View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 82, 370-385 (1981)

Fuzzy Uniform Spaces

R. LoweN

Vrije Universiteit Brussel. Brussel, Belgium

Submitted by L. A. Zadeh

INTRODUCTION

In this paper we introduce the notion of fuzzy uniform spaces. In Section 2
we give some basic results and show how a fuzzy topology is derived from a
fuzzy uniformity. In Sections 3 and 4 we prove that the notions which are
introduced are good extensions and we prove that the category of uniform
spaces is nicely injected in the category of fuzzy uniform spaces. Finally in
Section 5 we prove some basic results about the associated fuzzy topology.

I. PRELIMINARIES

The unit interval is denoted /, |0, 1| is denoted [, and |0, 1] is denoted /,.

If X is a set and Y < X, then the characteristic function of Y is denoted
1,. Also if X is a set, then the set of all finite subsets of X is denoted 2'¥.

If fis a function from a set X to a set X’, then we denote f X f the
function X X X- X' X X' defined by f X f(x, y)=(f(x), f(y)) for all
(x, NE XXX

A fuzzy closure on X [3] is a map : I* - [* which fulfills the properties:

(FC1) For all a constant, @ = a.
(FC2) Forallu € IX, g>u.
(FC3) Forally (e, uVE=aVE
(FC4) Forallu€e ™, g=j.
If X is a set, the diagonal of X X X is denoted D(X).
If Uc X X X, the symmetric of U is defined by {(y, x): (x, y) € U} and is
denoted by U™,
If U.VcXXJX, then their composition Uo V is defined as the set

{(x, ¥) € X X X: there exists z€ X, (x,z)€ V, (2, y) € UL
A uniformity on X is a subset Z of I**¥ fulfilling the following properties

(U1) # is a filter.
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(U2) ForalUEZ,DX)cU.
(U3) ForalUe#Z. U 'e%.
(U4) For all U€E Z, there exists V' € # such that Vo V< U.

If V< XXX and n€ N, we denote by P the set '=Vo v inductively
defined from V' = ¥V o V. Clearly then (U4) is equivalent to saying that for all
n€ N and for all U € % there exists ¥ € # such that ¥ < U.

If Vo X X X and 4 X, then the section of V over A4 is the subset of X
defined by V(4)={x€ X: there exists y €4 such that (y,x)e V| If
A = {x}, we write V(x).

For a good account of the most important properties of uniform spaces we
refer the reader to [2].

For definitions and results on prefilters and on fuzzy convergence we refer
to [5]

Recall that if # is a filter on X, w,(F)={n€": for all £€1,,
4 e 1)EF) and if § is a prefilter on X, 1, (&) =1 Z e 1) uEF,
e € I}. Also 1f & and G are prefilters such that for all u € § and £€ 6,
UNE#0. then we put § V G the prefilter juAN&ueF e Gl If B is a
prefilterbasis, then the prefilter generated by it is denoted by [B], i.e..

[B] = {u € I*: there exists fE B, f ul.
Also if B is a prefilterbasis we define 8 by
8 = {sup (6, ~ ©): (B)ees, € B
€€lp

ProposITION 1.1. If B and B’ are prefilterbases, then
(i) BcHB,
(i) B<[B)
(iii) BcB =>B<B".

Proof. (i) and (iii) are trivial. To prove (ii) let for all ¢ € I, u, € B, i.e.,
.= supy, (B2 — 8) where for all §€ I, and ¢ € [,. 2 € B. Then

sup (4, — €)= sup (SUP (B —d—¢))

eel

=sup sup (f—a)
aely, €.8¢€l,
e+d=a

= sup (Ve —a),

aely

where v, =SUp, sc/,.c4s-a Pt € [B]. Consequently, sup, ., (4. —¢)€E (8],
which proves the assertion.
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PROPOSITION 1.2. If B is a prefilterbasis, then [B] = [/55].

Proof.  Let u > sup,, (B, — &) where for all ¢ € I;. B, € B. Then for all
e€ly, u,=(u+e)Al >ﬂ Consequently, g, € [8] Now it is easily
checked that 4 = sup, ., (4, — €) which proves that [B] c [B]. i'o prove the
converse inclusion let 4 = sup,, (¢, — ¢) where for all ¢ € I, u, € [B]. then
for all e€ I, there exists S, € B such that §, <u, and consequently
sup, ¢, (B — &) < which shows u € [B]. N

We shall denote by B the prefilter [B] = [B].

PrOPOSITION 1.3. [f B and B’ are prefilterbases, then
(i) B< B,
(i) B=
(ili) BcB' =>B B
Proof. This follows at once from the previous propositions.
PROPOSITION 1.4. If & is a prefilter, then & = §.

Proof. This follows at once from Proposition 1.2.

2. DEFINITIONS AND FUNDAMENTAL PROPERTIES

If X is any set, # € I* and v € I"**, then we define the section of v over
by

v{uy(x) = sup u(y) Av(y. x) for all x€X.
yex
IfAcXand Uc X X X, then 1,(1,)=1;,,-
If u =1, for some x € X we shall denote the section of v over u by v(x) or

v, instead of v({1,).
If v, ¢ € I¥*¥ we define their composition as

vo &(x, y)y=sup &(x, z) A v(z, y) forall (x,y)EXXJX.
z€X
Again if U, V< X X X it is clear that 1, ol,,—lL e o
If vE€ FF* and n€ N, we denote by v the fuzzy set p=vo v induc-

tively defined from y=vow
If v € I *%, we define its symmetric by

Mx p)=v(p, x) for all (x,y)EX XX.

fUcXXX, then 1. =1,_.
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DerFINITION 2.1, A fuzzy uniformity on X is a subset U < I*** which
fulfills the following properties:
(FUL) U is a prefilter.
(FU2) fi=U, e, for every family (v,),,, € U= sup ., (v.— &) € U
(FU3) For allve U and for all x € X, v(x, x)= 1.
(FU4) Foralvel, yel
(FUS) For all ve U and for all ¢ € [, there exists v, € U such that

oo, —EL

The pair (X, U) will be called a fuzzy uniform space. The members of U are
called fuzzy entourages.

DEFINITION 2.2. A subset B < I**¥ is called a fuzzy uniform basis if

and only if the following conditions are fulfilled.

(FUBIL) B is a prefilterbasis.

(FUB2) For all € B and for all x € X, f(x, x)= 1.

(FUB3) For all §€ B and for all ¢ € I, there exists §, € B such that
B —e< P

(FUB4) For all § €8 and for all ¢ € I, there exists §, € B such that
BeobBe—e<P.
Obviously (FUB3) and (FUB4) can be replaced by the single condition

(FUB3') For all § € B and for all ¢ € I, there exists §, € B such that
ﬂf ° ﬁf - 6 < Sﬁ'

DerINITION 2.3. If U is a fuzzy uniformity on X, then we shall say that

B is a basis for U if and only if B is a prefilterbasis and B = U.

The following propositions are immediate consequences of the definitions,
and the proofs are left to the reader.

PROPOSITION 2.1. If B is a fuzzy uniform basis, then B is a fuzzy
uniformity with B as basis. Conversely, if B is a basis for a fuzzy uniformity,
then B is a fuzzy uniform basis.

ProposITION 2.2. If U is a fuzzy uniformity on X, then the family of
symmetric fuzzy entourages

MAd={reU: y=v}

is a basis for U. In particular, U] =U.
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PROPOSITION 2.3. The map :1¥— I* defined by g=inf, .y wu) is a
Sfuzzy closure operator.

Proof. (FC1) follows at once from the obvious fact that for any a
constant and any vE€ U, wa)=a. (FC2) follows from (FU3). To prove
(FC3) let u, £ E€ I*, then

uVE=inf WuVE)
rel

inf v(u) V (&)

Vv

inf v(u) V inf V(&) =aVE
rel r'ell

while the reverse inequality follows from the observation that for any
v EW v VVE v Av{uVE).

To prove (FC4) let u € I*, then it suffices to show that for any ¢ € I, and
any v € U there exists a v €U such that v(u) > v () —e. Choose ' €U
such that v o v — g  v; then for any x € X, we have

v{)(x) = sup p(y) Av(y.Y)

Vv

sup (P)A (W o V)3 x)—¢€
yeX

sup supu(Y) AV (y.z) Av'(z,x)—¢

yeX zeX

>sup v'(z,x) A (inf sup u(y)Av'(yz))—¢
zeX rell vex

=sup V' (z, x) AN jg(z) — €
reX

=V {I)(x) — &

PrOPOSITION 2.4. [If B is a basis for the fuzzy uniformity U, then for all
u € 1* we have

= ok B = nf, x o= el
Proof. Since BB <U and B [B|cl, it suffices to show the
following. Let u € I* and let € € I,; then since for all v € U there exists
B € B such that §— ¢ v, it follows that
a> inf [(f—e)VO[()> inf flu)—e

which proves that 2 > inf, ., f(u).
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DEFINITION 2.4. Let (X, U) and (X', W) be fuzzy uniform spaces and
Sf1 X - X'. We say fis uniformly catinuous if and only if for all v € U’ there
exists v € U such that v (f X f/)7'(V').

This is obviously equivalent to saying that for all v €W
(f X f)""(»)E U or that there exists v € U suchs that (f X f)(v) <V

ProposiTiON 2.5. [If (X, U) and (X', U') are fuzzy uniform spaces, B
and B' are bases for W and W, respectively, and f: X - X', then [ is
uniformly continuous if and only if for all f/ € B' and for all € € I, there
exists B E€ B such that f—e < (f X f)(B).

Proof. Follows at once from Definition 2.4 and (FU2).

COROLLARY 2.6. If (X,U) and (X', U') are fuzzy uniform spaces and
[+ X - X', then f is uniformly continuous if and only if for all v/ € W' and for
all € € I, there exists v E U such that v—e < (f X f)7'(V).

Proof. Since each fuzzy uniformity is obviously a basis for itself, this
follows at once from Proposition 2.5.

THEOREM 2.7. If (X,U) and (X', W) are fuzzy uniform spaces and
[+ X - X' is uniformly continuous, then f is continuous.

Proof. Let u € I* and x' € f(X); then
Sy = inf v{f@)x)

= inf sup u(t) A V(/(1). )
r'el’ rex

On the other hand, since f is uniformly continuous, for any v € U’ there
exists a v € U such that for all 5,2 € X, v'(f(¢), f(5)) > v(t, 5); consequently,
for all x€ f'(x")

SW') = inf sup u(1) A V(S (1), f(x)

> inf sup u(t) A v(t, x) = ig(x).
rell tex

Consequently,

F@)(x)> sup @)= f@K).
xef-Hx")

409/82/2-6
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3. THE OPERATORS w, AND 1,

The following operators are the uniform analogues of the operators w and
1 introduced in [3].
If Z is a uniformity on X, then we define

W @)= {uE Ve €L, U e, 1| €7}

and if U is a fuzzy uniformity on X, we define

L) =14 e 1 u€W e}

In Theorem 3.1 we prove that w, (%) is a fuzzy uniformity on X. A fuzzy
uniformity of this type is called generated (by 7).

We denote the topology associated with a uniformity Z by T(Z') and the
fuzzy topology associated with a fuzzy uniformity U by #(U), i.e., #(U) is the
fuzzy topology whose fuzzy closure operator was introduced in
Proposition 2.3.

THEOREM 3.1. [If 7 is a uniformity, and U a fuzzy uniformity on X, then

(i) w, (Z)is a fuzzy uniformity on X.

(ii) 1, (W) is a uniformity on X.

(i) 1,00 7) =7

(iv) w1, (0)) is the coarsest fuzzy uniformity generated by a

uniformity and which is finer than U. We denote w ,(1,(0)) by U.

V) Hw,#))=uo(T@)).

(vi) TG, U)) = i(z(U)).

(vil) ¢(U) = Q).

Proof. (i) (FU1) follows at once from the fact that w, (%) = w, (#). To
show (FU2) let (v).e;, €@ L#)Yo and S€I,. Put ¢,=(l —6)/2 then
g, +0 €I, and

(sup (e — &) 7'0 1= U v 'le+ 6 1] o0 [eo + 6, 1]
€€l €€l
which implies sup, ¢, (v — €) € w, (7).

(FU3) and (FU4) are immediate. To prove (FUS) let v€ w,(#) and let
¢€1I,. Put =1 —¢ € /,; then since N 16, 1] € Z, there exists U € Z such
that Uo Uc v |8, 1]. Now if we put &= 1, then (€ w, (#) and £ &
v + ¢ which proves (FUS).
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(ii) (U1l) follows at once from the observation that L, (W) =1, (U).
(U2) and (U3) are immediate.

To prove (U4) let u€ U and ¢ € I,. Since (1 —¢)/2 € I, it follows from
(FUS) that there exists €U such that &oé&<u+ (1—¢)/2. Since
(1+e)/2€1,, we have that U=¢'|(1+¢)/2, 1] €1, (). It is easily
checked that Uo Uc y le, 1

(iii) Immediate by definition.
(iv) Follows from (iii) and the fact that w, and 1, are isotone maps.

(v) Suppose u is t(w,(#))-closed. To show it is w(T(#))-closed it
suffices to show that for all ¢€ 1, Zt [e, 1] is T(#)-closed. Let x€
MNyer VA 4 [, 1]). This implies that for all V€%, 1 w{)(x) > e. Remark
that the family {1,: V€ #Z'} is a basis for the fuzzy uniformity w,(#). This
follows easily from the definitions of basis and of @ «(#). Consequently,
from Proposition 2.4, u(x) = @(x) > ¢ which proves ,u [e, 1] is T(# )-closed.

Conversely let 4 be w(T(Z))-closed. Suppose x € X and ¢ € I, are such
that u(x) < &. From

dle1]s () V(u[el)

Ver

it follows that there exists V, € Z such that x & V( M [e, 1]), i.e., for all
zE€ X, u(z) A 1, (2, x) < e. Consequently i(x)<e. Since this holds for all
€ > u(x), it follows that Z(x) < u(x).

Further if u(x) =1, then g(x) = 1. Thus, we have shown that 7= u.

(vi) Suppose 4 is T(1,(U))-closed, i.e.,
A= {4 e 1d):u€U e €L,
={x:YueU VeI, sup 1,(z)Au(z,x)> ¢}
zeX

= {x: inf sup l,(z) Au(z,x)=1}
HEU zeX

_ (1 till)) l(l).
Now since #(U) < #U)(t(U) = w((¢(U))) [3]), it follows that
it‘u’ 2 _Al(u) = lzian

which implies

AU = (L)~ (D e (1,") (1) = 4.

Consequently, 4 is 1(f(U))-closed.
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Conversely, suppose 4 = ,u [6, 1] where u is ¢(U)- closed and 6 €L Let
xE AT then for allvE U and foralle €1, x € p Je. 1](4), i.e., for all
vEU and for all ¢ €I, there exists z, €X such that u(z,)>J and
¥(z,. x) > &; consequently,

(i) if o<1, then choose &> d=pu(z,) Av(z,,x)>3d such that
SUP, e () A ¥(z %) > 6

(it) if d=1. then for all ¢ <1, p(z))=1 so that u(z, )N v(z,.x)=
v(z,, x) > ¢ which again implies sup_.,u(z) A v(z, x) 2 1 = 6.

Since this holds for all v € U, we have

inf sup u(z) A v(z,x) >0
rel zeX

ux)=p(x) >0
which implies x € 4. Consequently, 4 is T(i,(U))-closed.

(vii) Follows at once from (v) and (vi).

DEerFINITION 3.1. We say that a fuzzy topological space (X,4) is fuzzy
uniformizable if and only if there exists a fuzzy uniformity U on X such that
4 = tU).

CoROLLARY 3.2. A topological space (X, £') is uniformizable if and only
if (X, w(%)) is fuzzy uniformizable.

Proof. Y # =T(%), then w(¥ )= w(T(#)) = t{w, (#)) and conversely if
w(£ ) = tU), then & = 1(t(U)) = T, (X))

THEOREM 3.3. (i) If (X,%) and (X', %') are uniform spaces, then
f: X— X' is uniformly continuous in the usual sense if and only if it is
uniformly continuous when considered as a map between the fuzzy uniform
spaces (X, w (%)) and (X', w (#Z")).

(i) If (X,U) and (X', W) are fuzzy uniform spaces and f: X - X' is
uniformly continuous, then it is also uniformly continuous when considered as
a function between the uniform spaces (X, 1,(1)) and (X', 1,(U)).

Proof. This is an easy consequence of the definitions and the obvious
fact that for any ' € ¥ and any e€l, (f X ) ' e 1])=
(X )7 Hw)) e 1.
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4. INmTiAL Fuzzy UNIFORMITIES

An important construction is that of initial—or weak—fuzzy uniformities.
More precisely, given a family (X;, U;, f});., where for each j € J, (X;, U;) is
a fuzzy uniform space and f; a function from some set X to X;, we want to
construct on X a coarsest fuzzy uniformity making each function f;
uniformly continuous.

By methods which, apart from some technicalities, are perfect duplicates
of the classical ones the reader can easily establish the proof of the following
theorems.

THEOREM 4.1. Given a family (X, Y, fi)jes where for each j€EJ,
(X;, U;) is a fuzzy uniform space and f; a function from some set X to X,
there exists a coarsest fuzzy uniformity on X making each f; uniformly
continuous. This fuzzy uniformity has as basis the family

Unf (X )7 ()i vy € Uy, Ty €2

and is called the initial—or weak—fuzzy uniformity on X for the family
(X, U;, f;)es- It is denoted sup;.,(f; X f;)~"(U)).

If (X', W) is a fuzzy uniform space and f: X’ — X, then if X carries the initial
fuzzy uniformity, f is uniformly continuous ifand only if each f; o f is
uniformly continuous.

THEOREM 4.2. Given a set X, a family of fuzzy uniform spaces
(X;, U,); ;s a partition (J,),c, of J, a family of sets (X}), ., for each A €L
a function h, from X to X' and for each A € L and j € J, a function g, from
X', to X;. We equip each X', with the initial fuzzy uniformity for the family
(X;, Uy, gn)jey,- Then the initial fuzzy uniformity on X for the family
(X;, U;, gjao hy)e, is equal to the initial fuzzy uniformity on X for the family
(X' supjc, (81 X g U, Ay -

Three particular cases of the result of Theorem 4.1 are worth considering.

Given a set X a fuzzy uniform space (X’, i’} and a function f: X - X’, the
initial fuzzy unifcrmity on X for (X', W, f) is also called the reciprocal
fuzzy uniformity and it follows that a basis for it is given by the family

{SX) )y ewy

Given a fuzzy uniform space (X,U) and a subset Y X, the fuzzy
uniformity induced on Y is the reciprocal fuzzy uniformity for (X, U, i,)
where i,: Y < X is the canonical injection. The fuzzy entourages for this
structure are given by

{(*lyyyivE U}
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we denote it by U, ,. (Y, U], ,) is called a fuzzy uniform subspace of
(X, u.

Given a family (X, U;);., of fuzzy uniform spaces, the product fuzzy
uniformity on [[;., X; is the initial fuzzy uniformity on [];., X; for the
family (X;, U;, pr;);.,, where pr; denotes the jth projection.

We now return to the general case and show the following theorem which
proves that the operation of taking an initial fuzzy uniformity is compatible
with that of taking an initial fuzzy topology [4].

THEOREM 4.3. If X is a set, (X;, U;);., a family of fuzzy uniform spaces
and for each j€ J, f;: X - X, then

Hsup (f; X /)" (U;)) = sup /().

LEMMA 44. If X is a set, (X',4') a fuzzy topological space and
S X~ X', then the fuzzy closure operator associated with the reciprocal
Juzzy topology on X is given by

="' W)  forall wer:
Proof. Let u € IX, then
#g=inf{f~'(u'): 4’ closed, f~'(u') > u}
= [ '(inf{u": ¢ closed ¢’ > f(u)})
=/ (W)
LEMMA 4.5. If X is a set, (X", ') a fuzzy uniform space and f: X - X',
then t((f X f)~'QW)) = £ (")),

Proof. Denote the fuzzy closure operators associated with
H(f X f)~'')) and f~'(¢(U')) respectively "' and ~% Let u €I and
x € X, then from Lemma 4.4

a2 (x)= £~ (f(w)x)
= inf v {(S(@)(f(x))

v'elu

= o e g, MDAV T

= jnf sup u(y) AV(f(3). f(x))
= inf (/' X) "0 Hwx)

=f'(x).
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LEMMA 4.6. If X is a set and (M,);., a family of fuzzy uniformities on X,
then

t(sup U;) = sup #(1;).
jed jeJ

Proof.  t(sup;, IIJ)Dsupje ;t(";) is clear. To prove the other inclusion
we shall denote closures in #(sup;, U;) and in sup,, #(1;) respectively by -t
and ~

Closure in £(U;) shall be denoted . Let 4 € I* and x € X. Now put

= 2(Ujsjuj)’
then

g'(x)= inf sup mf u(¥) Av(y, x)

He# yex V€

= inf inf §up#(}’)/\h(J’)(J’ax) (1

He# heHX

Next put 7" = {K € 2V sup,; ,,x & > 1}

d(x)= inf sup &(x)

Ke#¥ (j.hek

= inf sup inf sup ) A vy, x)

Ke#? (j.D ek Vi€U; yeX

= jnf inf sup sup S A g(J, (>, x), (2)

Ke# 8€Gg (j.f)eK ye€

where we have put

Gy={g:K-> U U,V(iOEK, g(j&)eU;.

(J,§)eK

Since we want to show that Z'(x) > i#*(x), it suffices from (1) and (2) to
show that for all H € # and for all h € H* there exists K € % and g € G
such that for all y€ X

u(y) N R(p)(p, x) > Sup, &(») A gl &), x).
Let H={v, €Y, ,..v,EW; } and h € H".

Then for all i = 1,..., n, put X,;=h~'(v). Clearly, the family (X,)]_, covers
X and is mutually disjoint. Then we define

K= {(jl,,ulxl)a--'a (jnhu|X,,)}
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Since sup’_ 1(,u|Xl)j' > supl'_, #t|y, = u, we thus have that K €.#. Next define
g€ Gy by
g tly) =v;-

Now if y € X, then if k is such that y € X,, it follows that

Sup SN gL O x) = st'l'rl) lx (3) A v 30 x)
Jh8) € =

=u(3) A v ps x)
=u(3) N h(y)(y, x)
which completes the proof of Lemma 4.6.

Proof of Theorem 4.3. This now follows at once from Lemmas 4.5 and
4.6 since

{(sup X W)= sup 1 x )7 Wy)
JE €
= sup fjil(t(uj))‘
jed
That the operation of taking an initial fuzzy uniformity or an initial

uniformity also behaves well when connected to the operators w, and 1, is
shown in the next twc theorems.

TueoREM 4.7. If X is a set, (X;,%,);c; a family of uniform spaces and
Joreach jEJ, fi: X = X;, tien

w,(sup (3 X fj)"'#)) = sup (f; X /)" (0, ).
Proof. Since for each choice of a finite number of entourages
Uy €4 U, €7,
lrf,-,x,f,»,)flel)n- C X S MU
= X ) ) A A X ) ()

and since the fuzzy sets on the left-hand side form a basis for
w,(sup;¢,(f; X f;)7'(#)) and those on the right-hand side form a basis for
sup;,(f; X f;) "(w (%)) the result follows.

THEOREM 4.8. If X is a set, (X;, U;);c, a family of fuzzy uniform spaces
and for each jE€ J, fi: X - X, then

1(sup X)) = sup (f; X )71, ().
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Proof. Since for each choice of a finite number of fuzzy entourages
v €Uy €U

(U3 X )7 0y ) A e A, X f,) 7 03,) 7 e 1
= (X )70 e ID O OV, X )0y, e 1)
and since the fuzzy sets on the left-hand side form a basis for
1,(sup;e,(f; X f;)7'(U;)) and those on the right-hand side form a basis for
sup;,(f; X /;)~'(1,(1,)) the result follows.

As an immediate consequence of Theorems 4.3, 4.7, and 4.8 we have the
following corollary:

CoRrROLLARY 4.9. If X is a set, (X;.U;);c, a family of fuzzy uniform
spaces, (X;, Z,);c, a family of uniform spaces and for each jE€ J, f;: X - X,
then

(1) Hewu(sup;e,(f; X £) ™ (#))) = sup;e,(f; X £;) ™ (H(w,(#))));
(i) T(youp;e,05 X /)™ ()) = supse,(fy X £) ™ (T, QL))):
(iii) SupjeJ(f} X fj)_l(uj) = Supie.l(f} X f;)7 l(ﬁj)'

5. SoME RESULTS ON THE Fuzzy ToPOLOGY ASSOCIATED WITH A Fuzzy
UNIFORMITY

ProposSITION 5.1. If (X, W) is a fuzzy uniform space and u € I**¥, then
Sor t(U) X t(U) we have

g=inf roygon.

redl

Proof. 1f pr, and pr, denote first and second projection, respectively,
then for any £€ I**¥ and any (x, y) and (x’, ') in X X X

(pry X pry)~H(E(x, 1) (X' ) = &(x, X7,

(pra X pra) = (E)(x, 1), (x5 7)) = &0 3"
If for all v,v" € U we put

v (0, 2 (X 11) = v X)) A ()

then it follows at once from Theorem 4.1 that B={v+v:v,v € U} is a
basis for U X U. Since for any v,v' € U Av' )+ (v AV )Y+, it is also
clear that ' ={r+w v € U} is a basis for U X U. Consequently, from
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Proposition 2.4 and Theorem 4.3 it follows that for any u € I*** and any
(x, Y)EXXX

a(x, y)= igfu vk v(uX(x, ¥)

=inf sup v{x,f) Au(t,s) Av(s, )

ve (£,5)EX XX

= inf vouovix, y).
ved

CoOROLLARY 5.2. If (X,U) is a fuzzy uniform space, then the closed
Juzzy entourages form a basis for .

Progf. Let vEU and let ¢ € /,. Choose v, € U such that 1320—6<v.
Then

- . 3
Jo—e= Inf vV opyjov —egLvyg—em
r'edl

We recall that a fuzzy topological space is called Hausdorff {6] if and only
if each (prime-) prefilter has a limit which is non-zero in at most one point.

THeEOREM 5.3. (X, t(N)) is Hausdorff if and only if inf . v= 1, ,,.

Proof. Suppose (X, t(U)) is Hausdorff and let x+ y € X and ¢ € [, be
such that for all v € U v(x, y) > €. It is very easy to see that

§.={riveU}
and
&, = {rivE U}

are prefilters in X. Since for all v,v' €U v, A vi(y) =v(x, ) > ¢, it follows
that §, V §, exists and that ¢(§, V &,) > ¢. Consequently, it follows from
Proposition 2.1 in [5] that there exists G € P,(F,V &,) such that
c(®) > ¢/2. Then it follows that

lim G(x) = {in(t; Ex)= {ing inf sup &(z) Avix, z)
€ €® vel z

= inf inf sup & A u(z)

{€® HEF, z€X

= inf sup &(z) > ¢/2.
{€G zeX

Analogously, however,

lim ®(y) > ¢/2



FUZZY UNIFORM SPACES 385

which is in contradiction with the Hausdorffness of (X, ¢(U)). Conversely,
suppose ® is a prime prefilter, x # y € X, and ¢ € [, such that lim ®(x) > ¢
and lita ®(y) > . From inf ., v=1,, it follows that there exist v € U such
that v(x, y) < ¢&/2. Choose v € U such that v ov' —¢/2 v; clearly then
v A v e If we put

N,=v.""0,¢].
N, =v,7'[0,¢],

then from the fact that ® is prime it follows that, for instance, 1, € ®. Con-
sequently,

lim G(x) = inf(5 i(x)

1y (x)

x

NN

t

up Iy Avi(z)<e,
ex ' F

which is a contradiction.
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