 + lg K 

= 1 + [ l g ( n -  2 -  1 ) -  [ lg(2)7  j 

= Llg(n - 2 - 1)J - [-lg(2)-] + 1. (7) 

Fo r  n = 2k + 1 and 2 = 2r, K/2 = 2 jIg(r)7 and so by (7), 

bl(2k + 1, 2r) = Llg((2k + 1) - 2 r -  1 ) J -  [ lg(2r )7  + 1 

= L l g ( k - r )  J +  1 - [ - l g ( r ) ~ -  1 + 1 

= ~ l g ( ( k +  1 ) - r -  1) J - J i g ( r ) - ] +  1 

= ba(k + 1,r). 

Similarly, b~(2k + 1, 2r + 1) = bl(k + 1, r + 1) and so 

ba(2k + 1,2) = b,(k + 1,[-2/2 ~). (8) 

N o w  suppose that  0~ TJ2"0~ is counted by b2(n, 2). Thus j ~ 03 ,  m ~ 7/0, the length 
of T is K = 2Vlg(2) 7, s ~< K .  2", and hence 

n - i t - K . 2 " ~ < K . j . 2 " ~ < n - 2 -  1. (9) 

Fixing n and 2 (and thus fixing K), b2(n, it) is just the number  of pairs (j ,  m) that  satisfy 
the inequalities in (9). To  show that  b2(k + 1, it) = b2(2k + 1, 2it), we need to show 
that  the pair  (j, m) is a solution to 

( k +  1 ) - i t - K . 2 " ~ < K . j . 2 " ~ < ( k +  1 ) - i t -  1, (10) 
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if and  only  if the pair  (j ,  m) is also a so lu t ion  to 

(2k + 1) - 2 2 -  K ' . 2 "  ~< K ' . j . 2  m <~ (2k + 1 ) -  2)~ - 1, (11) 

where  K '  = 2 [-1g!2)3q - -  2K. It is easy to man ipu la t e  (10) to 

(2k + 1) - 22 - K ' .  2" + 1 ~< K ' . j . 2  m <~ (2k + 1) - 22 - 1. (12) 

But K '  . j .  2 m is even and  since the lef t -hand side of(12)  is even and  one  greater  than  the 

lef t -hand side of(11), (j,  m) is a solut ion to (l 1) if and  only  i f ( j ,  m) is a solut ion to (12). 

Thus  

b2(k + 1, 2) = b2(2k + 1, 22). (13) 

If K = 2 [lgl'~lT, then 2K = 2 rlgi2~17 and  by Fac t  3.2, 2K = 2 rlgl2; I)l. Us ing  this, it is 

no t  difficult to show that  bz(k + 1, z) = ba(2k + 1, 2;~ - 1). This, a long  with (131, (8), 
and  (1), proves  tha t  b(2k + 1,2) = b(k + 1,[-)o/2]). E~ 

P r o o f  of  Theorem 3.1(a). In the second  step of  the fol lowing we use L e m m a s  3.3 

and  3.5. Fo r  k ~ 7/2, 

k 

b(2k + 1) = b(2k + 1, 2k + 1) + ~ (b(2k + 1, 2i - 1) + h(2k + 1, 2i)) 
i = 2  

+ b(2k + 1,2) + b(2k + 1, 1) 

k 

= b(k + 1, k + 1) + ~ iblk + 1, i) + blk + 1, i)) 
i = 2  

+ b ( k +  1 , 1 ) + ( b ( k +  1 , 1 ) + 2 )  

k 

= 2 - b(k + 1, k + 1 ) + 2 ~  b(k + 1, i) 
i :=1  

= 2 b ( k +  1 ) +  1. []  

L e m m a  3.6. For k, 2 ~ 7]2, b(2k, 22) = b(k, 2). 

Proof .  Us ing  (7) and  Fac t  3.2, we have 

bl(2k,  22) = L l g ( Z k -  2 2 -  1 ) J -  V18(22) - ]+  1 

= L lg(2k - 2)~ - 2) J - V 18(2) -] 

= Llg(k _ ,z _ 1)J -- [-1g(2)] + 1 

= bl(k,  )~). 

By the c o m m e n t s  fol lowing (9), bz(k, )~) is the n u m b e r  of  pairs (j,  m) that  are 
solut ions  to 

k - )~ - K . 2 "  <~ K ' . j . 2  m ~< k - 2 - 1 (14) 
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and bz(2k, 22) is the number of pairs (j, m) that are solutions to 

2 k -  2 2 -  K ' . 2 "  ~< K ' . j . 2 "  <<. 2 k -  22 - 1, (15) 

where K = 2 [-lg('l)] and K ' =  2 jIg(z))] = 2K. Multiplying (14) through by 2 almost 

yields (15) except that the right-hand side is 2k - 22 - 2. But since K'  . j .  2" must be 

even, replacing 2k - 22 - 2 by 2k - 22 - 1 does not change the number of solutions. 

Hence bz(k, 2) = bz(2k, 22). [] 

Lemma 3.7. For 1 < 2 < k, b(2k, 22 + 1) = b(k + 1,2 + 1). 

Proof. The proof of this lemma is similar to the proof of Lemma 3.6 and is 

omitted. [] 

Proof  of Theorem 3.1(h). The second step of the following uses Lemmas 3.4, 3.6 

and 3.7. For k e Y2, 
k k - 1  

b(2k)=b(2k ,  1 )+  ~ b(2k, 2 i )+  ~ b(2k, 2 i +  1) 
i = 1  i = 1  

k k - 1  

=(b(k + 1,1)+ 1)+ ~ b ( k , i ) +  ~" b(k + 1, i +  1) 
i = 1  i = 1  

= b ( k ) + b ( k +  1 ) - b ( k + l , k +  1 )+  1 

= b(k) + b(k + 1). [] 

We end this paper by exhibiting a tight upper bound for b(n). 

Theorem 3.8. For n >1 2, b(n) <. ~2n - ~ and for n = 2* + 1 (k ~ t~), b(n) = ~2n - ~. 

Proof. This is true for n = 3 and n = 4 and we proceed by induction using Theorem 
3.1. For k >7 3, 

b(2k) = b(k) + b(k + 1) 

~ < 2 ~ k - ~ + 2 ~ ( k +  1 ) - 7  

~ < ~ ( 2 k ) - 7 -  1 

~< ~(2k) - 27. 

For  k ~> 2, 

b(2k + l ) =  2b(k + l) + 1 

~<2(2~(k+ 1 ) - 2  z ) +  1 

= 5 k - 1  

=2~(2k+ 1 ) - 2  ~. 
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N o t e  t h a t  if n = 2 k + 1, t h e n  t he  o n e  i n e q u a l i t y  in  the  a b o v e  is r ea l ly  a n  equa l i t y .  T h i s  

g ives  t h e  t i g h t  u p p e r  b o u n d .  [ ]  
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