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Abstract

Let b(n) be the number of bipartite Steinhaus graphs with n vertices. We show that b(n)
satisfies the recurrence, b(2)=2, b(3)=4, and for k=2 b2k+1)=2bk+1)+1,
b(2k) = b(k) + b(k + 1). Thus b(n) < 3n — ] with equality when n is one more than a power of
two. To prove this recurrence, we describe the possible generating strings for these bipartite
graphs.

1. Introduction

Let T = ay1a12...a1. be an n-long string of zeroes and ones. The Steinhaus graph
generated by 7 has as its adjacency matrix the Steinhaus matrix A = [ai;], where

0 fl<i=j<n
aij ={(@i-1 j-1 + a;-y j)mod2) if l<i<j<m

The vertices of a Steinhaus graph are usually labelled by their row number. In Fig. 1,
the graph generated by 011000 is pictured. A Steinhaus triangle is the upper-triangular
part of a Steinhaus matrix (excluding the diagonal) and hence is generated by a string
of length n — 1.

Steinhaus in [11] asked if there were Steinhaus triangles containing the same
number of zeroes and ones and Harborth [8] answered this in the affirmative by
showing that for each n, n = 0, 1 (mod 4), there are at least four strings of length n — 1
that generate such triangles. Wang [13] named these triangles after Steinhaus and
Chang [4] investigated the possible number of ones in these triangles. Molluzzo [9]
recognized that graphs could easily be made from Steinhaus triangles and proved
several results on the complements of Steinhaus graphs. The complements of
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Fig. 1.

Steinhaus graphs were further studied in [5] and conditions and a conjecture on the
existence of regular Steinhaus graphs were given in [1]. Brigham and Dutton [3]
conjectured that almost all Steinhaus graphs have diameter two and this was proved
in [2]. In [6] it was shown that a Steinhaus graph is bipartite if and only if the graph
contains no triangles and that a bipartite Steinhaus graph has a perfect matching if
and only if the sizes of the two sets in the partition are equal. In this paper, we
characterize the binary strings that generate bipartite Steinhaus graphs and give
a recurrence for the number of such strings.

It is not difficult to see that deleting the first row and column or the last row and
column of a Steinhaus matrix results in another Steinhaus matrix and that the only
disconnected Steinhaus graphs are those generated by the sequences that are all
zeroes. Recall that any connected bipartite graph can be 2-colored in essentially only
one way and that any subgraph of a bipartite graph is bipartite. We color our graphs
with colors a« and # and vertex 1 is always colored a. In this paper, Z is the set of
integers and if A & Z, then A; = {xe A: x >i}. For example, Z, is the set of
non-negative integers, N = Z, is the set of positive integers, and if O is the set of odd
positive integers, then Q3 is the set of odd positive integers larger than 1. As is usual,
| x |is the floor of x and [ x ] is the ceiling of x. We denote log,(x) by 1g(x) and if T'is
a string of zeroes and ones, then T* is the string T concatenated with itself k — 1 times.
(For example, if 7= 01, then T = 010101.)

We now present some facts concerning Pascal’s rectangle modulo two (see Fig. 2)
that will be needed in Section 2. The rows of the rectangle are labelled R¥, R}, ... and
so the kth element of R¥ is 0 if k > n and is (}Z})(mod 2) if 1 < k < n. We denote by
R,  the string formed by the first k clements of R and we set R, = R, ,. We start with
Lucas’s theorem.

Theorem (Lucas). Let p be prime and n= ng + nyp + np* + - + mp* and m=
Mo+ myp + myp* + - +mpf with0O<n;<pand 0 < m; < p for 0< i< k. Then

() = o)) o) (3 s

where (3) =0 if b > a.
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Rt -1 00 00000
Ry 51 1.0 000 00
R -1 01 000 00
Ry »[T 1 1 1]0 0 0 0
m 5701 0 0 0

11001100

Fig. 2. Pascal’s rectangle modulo 2.

A short proof of this theorem can be found in [7] and for a visual version see [12].
Many references to this and related results can be found in [10] but for our purposes,
we need only consider the case p = 2. In this case, for r > 0and 0 < m < 2" — 1,(%,, )
is odd and for 0 < m < 2", (%) is even. This proves the following result.

Fact 1.1. For me Z, and k < 2™, Rym , = 1* and also, Rymy; = 1(077 1)1,
Facts 1.2 and 1.3 follow easily from the latter part of Fact 1.1.

Fact 1.2. If2" "' < k < 2™, then Rym+ = R, and so, for k fixed, R; , is periodic of
period 2™

Fact 1.3. For k < 2™ Ry, am = Ri(0?" M)Ry and so Ry 4 zm pm+1 = (R0¥" %),
Fact 1.4. For j, ke N, Ryai_ys1, 2005 = (Ry )%

Proof. We use induction on j. By Fact 1.1, Ry, =10""'1 and so
Raiy 1. a1 = 102711027 = (R, ,«)% But this is just Fact 1.4 when j = 1.

Now assume that j > 1. Hence Raw(zs-1-1y+1, 2¢+-1 = (Ry, 2x)*" " and therefore
Ryuzi-1~1y+1 = (Ry, 2x)¥ ' 7'1. Using this and Fact 1.3 gives

R2k<2171)+ 1, 2645 = R2k+1-1+<2k+f—1»- 2K+ 1), 2K+
= (Rzkw‘*l—zkﬁt102’(-1)2
= ((Ry, ) 771107712
= ((Ry, 2'<)2j7‘71R1. 2k)2
= ((R1.2k)2j71)2

- (Rl, zk)zj- O
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2. Characterization of bipartite strings

A string that generates a bipartite Steinhaus graph is called a bipartite string and
a bipartite string T is maximal if for both y = 0 and y = 1 the string T, obtained by
concatenating y to the right-hand side of T is not a bipartite string. We show in this
section that all bipartite strings are prefixes of those of the form 0*770™, where T'is the
first 2’80 T _elements of row 28%1_ k + 1 of Pascal's rectangle. Note that this
implies that a bipartite string with one leading zero is of the form 0190™. It is also the
case that m depends on j for if j is not a power of two, then m is at most the largest
power of two dividing j and if j is a power of two, then m is arbitrary. We start with the
following lemma.

Lemma 2.1. For k, me Z, and je Qs, 0*(R; )/ 270%™ is a maximal bipartite
string.

Proof. In Fig. 3, excluding the last column, such a string is illustrated fork = 2,m = 1,
and j = 3. We show that such a string is bipartite by showing that the vertices can be
colored in the following way:

color oz {1,..., 252k 4 j.2k¥m 4 g 2k 4 j.oktm 4 Dkam
color f: {2* +1,...,2% +j.2k*m},

It is cear that the vertices {1, ...,2*} are adjacent to only those vertices colored . By
Fact 1.1, row 2* of the matrix consists of 1’s in columns 2* 4+ 1 to 2% + j- 2¥*™ Hence
none of the vertices colored f are adjacent to each other. In the matrix, columns
2k 4 j. 2k m 4 1102k 4 j. 2k m 4 2k*mand rows 2% + 1 to 2% + j. 2¥*™ are simply the
first 2¥*™ columns and j-2*™ rows of Pascal’s rectangle. By Fact 1.2, row
2% 4 j.2k*m 4 1 is zero to the right of the main diagonal and therefore, none of the
vertices {2% +j-25*™ + 1,...,2% 4 j.2k*™ 4 2¥*™} are adjacent to each other.

If a 1 were added to such a string, then the resulting vertex, say v, is one
vertex on the triangle (2%,2* + 1,v) and so the string is not bipartite. If a 0 were
added to the string, then the resulting vertex is adjacent to exactly the
vertices {2 + (2r — 1)-2"*™ 4+ i 1 <r < (j+ 1)/2, 1 < i< 2¥*™}. Since the vertices
{2k +1,...,2% + j.2**™} are all adjacent to vertex (2* +j-2**™ 4 1), we have the
triangle (v,2% +j-2¥*™ 4+ 1,2 + 2¥*™ 4 1). Therefore, the original string is
maximal. [J

Corollary 22. For keN, meZ, jeO;, and 0<r<?2* the string
0% ""(R,+ 1, 24) 270%™ is a maximal bipartite string.

Proof. Delete the first r rows and columns from the matrix generated by the string in
Lemma 2.1. Subtracting r from each vertex in the proof of Lemma 2.1 will give the
corresponding proof. 0
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Colora f Jéj B B Jél Jel Qa
0000({1000(1000y1000{1000(1000/1000{0000 0000

000f{1100/1100}1100(1100/1100{1100{0000 0000
00/1010}101041010{1010({1010{1010{0000 0000
O1111]1111J1111f111141111{1111(0000 0000
0000 1000 0000
000 11000000
00 O 0 O 0 O 10100000

0 11110000
0000 10001000

000 11001100

00 O 0 O 0 10101010

0 11111111

0000 10000000

000 11000000

00 O O O 10100000

0 11110000

0000 10001000

000 11001100

00 O O 10101010

0 11111111

0000 10000000

000 11000000

00 O 10100000

0 11110000

0000jJ1000 1000

00011001100

00(1010 1010

0j1111 1111

00000000

0000000

000000

00000

0000

000

00

O[*—‘H’—‘P"—"—"—‘P—‘OOOOOOOOHHP—‘»—"—"—‘P—‘HOOOOOOOOOOOOC

Fig. 3.
Lemma 2.3. For k, me Z,, the string 0**(R,, ,x)0™ is a bipartite string.

Proof. Fig. 4(a)illustrates the matrix produced by such a string with k = 2 and m = 5.
The outlined blocks are the (2% x 2¥)-upper-left square of Pascal’s rectangle. It is clear
that coloring the blocks of vertices with alternate colors gives a 2-coloring of the
graph. O
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Colora f a B a a B8
0000{1000|0000 O 00000f11111111
000/1100/0000 0 0000[1000}0000
ool1o10lo000 0 000[1100[{0000
0[1111|0000 0 00{1010|0000
0000{1000]0 0/1111|0000
000|1100{0 0000({1000
00l1010]/0 000/1100
ol1111}0 00/1010
0000]1 0l1111
0001 0000
00]|1 000
0|1 00
0 0

(a) 0 (b)

Fig. 4.

Corollary 2.4. For ke N, me Z,, and for 0 < r < 2*, 027"(R, . . ,«)0" is a bipartite
string.

Proof. The proof is the same as that of the Corollary 2.2. O

We are now ready to state the two lemmas that characterize most bipartite
Steinhaus graphs. For Lemmas 2.5 and 2.6, if ke N, then let K = 2Me T and
T=Rg i+ 1,K-

Lemma 2.5. A string of the form 0T 2" 0% 2" is a maximal bipartite stirng for je O,
and meZ,.

Proof. This is just Corollary 2.2. [
Lemma 2.6. Any string of the form 0*T*0™ is a bipartite string for any j, m e Z,.

Proof. By Fact 4, 02"(R; ,«)¥’0" is the same as 02(Ryu+; gy 1 g4+)0" If A=k +j
and r = 2¥*J — 2* then this string is 0" ~"(R, , 1 ,)0™ and hence by Corollary 2.4, the
string is bipartite. Now the string 02 "(R, , ;. ;x)*’0™ is the result of deleting r rows
from the matrix generated by the string 02“(R; ,«)?’0™ and hence is bipartite. This
concludes the proof since all strings of the form 0*7%0™ can be written as
0 ~"(R, 1 1 2)¥0" O

We next show that the strings described in Lemmas 2.5 and 2.6 are essentially the
only bipartite strings.
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Lemma 2.7. If T is a bipartite string with one leading zero, then T is a prefix of a string
described in the statements of Lemmas 2.5 and 2.6.

Proof. We use induction on the number of vertices, n. Suppose that T is an
n-long bipartite string with one leading zero. Then the string 77, resulting
from deleting the right-most element of 7, must also be a bipartite string with one
leading zero and hence must be a prefix of a string described in Lemmas 2.5 and 2.6.
From both lemmas, it is easy to see that a bipartite string with one leading zero is of
the form

01---1 0---0
H_J

where je O, me Zy, M > 0, and if j > 1, then M < 2™. Thus if M = 0, then T gener-
ates either K, ,_ (if the right-most element of Tis an 1) or K, ,_, (if the right-most
element of 7 is a 0). If M > 0, then the right-most element of 7" must be a 0, for
otherwise T generates a graph with the triangle (1,2,n). By Lemma 2.5, if j > | and
M = 2" then T is a maximal bipartite string which contradicts 7 being a bipartite
string. So if j > 1,then M < 2™ and so M + 1 < 2™ []

Theorem 2.8. A Steinhaus graph is bipartite if and only if it is generated by a prefix of
a string described in Lemmas 2.5 and 2.6.

Proof. We proceed by induction on the number of leading zeroes, k, in the bipartite
strings. By inspection this is true for graphs with less than six vertices. The case k = |
is Lemma 2.7. Assume now that 7 is a bipartite string with k > 1 leading zeroes. Let
G be the graph generated by T, let G’ be the graph G with vertex 1 deleted, and let 7"
be the generating string of G'. There are two cases depending on whether or not k — |
1s a power of two.

Case 1: k — 11s not a power of two. Since T has k leading zeroes, 7" has A =k — |
leading zeroes. If K = 2Me@ 1 then by the inductive hypothesis, 7" is a prefix of
a sequence of the form 0*(Rx _ ;4 k)’ >0 where j € O, me Z,, and M is arbitrary if
j=land M < K-2" otherwise. Now let R’ = Rg_ ;. g and so the row preceding R’
in Pascal’s Rectangle is R = Rg_;+,, x. Hence the first two rows of the matrix of
G must be prefixes of

00---OR---RO---0
0---OR ---R0---0

Hence 7= 0*(Rx_x+1. k)’ 20 as desired.
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Case 2: k — 1is a power of two. Let 2* = k — 1 and so G’ must be generated by
a prefix of a sequence of the form

j.2m
2). o 2/‘. A 2/1 N
—r "~
0.0 10--:0---10---0 0.--0 ,
-

M

where je O,me Z,,and 0 < M < 2**™if j > 1 and M is arbitrary otherwise. There
are two subcases. The first subcase is if m = 0 and the second subcase is if m > 0 or if
T’ is a prefix of the sequence with M = 0. The first subcase is illustrated in Fig. 4(b)
with k = 5 and j = 1. In this case, the graph is not bipartite since the last 2* vertices
must be be colored with both colors, @ and f. In the second subcase, G must be
generated by a prefix of 0¥ (Ry: 5:+1)" %" O™ which is 0% (Rg_; 4, k)2 0™ where
K =2**!1 Now if j>1, then 0 < M <2**™ = K.2™"1 Hence the string is as
described in either Lemma 2.5 or Lemma 2.6.

3. The number of bipartite strings

Let b(n, 1) be the number of bipartite strings of length »n with exactly A leading
zeroes and let

b(n) = 2": b(n, 2).
i=1

In this section we give a tight upper bound and a recurrence for b(n). First, the
recurrence.

Theorem 3.1. If b(n) is the number of bipartite strings of length n, then b(2) =2,
b(3) =4, and for k = 2,

@) bk + 1) = 2b(k + 1) + 1,
(b) b(2k) = b(k) + b(k + 1).

The proof of this theorem divides naturaly into several lemmas, each of which
further divides into three cases. For the string 04770™, the cases are:

Case 1. m > 0 and j is a power of two;

Case 2. m >0 and j is not a power of two;

Case 3. m=0.

In Case 3, the string 7 will appear (j — 1)-times but it is not necessary for the entire
string to appear the jth time. Note too that the string may end in zeroes because
T may end in zeroes.
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For ye{1,2,3}, let b,(n,4) be the number of bipartite strings of length n with
2 leading zeroes of the form given in Case 7. By Theorem 2.8, for | < 4 < n,

ba(n, ) = 1. (1)

Throughout the proof of Theorem 3.1 we need the following result.

Fact 3.2. For ke Z,,
[1g(2k — 1) ] = 1g(2k) ],
[1g(2k + 1) =[1g(2k)].

Lemma 3.3. For ke Z,, b(2k + 1,1) = b(k + 1,1) + 2.

Proof. The strings counted by b,(n, 1) are of the form 017°2"0° where me Z,, je O5,
and s< 2™ So the string 017°270° is counted by b,(k + 1,1) if and only if
j-2"+s+1=k+1,0rj-2""" 4+ 25+ 1 = 2k + 1. The latter occurs if and only if
the string 01772”7702 is counted by b,(2k + 1,1). Since 01210 is also counted by
b,(2k + 1,1), we have

by(2k + 1,1) = botk + 1,1) + 1. (2)

By Theorem 2.8, all bipartite strings with 1 leading zero are of the form 01/0™. Hence,
bi(n, 1) is the number of powers of two not exceeding n — 2, namely

biin,} =1+ lgn—2)]. (3)
Using (3) and Fact 3.2 gives
btk +1,1)=1+|lgk— 1) |

= 1g(2k - 2) ]
= [lg@k — 1) ]
=b,2k+1,1)—1. (4)

To finish the proof, just add the appropriate form of (1) to the sum of (2) and (4). [-
Lemma 3.4. For ke Z,, b(2k,1) = b(k + 1,1) + 1.
Proof. Using (3) and Fact 3.2, we have

b2k, 1)=1+ | 1g2k —2) |

=1+ 1+|lgk—1)]
1+ by(k + 1,1). (5)
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Now suppose that 01/°2"0°(j € O3, s < 2™)is counted by b,(2k, 1). Note that m # 0 for
if m=0,s=1and 1+ j+ s = 2k, a contradiction. To show that 01/"2"0* is counted
by b,(2k, 1) if and only if 012" '0¢ (t = (s + 1)/2) is counted by b,(k + 1,1), we must
check tosee that 1 +j-2™"! + t =k + 1 and thatt < 2™~ ! Since 1 + j-2™ + s = 2k,
s+1=2(k—j-2"""), and so 1+j-2" ' +t=k+1. Now t=(s+1)2<
(2™ 4+ 1)/2=2""! 4} and hence t < 2"~ !. Thus

by(2k, 1) = by(k + 1,1). 6)
To finish the proof, just add the appropriate form of (1) to the sum of (5)
and (6). [
Lemma 3.5. For k, Ae Z,, b2k + 1,4) = b(k + 1,] 4/2)).

Proof. By Theorem 2.8, a string is counted by b,(n, 1) if and only if it has the form
0*T%'0™ with the length of T being K = 218" 1 Thus n = A+ K -2/ + m with m > 1
and j> 0. Any j betwen O and lg((n — 4 — 1)/K) determines exactly one string
Ncounted by by(n, 1) and all strings counted by b,(n, 4) have j in this range. Hence

by(n, Ay =1 +t1g<"_;<;”

=1+[lgn—4—1)—[lg)7]
=llgr—4i—-1D]-Tlg) ]+ L ™
For n =2k 4+ 1 and 1 = 2r, K/2 = 218" Tand so by (7),
bi(2k + 1,2r) = | lg(Rk + 1) = 2r — 1) | —[1g2n) ]+ 1
=[lgk=n |+ 1-Tlgr)T-1+1
=|lgk+H—r—1|-Tlgr)]+1
=by(k + 1,7).
Similarly, b, (2k + 1,2r + 1) =b;(k + 1,r + 1) and so
bi(2k + 1,2) = by(k + 1,[ 4/27). 8)

Now suppose that 0*77°2"0% is counted by b,(n, ). Thus j € O3, m € Z,, the length
of Tis K =28@1 g < K.2™ and hence

n—A—K-2"<K-j2"<n—4—1. ©)

Fixing n and 4 (and thus fixing K), b,(n, 1) is just the number of pairs ( j, m) that satisfy
the inequalities in (9). To show that b,(k + 1, 2) = b,(2k + 1, 24), we need to show
that the pair (j, m) is a solution to

k+1)—A—K-2"<K-j-2"<tk+1)—A—1, (10)



W.M. Dymacek, T. Whaley | Discrete Mathematics 141 (1995 95-107 105

if and only if the pair (j, m) is also a solution to

2k+1)=2A-K - 2"< K -j-2"< 2k + 1) - 24 — 1, (11)
where K’ = 21’8291 = 2K Tt is easy to manipulate (10) to

RE+1D)=2A—-K 2"+ 1 <K' j-2"< 2k + 1) — 24— 1. (12)

But K'-j-2™is even and since the left-hand side of (12) is even and one greater than the
left-hand side of (11), ( j, m) is a solution to (11) if and only if ( j, m) is a solution to (12).
Thus

bytk + 1, A) = by (2k + 1, 2/). (13)

If K = 2M"8@W1 then 2K = 27829 Tand by Fact 3.2, 2K = 282/~ D] Using this, it is
not difficult to show that b,(k + 1, 4) = b,(2k + 1, 24 — 1). This, along with (13), (8),
and (1), proves that b2k + 1,A) = bk + 1,[ 427). O

Proof of Theorem 3.1(a). In the second step of the following we use Lemmas 3.3
and 3.5. For ke Z,,

b2k + 1) = b2k + 1,2k + 1) + i(b(zk + 1,2i — 1) + b(2k + 1, 2i))
i=2
+ b2k + 1,2) + b2k + 1,1)
=bk+ 1L, k+1) ib(lﬁ-l )+ blk + 1.0)
+bk+ L)+ Bk+1,1)+2)

k
=2—btk+1Lk+1)+2) bk+1,0)

i=1

=2k+1)+1. O
Lemma 3.6. For k, 4 € Z,, b(2k, 2)) = b(k, ).

Proof. Using (7) and Fact 3.2, we have
b (2k,24) = 1gRk — 24— 1) |—-[1g(2h) ]+ 1
= [1g@k — 24— 2) |~ Tlg() ]
=Llgtk— i~ 1) ]—Tlg@) ]+ 1
= by(k, A).

By the comments following (9), b,(k, 4) is the number of pairs (j, m) that are
solutions to

k—A-K2"<K'j-2"<k—1-—1 (14)
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and b,(2k, 24) is the number of pairs (j, m) that are solutions to
2k—2 - K' - 2"< K'-j-2"< 2k — 24— 1, (15)

where K = 2/'8W7 and K’ = 21’82V 1= 2K Multiplying (14) through by 2 almost
yields (15) except that the right-hand side is 2k — 24 — 2. But since K’ -j - 2™ must be
even, replacing 2k — 24 — 2 by 2k — 21 — 1 does not change the number of solutions.
Hence b,(k, A) = b,(2k,24). O

Lemma 3.7. For 1 < A<k, b(2k,24 + 1)=bk + 1, A + 1).

Proof. The proof of this lemma is similar to the proof of Lemma 3.6 and is
omitted. [

Proof of Theorem 3.1(b). The second step of the following uses Lemmas 3.4, 3.6
and 3.7. For ke Z,,
k-1

k
b(2k) = b2k, 1) + 3 b(2k,2i) + 5 b(2k,2i + 1)

i=1 i=1
k k—1

=bk+ L)+ D+ Y bki)+ ¥ blk+1,i+1)

i=1 i=1
=bk)+bk+1)—blk+1,k+1)+1
=bk)+ bk +1). O
We end this paper by exhibiting a tight upper bound for b(n).
Theorem 3.8. For n > 2, b(n)<3n—3 and for n=2*+ 1 (keN), b(n) = 3n — 3.
Proof. This is true for n = 3 and n = 4 and we proceed by induction using Theorem
3.1. For k = 3,
b(2k) = b(k) + b(k + 1)
<3k—F+3k+1)—-3
k) -2 —1
(2k) —

<

Ny
N N

N
o

For k=2,
bk + 1) =2bk + 1) + 1
<28k+1DH-3)+1
=5 —1
=302k + 1) -1
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Note that if n = 2% + 1, then the one inequality in the above is really an equality. This
gives the tight upper bound. [J
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