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Abstract 

We investigate the set of those integers n for which directly indecomposable groups of order n 
exist. For even n such groups are easily constructed. In contrast, we show that the density of the 
set of odd numbers with this property is zero. For each n we define a graph whose connected 
components describe uniform direct decompositions of all groups of order n. We prove that 
for almost all odd numbers (i.e., with the exception of a set of density zero) this graph has a 
single 'big' connected component and all other vertices are isolated. We also give an asymptotic 
formula for the number of isolated vertices of the graph, i.e., for the number of prime divisors 
q of n such that every group of order n has a cyclic direct factor of order q. © 1999 Elsevier 
Science B.V. All rights reserved 
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1. Introduction 

In this paper we will call a finite group indecomposable i f  it cannot be decomposed 

into the direct product o f  two proper subgroups. Sudler [9] asked the question for 

which positive integers n there exists an indecomposable group of  order n. I f  n is even 

then it is very easy to find an indecomposable group o f  order n (Proposition 1.1). On 

the other hand, we prove that the density o f  the set o f  odd numbers for which an 

indecomposable group exists is zero, that is, for almost all odd numbers n (i.e., with 

the exception o f  a set of  density zero) every group o f  order n can be decomposed into 

a proper  direct product (Corollary 4.2). 

It seems to be difficult to describe those numbers for which indecomposable groups 

o f  that order exist. We do this only in the cases when n is square-free (Theorem 5.2) 

or n =  paqb with p,q primes, a,b>~ 1 (Theorem 6.1). We get, for example, that there 
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are indecomposable groups of order 3 x 7 and 7 x 29 but there is no indecomposable 
group of order 3 × 7 x 29; there are indecomposable groups of order 35 × 11 and 36 

but none of order 36 x 11. Therefore we will rather consider uniform factorizations, 
i.e., factorizations n = nln2. . 'nm such that every group of order n is the direct product 
of  groups of order nl, n2 . . . . .  nm. The number theoretic characterization of these factor- 
izations is given in Proposition 2.1. It turns out that every number has a unique such 

factorization with a maximum number of  factors. Our main result is that for almost all 

odd numbers all but one of these factors is a prime number (Theorem 3.1 ) and we give 

an asymptotic formula for the number of  these prime factors as well (Theorem 4.1 ). 

This paper is an extended version of the Hungarian original [2]. The structure of the 

paper has been somewhat modified. The introduction of the graph F(n) in Definition 2.2 
is new, making it easier to describe the results, in particular Theorem 3.1. Corollary 2.4 

is also new, as well as the graph theoretic Problem 5.3 and the proofs of  Theorems 5.2 
and 6.1 which were omitted in [2]. Paul Erd6s expressed several times his interest in 
rewriting and publishing the paper in English; it is sad that this will happen only 

posthumously. 
To begin with, notice that any cyclic group of prime-power order or any simple group 

is directly indecomposable. However, the set of  orders of  these groups has density zero. 
More examples can be constructed using metacyclic groups. 

Proposition 1.1. L e t  n = 2km with k >>. 1, m odd. Then the 9roup 

G=(a ,  b lam-_ l ,  b2k=l ,  b - l a b = a  - l  ) 

is directly indecomposable o f  order n. 

Proof. Assume that G =  G1 x G2, and let a=ala2,  b : bib2 with ai, bi C Gi ( i - -1 ,2 ) .  
Since the order of  b is the least common multiple of  the orders of  bl and b2, it follows 
that one of them, say, bl has order 2 k. Then 2 k divides the order of  Gl, hence G2 has 

odd order, thus b2 = 1. The relation b - l a b = a  -I yields (b~lalbl)a2 : a ~ l a 2 1 ,  from 
which we infer that a 2 -- 1. However, we have already observed that G2 has odd order, 

hence a2 -- 1. Thus G2 -- 1, so G has only a trivial direct decomposition, indeed. [] 

All groups considered in this paper are finite. Throughout we use p and q to denote 

primes, and cl . . . . .  c6 will denote absolute constants. 

2. Uniform factorizations 

Proposition 2.1. Let n=nln2 be an odd number. Every 9roup of  order n can be 
decomposed into the direct product of  groups of  order nl and n2 i f  and only i f  the 
following three conditions are satisfied: 

(i) nl and n2 are coprime numbers, 
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(ii) there are no primes p and q, and k >>,l such that plnl, qk in2, and p l q k  _ 1; 
and symmetrically, 

(iii) there are no primes p and q, and k >~l such that pk Inl, qln2, and ql P~ - 1. 

(Remarks. The exponent k in (ii) and (iii) need not be the highest power of q or p 
dividing the order of G. Obviously, no even number can have a proper factorization 
satisfying the conditions of the proposition. We formulated the result for odd numbers 
in order to emphasize the use of special properties of groups of odd order.) 

Proof. The necessity of the conditions is shown by the following groups: (i) C,,, 

the cyclic group of order n; (ii) {x ~-~ ax + b [ a, b E GF(qk), a p = 1} × Cn/pqk, where 
GF(q k) denotes the field of qk elements; (iii) symmetrically, by interchanging the role 
of p and q. 

Now let us assume that the conditions (i), (ii), and (iii) are satisfied and let G be an 
arbitrary group of order n. Since n is odd, the celebrated result of Feit and Thompson 
[3] yields that G is solvable. By Hall's theorem (see [4, p. 232]) one can find a suitable 
Sylow pi-subgroup P/ for each prime divisor Pi of n such that P~.~ = ~P/ holds for 
each pair of indices. Let G1 be the product of all those Pi's for which pi divides nl, 
and let G2 be constructed analogously. Condition (i) gives IG11 = nl, IG21 = n2. Let now 
p be a prime divisor of nl and P the Sylow p-subgroup in the chosen Hall-system, 
q a prime divisor of n2 with Sylow q-subgroup Q. Then PQ = QP is a subgroup 
of G. By a result of Pazderski [7] (see also [6, p. 285]) the conditions (ii) and 
(iii) imply that PQ is nilpotent, i.e., P and Q centralize each other elementwise. This 
holds for every pair of prime divisors of nl and n2, hence Gj and G2 commute, so G = 
Gi × G2. [] 

Definition 2.2. Let n >  1 be an integer. We define an undirected graph F(n) with 
vertices corresponding to the prime divisors of n, with an edge between p and q iff 
for some exponent k >~ 1 either p ] qk _ 1 and qk I n or q ] pk _ 1 and pk ] n. (Here pk 
(or qk) need not be the highest power of p (or q) dividing n.) 

Proposition 2.1 easily yields the following: 

Corollary 2.3. The number n has a proper factorization n=nln2  such that ever), 

group o f  order n can be decomposed into the direct product o f  groups o f  order nl 

and n2 i f  and only i f  the graph F(n) is not connected 

Corollary 2.4. Every number n > 1 has a uniquely determined factorization n = n ln2 

• . . r i m  with maximum number o f factors such that every group o f  order n can be 

decomposed into the direct product o f  groups o f  order n,,n2 . . . . .  r im .  

Proof. Clearly, in virtue of Proposition 2.1, the connected components of F(n) deter- 
mine the factors ni. [] 
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Making use of  Dirichlet's theorem on prime numbers in arithmetic progressions it is 

easy to see that every graph can be represented as F(n) for a suitable n. However, this 
wealth of  different graphs is produced by a rare set of  integers. We will show that for 
almost all odd numbers n (i.e., with the exception of a set of  density zero) the graph 

F(n) consists of  a single 'big '  connected component and a large number of  isolated 
vertices. 

3. The unique 'big' factor 

Theorem 3.1. For almost all numbers n the graph F(n) has a unique connected com- 
ponent containing more than one vertex. 

Proof. We will show that for any fixed ~/>0 the lower density of  the set of  those 
numbers n for which the graph F(n) has only one connected component which is not 
an isolated point is at least 1 - q. Since this will hold for any positive ~/, this set of 

numbers has density 1, indeed. 
Later we will choose the parameters e (0 < e < 1 ) and A (A > 2) suitably, but let now 

e and A be fixed and consider the set of  those numbers n which satisfy the following 

five requirements: 

(a) n has a prime divisor less than A, 
(b) for every divisor d < ( l o g  log n) l-': of n there exists a prime q In such that 

q-= 1 (mod d), 
(c) n has no prime divisors in the interval ((log log n)l-':/A,(log log n)l+':), 
(d) there is no prime p > ( l o g  log n) l+~ such that p2 divides n, 
(e) n has no prime divisors q and r such that qr k In, q > ( l o g  log n) j+~:, and r k -- 

1 (mod q). 
We show that for every such number n the graph F(n) has only one non-singleton 

component. So suppose that n satisfies (a ) - (e ) .  Let p be the smallest prime divisor of 

n, and let A denote the connected component of  F(n) containing p. We are going to 
show that every prime outside A is an isolated vertex of F(n). In addition, we show 

that every such prime occurs to the first power in the prime decomposition of n. 
By (a) we have that p<A.  Let r be a prime divisor of  n such that p < r <  

(log logn)l-':/A. Then (b) yields a prime q ln such that p r l q -  1. Now both p and 
r are joined to q with an edge in F(n), so each such prime r belongs to A. Hence 

by (c) every prime q outside A is at least (log log n) 1+':. By (d) each such prime 
occurs to the first power in the prime decomposition of n. None of them is connected 
to any prime in A by the definition of the connected component. Moreover, there is 
no edge between any two such primes by condition (e). (Actually, we do not use the 
full strength of (e) here, that will be needed only in the proof of  Theorem 4.1.) 

It remains to estimate the lower density of  the set of  numbers satisfying (a) - (e) .  
We will give upper bounds for the upper density of  the sets of  numbers not satisfying 
(a) . . . . .  (e) separately. 
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Lemma 3.2. Let A > 2. The density o f  the set o f  those numbers which have no prime 

divisor less than A is at most cl/log A for some constant Cl >0. 

Proof .  The density of this set is obviously 

( 1 )  ( p ~ < A l )  ~" 
H 1-- <exp -- -~ ~ < e x p ( - l o g l o g A + l o g c l ) -  
p<A 

Cl 

log A 
[] 

Lemma 3.3. Let 0 < e < 1. Almost all numbers n have the property that for ever>, 

d < (log log n) l-~: there exists a prime q ln such that q -  1 (mod d), 

Proofi We give an upper bound for the proportion of those numbers n ~<x for which 
there exists a d<(log log x) l-r" such that q ~  l (modd) for all prime divisors q of n. 
First let us fix d. Then Bran's method (see [5]) yields that the proportion of those 
n ~<x which are not divisible by any prime q ~ 1 (rood d) is at most / 1) 

c2 H 1 -  <c2exp - E q , 
q--=l(d) q----l(d) 

q<~x q<~x 

with some absolute constant c2. From the Siegel-Walfisz Theorem (see [8]) it follows 
by partial summation that 

E ql =(1 + o(1)) l°gcp(d)l°g x 
q--=l(d) 

q<~x 

. . . .  log log x 
- -  + o g . o g x r  > c3(log log x) 

holds for every d<(log log x) 1-': with some constant c3 >0. Hence the proportion of 
the exceptional numbers n is at most 

(log log x)l-~:c2 exp(-c3(log log x)~:), 

which goes to 0 as x ~ .  [] 

Lemma 3.4. Let 0 < e < 1. The upper density o f  the set o f  those numbers n which 

have a prime divisor in the interval ((log log n)l-':,(log log n) 1+~') is at most 

log((1 + e)/(1 - e)). 

Proof .  The method of [1] yields that the average number of prime divisors of a number 
n in the interval ((log log n)l-%(log log n) l+~) is 

1 + 
log log(log log n )  l+e" --  log log(log log n )  1-~: + o(1)-- log 

1 - 8  
+ o ( 1 ) .  

Our claim follows immediately. [] 
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Lemma 3.5. Almost all numbers n have the property that every prime divisor p > 

log log n o f  n occurs to the first power in the prime decomposition o f  n. 

Proof. The number of those integers n<~x which are divisible by the square of a 
number greater than log log v/~, or are less than v ~ is at most 

X X 

k -2 + v ~ <  iog log x/~ + x/~= o(x). 
log log x/~<k~<x/~ 

[] 

Lemma 3.6. Let E > O. Then ahnost all numbers n have the property that n has no 

such divisors p and qk, where p and q are primes, k>~l, p > ( l o g  log n) I+': and 

qk = 1 (mod p). 

Proof. The number of those integers n ~<x for which there exist primes p, q, and k ~> 1 
such that pq~ In, p > ( l o g  log x/~) 1+': and qk - 1 (mod p), or n ~<x/-x is at most 

x 1 1 
- 

pqX. p 
p>0og log xFv) i+': p>(log log ~v) b~:: qk~l(p) 

qk_--I (rood p) qk ~<x 
q~ ~<x 

~< x Z 1 c4 log log x + o(x) 

/,>(log log x/~) ,*, p p - 1 

(cf. [8, Theorem 2.4.1];here we have p < x / x )  

C 4 log log x 
~< X(log log x/x) t+~ + o(x) = o(x). [] 

Now we can finish the proof of Theorem 3.1. Using Lemmas 3.2-3.6 we see that 
the lower density of the set of numbers satisfying all conditions (a ) - (e )  is at least 

cl 1 + e'] 
1 -  l o - - - - ~ + l O g l _ e )  > l - r / ,  

if  e is sufficiently small and A is sufficiently large. [] 

4. The number of isolated prime factors 

In the previous section we proved that for almost all odd numbers n the graph F(n) 

has a single 'big' connected component and all other vertices are isolated, moreover 
these correspond to primes p that divide n to the first power and all of them are greater 
than (log log n) j+':. Now we determine the number of  such prime divisors. 
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Theorem 4.1. Almost  all odd numbers n have 

(1 + o(1))H (1 1 ) loglogn 
pin p 1 

isolated prime divisors, i.e., pr ime divisors q such that every group o f  order n is the 

direct product o f  the cyclic group o f  order q and a group o f  order n/q. 

Since the number of isolated prime divisors as given in Theorem 4.1 is almost always 
positive, we obtain the following. 

Corollary 4.2. For almost all odd numbers n every group o f  order n can be decom- 

posed  into a proper direct product. 

The following lemmas pave the way to proving Theorem 4.1. 

Lemma 4.3. Let  pl . . . . .  pt be f i xed  distinct odd primes. Then, as x ---+ oc, 

1 
- =(1  +o(1)) H 1 - log logx. 

q prime q i=l Pi 1 
q<~x 

pifq- 1 

Proof, Let k = Pl • • " Pt. Those primes q ¢ Pi for which pi t q -  1 for each i = 1 . . . . .  t lie 
in one of the (pl - 2 ) . . .  ( P t -  2) residue classes among the q~(k)= (pl - 1 ) . . .  ( p t -  1) 
residue classes coprime to k. The quantitative form of Dirichlet's theorem (see [8, 
p. 138]) gives that the number of primes <x in any of these residue classes is asymp- 
totically 

1 x 
~o(k) log x' 

Now our claim easily follows by partial summation. [] 

Proposition 4.4. Let  g(n) denote the number o f  those prime divisors q o f  the integer 

n for  which q - 1 and n are coprime. Then for  almost all odd n we have 

g ( n ) = ( l + o ( 1 ) ) H ( 1  1 ) log logn.  
pin p -  1 

Proof. It is enough to show that for arbitrary positive e and /7 the inequality 

g(n) 
- l < e  

1 - I p l n ( 1  - 1/(p  - 1))log log n 

holds with the exception of a set of upper density less than 2//. For the proof of this 
we will fix a sufficiently large number A. 
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Let M denote the product of the primes not exceeding A (including 2). On the 
residue class n - a  (modM), where l<~a<M is an odd number, we will consider the 
function 9A(n) denoting the number of prime divisors q of the (odd) number n such 
that q>A and q -  1 is not divisible by any prime divisor p<~A of n. 

We will employ Turfin's method to determine the normal order of the function gA(n). 
Every number in the fixed residue class has the same prime divisors not exceeding A, 
let these be Pl . . . . .  Pt. Now we have 

(x ) 
Z gA(n)= Z Z 1----- Z Z l= Z mqq ~-(~q , 

n=--a(M) n=~a(M) q[n A<q<~x n=_a(M) A<q<~x 
n<~x n<~x q>A p, tq--1 q]n pitq--I 

pi tq-- I n <~x 

where [6q[<l. Hence the average of the values of gA(n) on the residue class n = 
a(modM) in the interval [1, x] is 

z 
A<q<~x 
pi tq-- 1 

Lemma 4.3 yields 

K =  Z l = ( l + o ( 1 ) ) r i ( 1  1 ) loglogx.  
A<q<~x q i=1 Pi 1 
pi tq-- 1 

For the summed square deviation of gA(n) from K we obtain (with all [6i[ < 1) 

( g A ( n )  - K )  ~ 

n=a(m) 
n <~x 

X 

n~a(M) n=a(M ) 
n<~x n<~x 

: Z Z Z 
A<ql<~x A<qz<~x n=a(M) 
pitqt-1 pitq2-I n<~x 

qt[n, 
q2 Fn 

A<q<~x A<q] <~x A<q2<~x 
pitq--I Pilql--1 pitq2--1 

A <q<~x 
Pi'~q-- 1 

X 2 X __ K 2  ~ q- O ( x )  x ~<K~- + K  ~¢ = K ~  + O(x). 
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Hence the average square deviation of 9A(n)/K from 1 is 

+ o  , 

so Chebyshev's inequality yields that for almost all odd n 

gn(n)=(l+o(1))  I I  (1 1 ) log logn  
PI" p -  1 

p~A 

holds. 
Now we can consider our original function g(n). In gA(n) we did not count those 

primes which do not exceed A, hence g(n)<~ gA(n)+ n(A). On the other hand, we have 
counted those primes q]n for which there exists a prime Pin such that p>A and 
P lq - 1. Estimating the average number of such primes from above we obtain 

l~<x p~>A 1 ~< 1 Z Z X p~>A 1 Z 1 
x x p q 

p>A q =_ l (p)  q = l(p) 
q ~ l ( p )  p<~ x/~ q<~x/p q<~x 

pqln 

1 c41oglogx c41oglogx 
~ 2.., p p T ] -  < A ' 

p>A 

cf. the proof of Lemma 3.6. Thus, with the exception of a set of at most qx elements, 
we have, for n ~<x, 

c4 log log x 1 
g(n)>~OA(n) A r I" 

For the remaining (1 - r / ) x -  o(x) numbers the inequalities 

1 +o(1)>~ g(n) ~>1-(1 

hold. Notice that 

+ o(1)) c4 1 

A 1-[ 1 - ~  >tAexp -( log8) Z p 
3<~p<.A p -  1 3<~p<~A 

csA 
>>. csA exp(-(log 8) log log A) = (log A )log 8" 

We must also take into account that in the formulation of the proposition we multiply 
(1 - 1 / ( p -  1)) for all prime divisors of n. Let us estimate the product 

i i  (1 _1 ) >/1- ~ 1 
pin p 1 - -  p--1" pLn 

p>A p>A 
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In average we have 

1K--~ X--, 1 1 x 1 1 

x Z "  pj,, p -  14-x A<p<~.~Z p p - ~ l  <~ A" 
p>A 

Hence, with the exception of at most r/x numbers n in the interval [1, x], 

1 ~ < 1 1  

Zp - 1  q' 
pin 

p>A 

that is the inequality 

II(1 l) 11 __ > ] - _ _ _ _  
p 1 At/ 

pin 
p>A 

holds. Summarizing, we obtain that, with the exception of a set of upper density at 
most 2~/, for every odd number n 

g(n) - 1 
I-[pin(1 - 1/ (p -  1))loglogn 

g(n) gA(n) 1 
gA(n) 1-I p[n ( l  - -  1/ (p -  1))loglogn 1[I pl, (1 - 1/ (p -  1)) 

p<~A p>A 

g(n) 1 I-I gA(n) 1 
~C6 gA(n)  -- + pl,, (1 - 1 / (p -  1))loglogn 

p<~A 

} pI~l~ (1 p l  1 ) - 1  

p>A 

~C6{ (l+°(1))c4(l°gA)l°gS1 csA - + O ( 1 ) + ~  q 1 1 )  

if we choose A large enough. [] 

, (  ~3, 

+ 

- I  

For the order of magnitude of r I  (1 - 1 / (p -  1)) we have the following estimate. 

Lemma 4.5. Let re(n) be an arbitrary function such that e~(n)--~ O. Then for almost 
all odd n we have 

pJ" p 1 
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Proof. For every odd n the inequality 

- ~> exp - ( log  8) ~ 

Pin 

holds, and in average we have 

1 1 l x  

x p p  
n<~x pin p~x  

Hence our claim follows. [] 

1 

Proof of Theorem 4.1. By Proposition 2.1 a prime divisor q of n is isolated, i.e., 
every group of order n has a direct factor of order q, if and only if the following three 
requirements are satisfied: 

(i) q divides n to the first power, 
(ii) q -  1 is coprime to n, 

(iii) there is no prime-power divisor p~ In such that q I pk _ 1. 
Proposition 4.4 gives the number of prime divisors satisfying (ii). For almost all n every 
prime divisor q > ( l o g l o g n )  l+~" automatically satisfies (i) and (iii) (see Lemmas 3.5 
and 3.6). For almost all n the number of prime divisors less than (loglogn) I+': is 
O(log log log log n) (see [1]) and this is negligible compared to the formula given in 
Proposition 4.4 as Lemma 4.5 shows. [] 

5. Square-free numbers 

In this section we characterize those square-flee numbers n for which indecomposable 
groups of order n exist. For this description we use another graph. 

Definition 5.1. Let a and b be coprime square-flee numbers. We define the bipartite 
graph A(a,b) to have the prime divisors of a and b as vertices and we draw an edge 
{p,q} for each pair of primes such that p la, q lb, and q [ p - 1. (Note that the roles 
of a and b are not symmetric.) 

Theorem 5.2. Let n be a square-free number. Then there exists an indecomposable 
group of order n if  and only i f  n has a divisor d such that the bipartite graph 
A(d,n/d) is connected. 

Proof. First we prove the sufficiency of the condition. So let n be a square-flee number 
and d i n  such that A(d,n/d) is connected. For each prime divisor Pi of d let Qi be 
the set of prime divisors of  n/d connected with pi in A(d, n/d), i.e., those q [ n/d for 
which q l Pi - 1 hold. Furthermore, let ri = l-Iq~Qi q, then ri I pi - 1. Hence there exists 
a ki such that the multiplicative order of ki modulo pi is ri, i.e., ri is the least positive 
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integer such that kf' ~ 1 (modp i )  holds. The Chinese Remainder Theorem yields a 

k with k =-ki (rood pi)  for all pi. Now we take the metacyclic group 

G= (a, b l ad = 1, b"/a -= 1, b- l  ab = ak). 

We will show that G is indecomposable. Assume that G =  GI × G2. I f  {p,q}  is an 
edge in A(d,n/d), then by our construction a Hall {p,q}-subgroup of G, (a d/p, b n/Jq) 
is non-commutative, hence both p and q divide the order of  the same factor GI or 
G2. Since A(d,n/d) is connected, it follows that all prime divisors of  n divide the 
order of  the same factor, hence the other one is trivial, i.e., G is indecomposable, 

indeed. 
For the converse let G be an arbitrary indecomposable group of order n. By a 

theorem of  Zassenhaus (see [6, p. 420]) G is metacyclic of  the form 

G =  (a, b[a d = 1, b "/d = 1, b- lab=ak) ,  

for some d [ n and k with (d, k - 1 ) = 1. Let us define a graph A on the set of  prime 
divisors of  n by connecting p and q with an edge if and only if the (up to conjugation 

unique) Hall {p,q}-subgroup of  G is non-commutative. 

We claim that A is connected. Assuming the contrary, let A = A t U A2 be a decom- 
position of  the vertex set into disjoint subsets such that there is no edge between the 

vertices of  Al and A2. Now let Gi ( i =  1,2) be a Hall Ai-subgroup of G. Then, for 

every prime divisor pl [[GI[ and every prime divisor p2 [IG21, a suitable Sylow Pl- 
subgroup in G1 and a suitable Sylow p2-subgroup in G2 commute with each other, 

hence G1 and G2 commute, i.e., we obtain a direct decomposition G = Gl × G2, con- 
tradicting the indecomposability of  G. So we have shown that A is connected, in- 

deed. I f  {p,q} is an edge of A and, say, p[d ,  then q[n/d and q [ p -  1, hence 
A is a subgraph of A(d,n/d). Thus the latter is also connected, as we wanted to 

show. 

The characterization given in Theorem 5.2 raises an algorithmic problem. For a 
square-free number n let us define a directed graph if(n) on the set of  prime divisors 

of  n with a directed edge (p,q)  iff q[ p - l. Obviously, i ( n )  does not contain any 
directed cycle, but there is no other restriction on the isomorphism type of i (n ) ,  as 

one can easily see by applying Dirichlet's theorem. Now if we take a divisor d of  n 
then A(d, n/d) becomes the graph with the set of  (undirected) edges i ( n ) n  (Fl × F2), 
where F1 and F2 denote the set of  prime divisors of  d and n/d, respectively. So our 

question is the following. 

Problem 5.3. Let i be a directed graph without directed cycles. Can one efficiently 
decide whether there exists (and if exists, find) a partition/'1 u/ '2 of  the vertex set of  
i such that the bipartite graph i N (F1 × F2) is connected? 
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6. The ease n =p~qb 

In this section we determine for which numbers o f  the form n = paqb (p,  q distinct 

primes, a, b >/1 ) there exist indecomposable groups o f  order n. To formulate the result, 

recall that r is called the order of  p modulo q if  r is the least positive integer such 

that pr - 1 is divisible by q. 

Theorem 6.1. Let p and q be distinct primes, and let r denote the order of p modulo 
q, and s the order of q modulo p. Then there exists a directly indecomposable 9roup 
of  order p~qb (a, b >t 1 ) if  and only i f  one of the followin 9 holds: 

(i) r = 1, 

(ii) r is even, a >~ r, 
(iii) r>~3 is odd, a = r  or a>~2r, 
and symmetrically 
(i ')  s = l ,  

(ii ') s is even, b>.s, 
(iii ') s~>3 is odd, b = s  or b>~2s. 

Proof.  First we construct indecomposable groups in the cases (i), (ii), (iii). 

(i) Now r --- 1, i.e., q [ p - 1. Hence q I ~o(pa), so there exists a k ~ 1 (mod pa) with 
k q = 1 (mod pa). The group (x, y I xp° = 1, yqb = 1, y - l x y  = x k) is directly inde- 

composable o f  order p,q6 (cf. Proposition 1.1). 

(ii) First let a=r .  Then the multiplicative group of  the pr-element field contains 

a primitive qth root o f  unity ~, which we consider as an automorphism of  the 

additive group A of  the field. Then we form the semidirect product A(y), where 

y has order qb and acts on A as ~. This group is indecomposable of  order prqb. 
Next let a = r ÷ 1. Since r is even, there is an extraspecial p-group P of  order 

p~+l and of  exponent p.  (Here we can assume p > 2 ;  otherwise we have s = 1.) 

Now [Aut (P) l=lSp(r ,p ) lp~(p-  1) is divisible by p r  1, hence P has a non- 

trivial automorphism ~ of  order q. We take the semidirect product P(y) with y 
o f  order q9 acting on P as cc 

Finally, if  a > r + 1, we form the central product o f  the previously constructed 
group P(y)  with a cyclic group of  order pa-~. 

(iii) Now let r>~3 be odd. For a = r  we can do the same as in case (ii). For a----2r we 
can proceed similarly, using the field o f  p2r elements. For a = 2r + 1 we use an 

extraspecial group of  order p2r+l, and for a>2r  + 1 we take its central product 

with a cyclic group of  order pa-2~. 

Now we have to show that in all the remaining cases every group of  order paqb 
is a proper direct product. So we have either a < r  or r is odd and r<a  < 2 r ,  and 

symmetrically, b < s or s is odd and s < b < 2s. 

By Burnside's Theorem (see [4, p. 131]) G is solvable. We consider chief series o f  
G, i.e., 

1 = N o  <]N~ <1N2 <3... <lNn-i <1N,=G, 
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where each Ni is normal in G and the series is not refinable. By solvability of  G every 

chief factor Ni/Ng_l is an elementary abelian group. We look at the action of G on 
Ng/Ng_l. Either G acts trivially, in which case we say that the chief factor Ng/N~_ i 
is central, or G acts as a non-trivial irreducible linear group on N,./Ng_l. In the latter 

case let, say, N,./Ni_I be a p-group. Then G/Cc(N~/Ni-I) cannot have a non-trivial 
normal p-subgroup (see [4, p. 62]), hence it contains a non-trivial normal q-subgroup. 

Then by Clifford's theorem the dimension of N~/Ng-I over the p-element field is a 

multiple of  r. Since a < 2r, we get [Ni/A6._ l[ = P", and there can be at most one such 
chief factor in any chief series. (In this case we have, of course, r<a<2r,  r odd.) 
Similarly, there is at most one non-central chief factor of  q-power order, namely of 
order q". 

I f  all chief factors are central, then G is nilpotent, so it is the direct product of its 

(unique) Sylow p-subgroup and Sylow q-subgroup. So assume that there is a non- 
central chief factor, say, Ng/Ni_l of order pr. We are going to prove that G has a 

non-central minimal normal subgroup of order pr, i.e., there is another chief series 

1 = No* <] Nl* <] . . .  such that N~'/N* TM Ni/Ni-l. I f  i =  1, then there is nothing to 
prove, so let i > 1. Clearly, it is enough to show the existence of  a normal subgroup 

Ni*_ 1 <~ G with Ni_2 <~ Ni*_ 1 <~ Ni and Ni/Ni_2=Ni_l/Ng_2 xNi*_l /Ni_ 2. By induction 
we may assume i = 2. We have to distinguish several cases. 

I f  N1 is central of  order q then N2 is nilpotent, so N2 = Nl x Nl*, where N~* is the 
(unique) Sylow p-subgroup of N2. I f  Ni is a non-central chief factor of  order qS, then 

C~ (Ni) is a normal subgroup of G containing NI, so it is either Nl or N2. However, 

the Sylow p-subgroup of A u t ( N l ) ~  GL(s,q) is cyclic, but N2/Nt is not, hence only 

CN2 (N1)= N2 is possible. Now N2 is again nilpotent. 
There remains the case when Nl is central of  order p. Now N2 is abelian, since oth- 

erwise it would be an extraspecial p-group, contrary to [N2/NI[ = p" with r odd (cf. [6, 
p. 354]). Were N2 of  exponent p2, then {x E N2[x p = 1} would be a normal subgroup 

lying properly between N1 and N2 (as r > 1 ), which is impossible. Hence N2 is an ele- 

mentary abelian p-group. Let (72 = CG(N2/NI ) <~ G and Ci = CG(N2) <1 G. Then C2/G 
is a p-group of order dividing pr. However, as N2 ~<Cl and [G[ = paqb with a<2r, we 

have [C2/CI[ < p~. Hence Nl < CN2 ((72) <~ G, therefore CN2 (C2) = N2, so (72 = Ci. Now 
let M/C2 be a minimal normal subgroup of G/C2. As GL(r, p )  has a cyclic Sylow q- 

subgroup, it follows that [M/C2[ =q. Then N2 = CN2(M)× [N2,M]=NI × [N2,M] (see 
[4, p. 177]). So we have finished showing that if there is a non-central chief factor, 

then it is G-isomorphic to a minimal normal subgroup of G. 

Now let us consider the case when there is a non-central chief factor of  order p", 
but no chief factor of  order q' exists in G. Let P0 be a minimal normal subgroup 

of  G such that [P0] = P~. In G/Po every chief factor is central, hence G/Po is nilpo- 
tent: G/Po = P/Po × QPo/Po, where P is a Sylow p-subgroup, Q a Sylow q-subgroup 
of G. Hence we have P <] G and [P,Q]=Po. Now P=Cp(Q)[P,Q] (see [4, p. 180]). 
Since Po is a minimal normal subgroup of G, it follows that Po <~Z(P). As Cp(Q)N 
[P, Q] = Cpo(Q) = 1, we obtain that P = Ce(Q) × Po and G = Ct,(Q) × PoQ, a proper 
direct decomposition since ]Cp(Q)l = IP :P0[ = pa-,-> 1. 
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If there are chief  factors o f  order both pr and q'~, then we can find minimal nor- 

mal subgroups P0 and Q0 of order p" and q'~, respectively. By the previous para- 
graph there are subgroups Pl and Q1 such that G/Qo=PIQo/Qo ×PoQiQo/Qo and 
G/Po=Q1Po/Po × QoP1Po/Po. Hence we get a direct decomposition G=QoP1 × 
PoQI. [] 
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