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Abstract 

We investigate the Tutte polynomial f(P; t, z) of a series-parallel partially ordered set P. We 
show that f(P) can be computed in polynomial-time when P is series-parallel and that 
series-parallel posets having isomorphic deletions and contractions are themselves isomorphic. 
A formula forf’(P*) in terms off(P) is obtained and shows these two polynomials factor over 
Z[t, z] the same way. We examine several subclasses of the class of series-parallel posets, 
proving thatf(P) #f(Q) for non-isomorphic posets P and Q in the largest of these classes. We 
also give excluded subposet characterizations of the various subclasses. 

Kevwords: Tutte polynomial; Series-parallel poset 

0. Introduction 

The Tutte polynomial is a two-variable which has been defined and studied in 
depth for graphs and matroids. An extensive introduction to the theory can be found 
in [2]. Recently, this definition has been extended to greedoids [7], and examined in 
detail [6] for partially ordered sets (posets), which form a class of greedoids. This 
paper continues the study begun in [6], concentrating especially on series-parallel 
posets and various subclasses of series-parallel posets. 

Series-parallel posets (denoted SP posets) form an attractive class of posets because 
their recursive structure permits many polynomial-time algorithms. For example, 
although scheduling problems are NP-complete for arbitrary partial orders, efficient 
algorithms exist if the partial order is an SP poset. Further, Valdes et al. [14] show 
there is a linear-time algorithm for recognizing whether a given poset belongs to the 
class SP. Many other authors have considered SP posets for a variety of purposes. For 
example, Stanley [12] uses P6lya’s Theorem to get a generating function for the 
number of SP posets on n elements. In a different direction, let N(P) be the number of 
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order ideals in P and let N(x) be the number of order ideals in P which contain x. Then 
Faigle et al. [S] show that searching in SP posets for an element x with 
a < N(x)/N(P) d 2 (the best possible bound) can be done efficiently, while Provan and 
Ball [lo] show that even determining N(P) is #P-complete for an arbitrary poset. 

In this paper, we show that SP posets are well-behaved with respect to the Tutte 
polynomial in several respects. In Section 1, we show that computing the polynomial 
f(P) can be done in polynomial-time for an SP poset P, but the problem of computing 
the simple evaluation of f(P) at t = 1, z = 0 is #P-complete (in the sense of 
Valiant [15]) for an arbitrary poset P (Proposition 3). The other main result of that 
section (Theorem 8) shows that two SP posets P and Q with P/x 2 Q/y and 
P - Z*(x) r Q - Z*(y) must have P z Q. (P/x and P - Z*(x) correspond to contrac- 
tion and deletion, familiar operations in matroid and greedoid theory but not in poset 
theory.) 

In Section 2, we derive a formula relatingf(P) tof(P*), where P* is the dual of P. As 
an application of the formula, we immediately get that f(P) is an irreducible poly- 
nomial precisely whenf(P*) is. We then consider several subclasses of SP posets, with 
the main result (Theorem 15) that, for one of these classes,f(P) is a complete invariant 
in the sense that non-isomorphic posets P and Q in the class havef(P) #f(Q). We also 
give (Proposition 17) excluded subposet characterizations of each of the classes. 

We now recall a few definitions we will need. See Stanley [13] or Rival [l l] for 
more details. Let P be a poset and let I c P. Then I is an order ideal if whenever x E I 
and y < x, then y E I. For S c P, define the rank of S, denoted r,(S) (or simply r(S)) as 
follows: 

r,(S) E max { 1 II : Z is an order ideal]. 
ILS 

The Tutte polynomial of P is defined by 

f(P; t, z) = c tlPl - r(S)ZISI - cv 

SLP 

The definition of rank comes directly from greedoid theory. See [l] for details. We 
now recall several elementary poset operations. 

Direct sum: P + Q is a poset on PuQ with x d y in P + Q if either 
(a) x,yEPandx,<yinPor 
(b) x,yEQandxdyinQ. 

Ordinal sum: P @ Q is a poset on PuQ with x < y in P @ Q if either 
(a) x, YEP and x d y in P or 
(b) x,y~QandxdyinQor 
(c) XEP and YEQ. 

Ordinal product: P 0 Q is a poset on {(x, y): x E P and y E Q} with (x, y) 6 (x’, y’) in 
P@Qif 

(a) x = x’ in P and y < y’ in Q or 
(b) x < x’ in P. 
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We let 1 be the one-element poset. A poset is a series-purallel poset if it can be built up 
recursively from 1 by using the operations of direct sum and ordinal sum. The Hasse 
diagrams of the posets formed by the above operations can all be obtained from the 
Hasse diagrams of P and Q by straightforward techniques. The reader can consult 
[13] or work out the details directly. Finally, the lluul P* of a poset P is obtained by 
flipping the Hasse diagram of P, i.e., x < y in P* iff y < x in P. 

If A is an antichain in a poset P, let Z(A) and Z*(A) be the order ideal and order filter, 

respectively, generated by A. Further. we let Z(A) and Z*(A) be the ideal and filter 
strictly generated by A, respectively. Thus 

Z(A) = (.YEP: x < y for some yEA), 

Z*(A) = (xEP: x > y for some JJEA~, 

Z(A) = [-YE P: x < y for some J‘E Al 

Z*(A) = (xEP: x > y for some YEA). 

We remark that I can be regarded as a bijection between the set of all antichains of 
P (which we denote A(P)) and the set of all order ideals. I* gives a bijection between 
A(P) and set of all order filters. For ease of notation, we will write Z(x), Z*(X), etc. for 
Z({xj), Z*({X)), etc. when A = {x). The next proposition is proven in [6]. 

Proposition A (Proposition 2.3 [6]). Let P be a poset and P* be the dual of P. Then 

(a) f’(P;t,z) = c tl’*(4(Z + 1)lI’ol 
A GA(P) 

and 

(b) f(P*; t,z) = c t”(A)‘(z + l)“‘A)‘. 
AC/d(P) 

(In part (b), Z(A) and Z(A) are computed in P, not P*.) 

Thus, we can interpret the polynomialf(P) as a generating function for the number 

of ordered pairs ((Z*(A)l, lZ*(A)I) f or all antichains A in the poset. For the rest of this 
paper, we will set y = (z + 1) in f (P) to simplify notation. 

One of the most useful features of the Tutte polynomial of a greedoid is the 
recursive deletion-contraction formula (Proposition 3.2 of [‘7]) it satisfies. Another 
result we will need concerns the application of this formula tof(P). If x is minimal in 
P, then define P/x to be the poset on the set P - (x} with the inherited partial order, 
i.e., the induced subposet on P - ,x1 ’ t. Similarly, define the poset P - Z*(x) to be 
simply the induced subposet on the set P - Z*(X). (In terms of the greedoid G(P) 
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associated to the poset P, P/x corresponds to the contraction in G(P) and P - Z*(x) 
essentially corresponds to deletion. See [6] for more details.) 

Proposition B (Proposition 2.4 and Corollary 2.6 in [6]). Let x be minimal in a poset 
P. Then 

(a) f(P; t, y) =f(P/x; t, y) + tir*cx)iylr*(s)l ~ If(P - Z*(X); t, y) 
(b) f(P*; t, y> = (ty)f((P/x)*; t, y) + (1 + t - ty)f((P - I*(x))*; t, y). 

1. Series-parallel posets 

We begin by recalling the behavior of the polynomial under direct sum and ordinal 
sum. 

Proposition 1 (Proposition 4.1 [6]). Let P and Q be two pose& 
(a) Direct sum:f(P + Q) =f(P)f(Q); 
(b) Ordinal sum: f(P 0 Q) =f(Q) + (ty)lQf(f(P) - 1); 

Example 2. Consider the poset P of Fig. 1. The reader can check that 
f(P) = (t + 1)’ + 2t2(t + 1)y + t4y2 + t4(t + 1)~~. We claim that there is no SP poset 
Q withf(P) =f(Q). To see this, we note that such a poset Q must have five elements, 
2 which are maximal and 2 which are minimal. Furthermore,f(P) is irreducible over 
Z[t, y], which rules out SP posets which are direct sums. The only SP poset which 
meets these requirements is the poset Q shown in Fig. 1. But Q has only two 2-element 
antichains and P has five 2-element antichains, sof(P) #f(Q). 

Several authors (e.g., [4, 5, 8, lo]) have recently considered questions of computa- 
tional complexity with respect to computing the Tutte polynomial and various 
evaluations of the Tutte polynomial for graphs and certain classes of matroids. For 
example, Colbourn et al. [4] show that when M is transversal matroid, computing the 
Tutte polynomial T(M; t, z) at the point (a, b) in the (t, z) plane (in which a and b are 
algebraic numbers) is # P-complete unless ab = 1, in which case it is polynomial-time 
computable. Proposition 3(a) shows that the computation off(P) is polynomial-time 
for an SP poset P, while Proposition 3(b) shows that it is unlikely that an efficient 
algorithm exists for computingf(P) for an arbitrary poset P. 

X 
Fig. 1 
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Proposition 3. (a) If P is a series-parallel poser, then the polynomial f (P; t, y) can be 
computed in polynomial-time. 

(b) Evaluating f (P; t,y) at t = 1, y = 1 is # P-completefor a general poset P. 

Proof. (a) As in the proof of Theorem 3 of [S], we first find a decomposition tree for 
P in polynomial-time using the recognition algorithm of Valdes et al. [14]. (A 
decomposition tree is a binary tree in which the internal nodes are labeled either S or P, 
corresponding to the operations of either ordinal sum (series) or direct sum (parallel), 
and the external nodes are labeled by the elements of the poset P. Clearly, such a tree 
completely determines P.) Using the decomposition and the recursive formulas from 
Proposition 1, we can easily compute f (P; t, y) in polynomial-time. 

(b) From Proposition A(a), we have f (P; t, y) evaluated at t = 1, y = 1 equals the 
number of order filters in P. From Provan and Ball [lo], the problem of computing 
this invariant is # P-complete. ??

We can view the computation off(P) from the decomposition tree as a recursive 
characterization of the class of polynomials f (t, y) which can occur as the polynomial 
of an SP poset. We omit the intermediate proof of the next result. 

Proposition 4. Let F G Z[t, y] be de$ned recursively by: 
(i) (t + 1)~ F; 

(ii) .f gEF*fgeF; 
(iii) f; gE F *f + (ty)“(g - 1)~ F, where n is the t-degree off; 

Then F is precisely the set of polynomials which can occur as f (P) for an SP poset P. 

From Proposition 1, it is easy to compute f (P + Q) or f (P 0 Q) from the poly- 
nomials f (P) and f (Q). It is natural to ask if it is possible to reverse either of these 
operations, i.e., can we determine f (P) and f (Q) f rom eitherf(P + Q) orf (P @ Q)? We 
say a poset P is direct sum irreducible if it cannot be written as the direct sum of two 
non-empty posets. Similarly, P is ordinally irreducible if it cannot be written as the 
ordinal sum of two non-empty posets. Example 3.1 of [6] shows that 

f(N) =f(f-) 
so it is not possible to determine f (P) and f (Q) from f (P + Q), even when P and Q are 
direct sum irreducible. (Of course, given f (P + Q), it is always possible to find some 
posets P’ and Q’ such that f (P’ + Q’) = f (P + Q) by simply factoring f (P + Q) over 
Z[t, y] and then finding appropriate posets P’ and Q’ by exhaustive search.) In 
contrast with this example, Proposition 6 shows that it is possible to determine f (P) 
and f(Q) from f(P 0 Q) when P and Q are ordinally irreducible. We begin with 
a lemma. 

Lemma 5. A poset R is an ordinal sum of two non-empty posets if and only if there is 
some positive integer k < (RI such that there is exactly one order ideal of size k in R. 
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Proof. First suppose R = P @ Q for some non-empty posets P and Q. Then there is 
only one order ideal in R of size IPI, since any order ideal of P @ Q which includes 
some element of Q must include all of P. Conversely, if there is only one order ideal 
I of size k for some 0 < k < IRI, then we claim R r I @ (R - I), where R - I 
represents the subposet induced by the complement of I in R. To show this, it suffices 
to show that every element of I is less than every element of R - I, where all 
comparisons are made in R. If this were not true, then there must be an incomparable 
pair (x, y) with x~l and ye R - I, and we may take x to be maximal in I and y to be 
minimal in R - I. Then the set Iv(y) - { j x IS a so an order ideal in R of size k, 1 
contradicting the assumption. 0 

Proposition 6. Suppose P and Q arc ordinally irreducible posets. If f (R) = f (P @ Q) 
for some poset R, then R = P’ @ Q’ \vheref(P) =f(P’) andf(Q) =f(Q’). 

Proof. Expand the evaluation off(R; t, y) at y = 1 as a polynomial in t: 

q,t’R’+ a,~,-lP-l + ... + a,t + 1. 

By Proposition A(a). ai is the number of order ideals in R of size (R 1 - i. From Lemma 
5 and the fact that f(R) =f(P 0 Q), we get alQl = 1. Furthermore, the ordinal 
irreducibility of P and Q implies aiQl is the unique coefficient equal to 1 (whose index is 
strictly between 0 and 1 RI) inf(R; 1, l), i.e., if ak = 1 for some 0 < k < 1 R(, then k = 1 Q I. 
Applying the lemma again, we find that R = P’ @I Q’ for some posets P’ and Q’ and 
IQ’1 = IQI. From Proposition 1, we now have 

.f(R) =f(Q) + (tdQ'(fV') - 1) =f(Q') + hdQ"W") - 1). 
Since IQ’1 = IQ1 and the term of highest r-degree appearing in bothf(Q) andf(Q’) is 
tlQI, and the term of lowest t-degree appearing in both (ty)‘Q’(f(P) - 1) and 
(ty)iQ’l(f(P’) - 1) is tlQl + t, we getf(P)=f(P’) andf(Q)=f(Q'). 0 

We can generalize Proposition 6 as follows. Supposef(P) =f(P, @ P2 0 ... 0 P,) 
where each Pi is ordinally irreducible. Then P = Q1 @ Q2 @ .‘. @Q,,, where 
,f(Pi) =f(Qi) for each i. Thus, we can uniquely determinef(P,) for each i fromf(P). 

In Example 3.1 of [6], one poset is an SP poset and the other is not. (See the 
comments preceding Lemma 5.) Hence it is possible for ME F with P not an SP 
poset. Thus,f(P) does not distinguish the class of SP posets among the class of all 
posets. 

We will need the next characterization of SP posets, which is well known. 

Theorem 7 (Theorem 1 [14]). P is an SP poset fund only ifP has no induced subposet 
isomorphic to r\I. 

Proposition B can be used in the following way to construct non-isomorphic posets 
P and Q with f(P) =f(Q). Beginning with a poset R, we create posets P and Q by 
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adding a new minimal element x or y. respectively, to R in such a way that 
P/.Y = R = Q/y and also P - I*(x) z Q - I*(y). In fact, all known (minimal) such 
pairs P and Q are formed this way. The next theorem shows that this technique will 
not produce such a pair when both posets are SP. 

Theorem 8. Suppose P und Q are SP posets und, ,for some minimal x E P and y E Q, 
P - l*(x) = Q - l*(y) and P/s 2 Qiy. Then P 2 Q. 

Proof. We proceed by contradiction. supposing that the pair (P, Q) is a minimum size 
counterexample, i.e., with 1 PI = IQ1 as small as possible. 

Case 1: P is direct sum irreducible. Then P = PI @ Pz for some SP posets PI and 
P,, where we may assume PI is ordinally irreducible. Since_/“(P) =f(Q), it follows from 
Proposition 4 that Q = Qr @ Qz for some SP posets Qr and Qz, (PiI = IQil and Q, is 
also ordinally irreducible. 

Now PI/s @ P2 = Pjs z QJ~ = QI/y @ Qz, so PI/.x 2 Q1/y and P2 z Qz. 
Similarly. P, - I*(x) = P - I*(x) z Q - I*(y) = Q1 - I*(y), so PI - I*(x) z 
Q, - I*(y). Since P and Q were chosen to be a minimal counterexample, we must 
have PI E Q1. Thus, P 2 Q, which completes this case. 

Case 2: P can be written as a direct sum of smaller posets. Then Proposition 4 and 
the facts thatf(P) =f(Q) and P = PI + ... + Pk with k > 2 (and each Pi is direct sum 
irreducible) together imply that Q = Qr + ... + Q,! with n 3 2 (and each Qj is direct 
sum irreducible). (Otherwise. Q is the ordinal sum of two SP posets, which, by 
Proposition 4, forces P to be an ordinal sum.) By minimality of the counterexample, 
we may assume no Pi is isomorphic to any Q,i for 1 < i < k and 1 6 j < n. We also 
order these posets so that .X E PI and J‘ E Q,. 

Since P/.x z Q/J,, P/s = PI/x- + P2 + ... + Pk and Q/y = Q,/y + Q2 + ... + Q,,, 
wemusthaveP,/xrQ,+...+Q,+RandQ,/y~P,+...+P,+Rforsome 
SP poset R. Similarly, we also have PI - I*(s) z Qz + ... + Qn + S and 
Q, - I*(y) E P, + ... + Pli + S for some SP poset S. Furthermore, R # 8. since 
IP~/.YI = IRI + CS=2IQjl, IP, -Zig = ISI + ~,J=2IQjI and lPl/‘~l > IPI -Zig. 
Now .x cannot be the unique minimal element in PI, since this would force 
PI - I*(x) = 8. Thus there is some element z E P, such that Y and z are incomparable. 
We may assume z is in the component of P,/x which is isomorphic to Qz and that I is 
minimal in PI (or else we could replace z by any minimal element which it is greater 
than). Since Q2 cannot be written as a direct sum, we must have Qz = A @ B, so 
- corresponds to an element of A. Let u correspond to an element of B( # G), so x < u ‘. 
and z < U. Finally, let 1) > s be any element of PI which is in the component of P,/x 
isomorphic to R ( # 8). Note that c is incomparable with u and with z since it is not in 
the component of PI/.x which is isomorphic to Q1. Then in P,, we have the following 
inequalities: s < U, x < c. z < K and (.x, z), (u, c) and (z. tl) all form incomparable pairs. 
Thus these four elements form PJ as an induced subposet. which contradicts the fact 
that P is an SP poset (Theorem 7). This completes the proof. 0 
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Our final result in this section is also a negative result on constructing non- 
isomorphic SP posets P and Q withf(P) =f(Q). We omit the proof. 

Proposition 9. If f((A 0 B) + (C 0 D)) = f((A 0 D) + (C @ B)) if and only if 

f(A) =f(C) orf(B) =f(W 

2. Duality and subclasses of series-parallel posets 

Theorem 4.5 of [6] shows thatf(P*) can be determined fromf(P), but does not give 
an algebraic connection between these two polynomials. We give such a formula now; 
we will need (a corollary of) this result when we examine subclasses of SP posets 
below. 

Theorem 10. If P is a poset with n elements, then 

m*; 6 Y) = @Y)"f ( p; l + 1,- ty > 1 + :_ ty > . 

Proof. For convenience, set a = (1 + t - ty)/(ty) and set b = (1 + t - ty)- I. We use 
induction on n. If n = 1, then f(P) =f(P*) = t + 1. From the formula, we get 
f(P*) = (ty)(a + 1) = t + 1, so the formula holds. 

Now assume the formula is valid for all posets on n - 1 elements for n 2 2. By 
proposition B(b), we have 

f(P*; t, Y) = (~Y)fwx)*; f, Y) + (1 + t - ty)f((P - I*(x))*; t, Y). 

By induction, we can write 

f((Plx)*; t, Y) = by)“- ‘f (P/x; a, b) 

and 

f((P - Z*(x))*; t, y) = (ty)” ~ “*(l)lf(P - Z*(X); a, b). 

Thus, 

f(P*; t, y) = (ty)“‘(P/x; a, b) + (ty)“(ty) - ‘r*cx)‘b- ‘f(P - Z*(x); a, b). 

Now ab = (ty)-‘, so the last equation can be written as 

f(P*; t, y) = (ty)“{f(P/x; a, b) + u”*(~)[ b”*(“)I - tf(P - Z*(X); a, b)}. 

By proposition B(a), the right hand side of the last equation is simply (ty)“f(P; a, b), so 
we are done. 0 

It is easy to see that the formula in Theorem 10 is consistent with the involu- 
tion property of duality (P ** = P). Applying this formula to f(P**, t, y) gives 
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f(P**; t,y) = (fy)‘f(P*;a,b), where a = (1 + t - ty)/(ty) and h = (1 + t - ty-’ as in 
the proof of the theorem. Applying the formula tof(P*) gives 

f(p**; bYI = (ty)“(ub)“f i P; l + ;,, ? 1 + ;_ ub), 
But it is easy to see that t = (1 + a - ab)/(ah), y = (1 + a - ah)-’ and ab = (ty)- ‘, so 
this reduces to f(P**; t, y) =f(P; t, y). 

We also remark that a non-inductive proof of Theorem 10 can be constructed by 
using Proposition A and the formula 

where u(i, j) counts the number of elements of rank i which cover exactlyj elements in 
the distributive lattice J(P) of order ideals of P and v(i,j) counts the number of 
elements of rank i of J(P) which are covered by exactly j elements. (This formula 
appears as problem 21 on page 157 of [ 131.) 

Corollary 11. f(P; t, y) is irreducible over Z [t, y] fund only iff(P*; t, y) is irreducible. 

Proof. Iff(P) = g(t,y)h(t, y), then each non-zero term mt’yj appearing in either factor 
must have i > j (unless i = j = 0). (Otherwise, we could find the terms in which j - i is 
maximized in g and in h and multiply these two terms together to create a non- 
constant term in f with t-exponent d y-exponent, which is a contradiction). Thus, the 
induced factorization off(P*) is also a factorization over Z[t, y]. 0 

We now turn our attention to subclasses of SP posets. The class of SP posets 
satisfies each of the closure properties listed below. We now define several subclasses 
by selecting various subsets of these properties under which the subclass will be closed. 
Let A, denote an n-element antichain and let Ki denote an (as yet unspecified) class of 
posets. Then define properties Pj and Py (0 < j < 3) which the class Ki may or may 
not enjoy as follows: 

PO: lEK, 

PI: If P, Q E Ki, then P @ Q E Ki (closure under direct sum) 

Pz: If P E Ki, then P @ 1 E Ki (closure under ‘capping’) 

P:: If P E Ki, then 1 @ P E Ki (closure under ‘cupping’) 

P3: If PE Ki, then P @ A,EK~ (closure under ‘multi-capping’) 

P:: If P E Kc) then A, @ P E Ki (closure under ‘multi-cupping’) 

Now define the following subclasses of SP: 

K1 satisfies PO, PI and P,; 

KY satisfies PO, PI and P:; 
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K2 satisfies PO, P,, P2 and PT; 

K, satisfies PO, PI, P2 and P:; 

Kg satisfies PO, P,, P: and P,; 

K4 satisfies PO, PI, P3 and P:. 

There are many easy relationships among these classes. For example, 
K1 G K2 E K3 E K4 and PE Ki if and only if P* E K” for i = 1 and 3. Furthermore, 
the classes K1 and KT can each be identified with the class of rooted trees in the 
following way. A rooted tree T is a tree with a distinguished vertex. We then associate 
a poset B(T) to T in the following way. The elements of B(T) are the edges of T, and 
for edges a and b of T, define a < b in B(T) if and only if the unique path in T from the 
root * to the terminal vertex of b contains a. If we use the convention that the rooted 
tree is drawn with the root at the bottom and all edges are directed up as we move 
away from the root, then the Hasse diagram of the poset which represents B(T) is 
obtained from T by simply erasing the root and all edges incident with the root. We 
illustrate the correspondence in Fig. 2. The order ideals in B(T) correspond to the 
edge sets of rooted subtrees of T; the associated greedoid is called the branching 
greedoid of T. In the dual poset B*(T), order ideals correspond to the complements of 
rooted trees; the associated greedoid is called the rooted pruning greedoid of T. The 
branching greedoid can be defined on any rooted graph or rooted digraph (see [7,9]), 
while the pruning greedoid can be defined on unrooted trees. The application of the 
Tutte polynomial to unrooted trees is explored in [3].) Clearly {B(T): T is a rooted 
tree) = Kf and {B*(T): T is a rooted tree) = K,. 

Theorem 2.8 of [7] shows that non-isomorphic members of KT have distinct Tutte 
polynomials, while Theorem lb of [3] proves the same result for non-isomorphic 
members of K1. (A direct proof of the equivalence of these two results now follows 
from Theorem 10.) Theorem 3.10 of [6] extends this result to the class K2. We will 
now extend this result once more to the class K4. All four of these proofs require 
lemmas on the irreducibility off(P) when P is the poset resulting from the application 
of the various operations of capping, cupping and multi-cupping. 

h i 

V 
C 

Fig. 2 



Lemma 12. Let P he any poset with N E P such that s < w ,for all non-minimal w E P. 
Thenf(P; t, y) = (t + l)ky(t, ~,f or sonze 0 < k < M wlzere M is the number qfn~axiv~al 

elements of P and g is an irreducible polynomial ol>er Z [t, y]. 

Proof. Writef(P; t,~) =,fi(t)~’ +,f,_,(t)~‘~’ + ..’ +j”(t)for some I’ 3 0 and suppose 
,f(P) = g(t. y)h(t,y), where all factoring takes place in the ring Z[t, y]. Then, as in the 
proof of Corollary 11, each non-zero term tcyd in g( t. ~9) and It(t, I’) must have c > d (or 
(’ = rl = 0). 

Now write y(t, y) = y,l(t)J” + ga_ ,(t)yUm- ’ + .‘. + go(t) and h(t,~) = h,(t)yh + 
hmI(t)yh-l + ... + h,,(t), where a + h = I’ and a, h > 0. By the above argument. to+ ’ 
divides go(t) and th+’ divides hh(t) so, tr+2 divides,f,(t). But,f,(t) = rIPI + ... + mY+’ 
for some positice integer m. because the singleton antichain corresponding to the 
element x will contribute the term t’+’ J J tof(P). This contradiction forces N = 0 or 

h = 0, i.e..f’(P) = g(t,y)h(t) and 61 is irreducible over Z[t,y]. 
To determine h(t), note thatf(P; t. 0) = (t + 1)“. where M is the number of maximal 

elements of P. Thus, (t + 1)” = .~/(t, 0)/z(r), so h(t) = (t + 1)” for some k < M. 0 

Lemma 13. V.f’(P 0 Q; t,y) = g(t,y)h(t), then h(t) = k I. 

Proof. From Proposition l,J’(P @ Q) =,f(Q) + (ry)‘Q’[,f(P) - 11. Writef(P 0 Q) = 

.f*(r).V’ +.LI(t);‘-’ + ..’ +,f;,(t) and note that .fb(t) = (t + 1)” and ,f;Q,(t) = 

tlQ’[(t + 1)” - 11, where M is the number of maximal elements of Q and N is the 
number of maximal elements of P. Thus, ,f”(t) and ,fi’Qi(t) are relatively prime, so 
h(t) = i_ 1. 0 

The next lemma follows immediately from the previous two. 

Lemma 14. .f(A,, 0 P) is irreducible oiler Z[t, y] for an!’ poset P. 

The next theorem, which generalizes Theorem 3.10 of 161, is the main result in this 
section. 

Theorem 15. !f’ PI, P2 E K4. thenf’(Pl) =.f’(PJ (f and only if P, and P2 are isomorphic. 

Proof. We show by induction that the poset PE K4 can be uniquely reconstructed 
fromf(P); this is equivalent to the result. The result is trivial for \PI = 1. Assume we 
are given .f (P) for some poset P E K4 with 1 PI > 1. 

Case 1: P is not a direct sum of smaller posets. (Note that this can be determined 
solely from ,f (P) by the proof of Proposition 6.) Then P = P, @ P2 for some non- 
empty posets P, and P2 E KS. By the proof of Proposition 6, we can determine both 
f(P,) andf(P,) fromf’(P). By induction, we then reconstruct the two posets P, and P2 
which allows us to uniquely reconstruct P. 
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Case 2: P is a direct sum of smaller posets. We write P = PI + ... + Pk for some 
k > 2, where each Pi E K4 is direct sum irreducible. Now factorf(P) into irreducibles 
over Z[t, y]. By Corollary 11 and Lemma 14,f(Pi) is irreducible over Z[t, y] for all i. 
By induction, we can then reconstruct each poset Pi, so we can reconstruct P and we 
are done. 0 

The next result also relates the factorization off(P) to the poset P, generalizing 3.9 
of [6]. The proof follows immediately from Theorem 10 and Lemma 14. 

Corollary 16. Suppose P is a poser with m minimal elements and M maximal elements 
and that f(P) =fi(t,y)fi(t,y) . ..fn(t.y), where eachfi(t, y) is irreducible over Z[t,y]. 
Then n < min[m, M]. 

Let Fi (or FT) = { f(P; t, y): P E Ki (or KT)}. Then each Fi (or FT) is a multiplicatively 
closed subset of Z [t, y] and it is possible to give recursive characterizations of each Fi 
(or FT) as in Proposition 4. For example, Propositions 9 and 10 of [3] give such 
characterizations of the classes K1 and KY. We leave the rest of these characteriza- 
tions (all of which follow from applying Proposition 1 to the subclass under considera- 
tion) to the interested reader and instead turn our attention to excluded induced 
subposet characterizations, as in Theorem 7. We conclude with the following proposi- 
tion. 

Proposition 17. Let posets Pi (1 < i < 5) be the posets of Fig. 3. 
(a) P E K, ifand only ifP has no induced subposet isomorphic to PI. Dually, PE Kf if 

and only if P has no induced subposet isomorphic to PT. 
(b) PE K2 if and only ifP has no induced subposet isomorphic to P2 or P3. 
(c) P E K, if and only if P has no induced subposet isomorphic P2 or P4. Dually, 

PE K’S if and only if P has no induced subposet isomorphic to P2 or Px. 
(d) P E K4 if and only if P has no induced subposet isomorphic to P2 or Pg. 

Proof. We prove d; the proofs for the rest are similar. Since the operations of direct 
sum, multi-capping and multi-cupping can never produce either P2 or P5, it is clear 
that if PE K4, then P has no subposet isomorphic to either P, or Pg. 

For the converse, suppose P# K4, but any induced subposet of P is in K4. 
Thus P # B + C, P # B 0 A,, and P # A,, 0 C for any posets B or C and any n > 1. 

V~~qQupa PI PI* P2 P3 
P4 P4* P5 

Fig. 3. 
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If P is not an SP poset, then P contains an induced subposet isomorphic to P2 (by 
Theorem 7). Thus, we may suppose that P is an SP poset, so P = Q 0 R for SP 
posets Q and R. 

Now P has some minimal element x and some non-minimal y such that the pair 
(x, y) is incomparable (or else P = A, @ S for some poset S and some n 3 1). Let z < J* 
be minimal and note that X, 4’ and z must all be distinct members of Q. Dually, there 
exist distinct U, v and w E P such that u and u are maximal, u > w and the pair (t’, W) is 
incomparable (or else P = S 0 A, for some poset S and some y1 3 1) and U, c and 
w E R. Then the six elements u, u, W, x, 4’ and z form an induced subposet isomorphic to 
P5, so we are done. 0 
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