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INTRODUCTION 

In this paper we introduce the notion of fuzzy uniform spaces. In Section 2 
we give some basic results and show how a fuzzy topology is derived from a 
fuzzy uniformity. In Sections 3 and 4 we prove that the notions which are 
introduced are good extensions and we prove that the category of uniform 
spaces is nicely injected in the category of fuzzy uniform spaces. Finally in 
Section 5 we prove some basic results about the associated fuzzy topology. 

1. PRELIMINARIES 

The unit interval is denoted I, 10, I] is denoted I, and [O, 1 [ is denoted I,. 
If X is a set and Y c X. then the characteristic function of Y is denoted 

1 i.. Also if X is a set, then the set of all finite subsets of X is denoted 2”‘. 
If f is a function from a set X to a set X’, then we denote f x f the 

function XX X+X’ x X’ defined by f X f(-K, y) = (f(x),f(y)) for all 
(x. y) E x x x. 

A fuzzy closure on X [3] is a map -: I* + fx which fulfills the properties: 

(FC 1) For all a constant, U = a. 

(FC2) For all p E Ix, ,Z>,D. 

(FC3) For allp, c$EI~,,uV~=,LTV~. 

(FC4) For all ,D E Ix, ,i? = ,ii, 

If X is a set, the diagonal of X x X is denoted D(X). 
If U c X X X, the symmetric of U is defined by {(y, x): (x, y) E LT} and is 

denoted by CT-‘. 
If U. V c XX X, then their composition U 0 V is defined as the set 

((.u, j’) E X x X: there exists z E X. (x, z) E V, (z, ~1) E U). 
A uniformity on X is a subset Z? of Ix”’ fulfilling the following properties 

(Ul) K is a filter. 
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(U2) For all U E %‘, D(X) c U. 

(U3) For all UE 9, U-‘E P. 

(U4) For all U E 9c, there exists V E % such that V o Vc CJ. 

If Vc X x iy and n E N, we denote by !’ the set p= Vo ‘?’ inductively 
defined from V = V o V. Clearly then (U4) is equivalent to saying that for all 
n E bJ and for all U E Ir/ there exists V E P such that kc U. 

If V c X x X and A c X. then the section of V over A is the subset of X 
defined by I’@) = (x E X: there exists J E A such that (J: x) E I’). If 
,4 = {x). we write V(x). 

For a good account of the most important properties of uniform spaces we 
refer the reader to 121. 

For definitions and results on prelilters and on fuzzy convergence we refer 
to [5]. 

Recall that if F is a filter on X, w[,(X) = (,D E I.‘: for all E E I,, 
i’ ]e. 1 ] ET} and if 3 is a prefilter on X, I[,@) = ( i’ ]E, 11: ~1 E 5, 

E E I,}. Also if 5 and (5 are pretilters such that for all ,B E 5 and c E 0, 
,u A r # 0. then we put 5 V 6 the prefilter (p A <: p E ?j, < E O}. If B is a 
prelilterbasis, then the prefilter generated by it is denoted by [!B], i.e.. 

[B] = {,B E IX: there exists /I E 3, p <p 1. 

Also if 23 is a pretilterbasis we define @ by 

PROPOSITION 1.1. If 23 and B’ are prefilterbases, then 

(i) 8 cQ, 

(ii) 8 c [Q], 

(iii) Bc!B’*B~C’. 

ProoJ (i) and (iii) are trivial. To prove (ii) let for all E E I,, ,K’, E $#, i.e., 
,D, = supGEI,(/?~ - S) where for all 6 E I, and E E I,,. p,S E B. Then 

w,p (& - E) = silp, (;tp (Pf - 6 - 6)) 
II 0 

= sup SUP (PP-4 
act, E.dEI” 

c+S=Ll 

= sup (V, - a), 
aEIg 

where v, = su~,.~~~,.~+~=~ /I,” E [B]. Consequently, sup,E,O(P~ - s) E [B], 
which proves the assertion. 
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PROPOSITION 1.2. If23 is a prefilterbasis, then [@] = 61. 

Proof: Let P > su~,~,,(P~ - ) h E w ere f or all E E I,. /I, E B. Then for all 
EEI,, ,LJ, = (p + E) A 1 >,!I,. Consequently, ,D, E [B]. NAW it is easily 
checked that ,u = SUP~~~~(,U~ - E) which proves that [Q] c [d]. ‘i‘o prove the 
converse inclusion let p = sup EEIO(,uuc - E) where for all E E I,,, ,u, E [B]? then 
for all E E I, there exists p, E 8 such that p, <p, and consequently 
s~p,~,~(p~ - E) < ,D which shows ,u E [@I. 

We shall denote by 3 the prefilter [6] = [g]. 

PROPOSITION 1.3. If 23 and 23’ are prefilterbases, then 

(i) 933% 
(ii) S=S. 

ProoJ: This follows at once from the previous propositions. 

PROPOSITION 1.4. If 5 is a prefilter, then fj = 8. 

Proof: This follows at once from Proposition 1.2. 

2. DEFINITIONS AND FUNDAMENTAL PROPERTIES 

If X is any set, ,U E Ix and v E Ixxx, then we define the section of r over ,U 
by 

IfAcXand UcXxX, then lLr(lA)= lL+,,. 
If p = 1, for some x E X we shall denote the section of v over ,U by v(x) or 

r, instead of V( 1,). 
If v,CEIXXX we define their composition as 

v 0 ((x, y) = SllQ @x, z) A )?(z, Y) for all (x, .v) E X X X. 

AgainifU,VcXxXitisclearthat lt,o l,=l,,;,.. 
If VE IXXX and n,E n\l, we denote by c the fuzzy set c = v 0 

n-1 
v induc- 

tively defined from v = v 0 V. 
If )I E IXXX, we define its symmetric by 

p(x, J’) = v( 4’3 x) for all (-r, .tl) E X X X. 

If U c X x X, then s 1 CT = 1 L:m,. 
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DEFINITION 2.1. A fuzzy uniformity on X is a subset U c Ixxx which 
fulfills the following properties: 

(FIJI) U is a prefilter. 

(FU2) fi = U, i.e., for every family (17~)~~~~ E U’O Z- SU~,~,~(V, - E) E U. 

(FU3) For all v E Ll and for all x E X, v(.u, x) = 1. 

(FU4) For all v E ll, ,r E U. 

(FU5) For all v E U and for all E E I,, there exists v, E U such that 
I’, 0 I’, - E < 1’. 

The pair (X, U) will be called a fuzzy uniform space. The members of U are 
called fuzzy entourages. 

DEFINITION 2.2. A subset 21 c Ixxx . IS called a fuzzy uniform basis if 
and only if the following conditions are fulfilled. 

(FUBl) 9 is a prefilterbasis. 

(FUB2) For all /I E B and for all x E X, p(x, x) = 1. 

(FUB3) For all /I E 21 and for all E E I,, there exists p, E B such that 
P, - E < ,P. 

(FUB4) For all p E ‘23 and for all E E I,, there exists p, E 93 such that 

P,oP,-E<P. 

Obviously (FUB3) and (FUB4) can be replaced by the single condition 

(FUB3’) For all /3 E 9 and for all E E f, there exists p, E 8 such that 
P, o j3, - E < ,P. 

DEFINITION 2.3. If U is a fuzzy uniformity on X, then we shall say that 
‘B is a basis for U if and only if 23 is a prefilterbasis and 8 = U. 

The following propositions are immediate consequences of the definitions, 
and the proofs are left to the reader. 

PROPOSITION 2.1. If B is a fuzzy uniform basis, then d is a fuzzy 
uniformity with 93 as basis. Conversely, $8 is a basis fo.0 a fuzzy uniformity, 
then B is a fuzzy uniform basis. 

PROPOSITION 2.2. If U is a fuzzy uniformity on X, then the family of 
symmetric fuzzy entourages 

$.I = (VE u: 5v= v) 

is a basis for U. In particular, [,U] = U. 
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PROPOSITION 2.3. The map -: I” + Ix defined by p = inf,,,,, v(,uj is a 
fuzzy closure operator. 

Proof: (FC 1) follows at once from the obvious fact that for any u 
constant and any r E U, r(a) = a. (FC2) follows from (FU3). To prove 
(FC3) let ,D, < E P’, then 

while the reverse inequality follows from the observation that for any 
v, v’ E u, v(p) v v’(l) > v A v’(p v [). 

To prove (FC4) let p E Zx, then it suffices to show that for any E E I, and 
any r E U there exists a 11’ E U such that v(p) > v’(p) - E. Choose r’ E II 
such that V’ o v’ - E < V; then for any x E X, we have 

v(p j(x) = SUP p( 4') A F(F, S) 
SEX 

> sup p(g) A (r’ 0 V’)(4’. x) - E 
,‘EX 

= sup sup p(y) A v’( 4’. z) A Y’(Z, X) - & 
SEX LEX 

> ;!F v’(z, x) A ( inf sup P( -11) A r”(J, z)) - E 
r”EU ,‘EX 

= w,p v’(z, x) A ,ii(z) - E 

= v’@)(x) - E. 

PROPOSITION 2.4. If 93 is a basis for the fuzz41 uniformity ll, then for all 
,u E I” we have 

Proof: Since 8 c 9 c U and B c [%I c II, it suffkes to show the 
following. Let ,u E 1’ and let E E I,; then since for all 1’ E U there exists 
/3 E B such that /3 - E < v, it follows that 

which proves that ,E > inf,,, p(p). 
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DEFINITION 2.4. Let (X, U) and (X’, U’) be fuzzy uniform spaces and 
f: X + X’. We say f is uniformly cntinuous if and only if for all v’ E U’ there 
exists I’ E U such that v < (f x f)-‘(v’). 

This is obviously equivalent to saying that for all v’ E U’ 
(f x f)-‘(~7’) E U or that there exists r E U suchs that (f X f)(v) < v’. 

PROPOSITION 2.5. If (X, U) and (xl, U’) are fuzzy uniform spaces, 8 
and 8’ are bases for U and ll’, respectioely, and f: X+X’, then f is 
untformly continuous if and onlv tf for all p’ E W and for all E E I, there 
exists ,t3 E F3 such that /I - E < (f x f )-I(/?‘). 

Proof Follows at once from Definition 2.4 and (FU2). 

COROLLARY 2.6. If (X, U) and (X’, U’) are fuzzy uniform spaces and 
f: X- X’, then f is uniformly continuous if and only iffor all v’ E U’ and for 
all E E I,, there exists v E U such that v - E < (f x f)-‘(v’). 

Proof Since each fuzzy uniformity is obviously a basis for itself, this 
follows at once from Proposition 2.5. 

THEOREM 2.7. If (X, U) and (X’, U’) are fuzzy uniform spaces and 
f: X + X’ is uniformly continuous, then f is continuous. 

Proof: Let p E f’ and x’ E f(X); then 

f(P)(X’) = ,,‘$ v’(f (u)W) 

= ,,i&lf,, wg P(t) A v’(f (t), x). 

On the other hand, since f is uniformly continuous, for any v’ E U’ there 
exists a v E U such that for all s, t E X, v’(f(t), f(s)) > v(t, s); consequently, 
for all x E f -‘(x’) 

Consequently, 
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3. THE OPERATORS w, AND lu 

The following operators are the uniform analogues of the operators w and 
I introduced in [3]. 

If ?Y is a uniformity on X, then we define 

and if ll is a fuzzy uniformity on X, we define 

l,(U)= ( jl’]E, l]:puE U,& El,}. 

In Theorem 3.1 we prove that o,(W) is a fuzzy uniformity on X. A fuzzy 
uniformity of this type is called generated (by ?V). 

We denote the topology associated with a uniformity % by T(p) and the 
fuzzy topology associated with a fuzzy uniformity U by t(U), i.e., @I) is the 
fuzzy topology whose fuzzy closure operator was introduced in 
Proposition 2.3. 

THEOREM 3.1, If M is a uniformity? and U a fuzzy uniformity on X, then 

(i) 0,(2zj is a fuzzy uniformity on X. 

(ii) l,(U) is a uniformity on X. 

(iii) rJo,(%)) = %. 

(iv) o,(r,(U)) is the coarsest fuzzes uniformity generated by a 
uniformity and which isjker than U. We denote w,(r,(U)) by D. 

(v) t(o,(U) = Q-OF/))- 

(vi) V,(W) = l(W)). 
(vii) t(u) = t(u). 

Proof: (i) (FUl) follows at once from the fact that CO,(%) = w,,(p). To 
show (FU2) let (u,),,~, E w,(%)‘~ and S E I,. Put E,, = (1 - 6)/2; then 
.sO + 6 E I, and 

(y (v, - E))-‘]d, l] = u v;‘]s + 6, l] 2 v;+, + 6, 11 
II FEIO 

which implies supFE,&vE - E) E CO,(%). 
(FU3) and (FU4) are immediate. To, prove (FU5) let v E: w,(2Y) and let 

E E I,. Put 6 =- ,’ - E E I, ; then since v IS, 11 E 8, there exists U E % such 
that UoUc v ]S,l]. Now ifwe put r=lL,, then rEo,(%) and <or< 
v + E which proves (FU5). 
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(ii) (Ul) follows at once from the observation that r,(U) = r,,(U). 
(U2) and (U3) are immediate. 

To prove (U4) let p E U and E E I,. Since (1 - s)/2 E I,, it follows from 
(FU5) that there exists <E ll such that { o r <p + (1 - e)/2. Since 
(1 + El/2 E I,, we ha_“:: that U = <-‘](I + s)/2, 1 ] E r,(U). It is easily 
checked that CT o U c ,D ]e, 11. 

(iii) Immediate by definition. 
(iv) Follows from (iii) and the fact that w, and I, are isotone maps. 
(v) Suppose p is t(w,(%))-closedLITo show it is w(T(%))-closed it 

suffices to, show that for all E E Z, p [E, 1 ] is T(p)-closed. Let x E 
n,.,,, V( p [E, 1 I). This implies that for all V E 8, l,.@)(x) > E. Remark 
that the family { l,,: VE M} is a basis for the fuzzy uniformity w,(g). This 
follows easily from the definitions of basis and of w,(%). Consequently, 
from Proposition 2.4, p(x) = p(x) > E which proves i’ [E, l] is T(p)-closed. 

Conversely let ,D be w(T(?V))-closed. Suppose x E X and E E I, are such 
that .@) < a. From 

it follows that there exists V,, E % such that x @ V,( i’ [E, l]), i.e., for all 
z E X, p(z) A lV,(z, x) < E. Consequently ,0(x) < E. Since this holds for all 
E > P(X), it follows that J(x) <p(x). 

Further if p(x) = 1, then p(x) = 1. Thus, we have shown that ,L?=,u. 
(vi) Suppose A is T(r,(U))-closed, i.e., 

A=n(~“l]E,l](A):~uEU,&Ez,} 

= {x: vp E u, VE E I, wfl lA(Z) A p(z, x) > E} 

= {x: in; wf: lA(Z) A p(z, x) = 1 } 

= (iyy ‘( 1). 
-- 

Now since @I) c t(U)(t(l.t) = w(z(t(U))) [3]), it follows that 

which implies 

z(‘(u)’ = (l~,,,,l+‘(1)c (cr(u’)-‘(l) =A. 

Consequently, A is r(t(lt))-closed. 
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Conversely, suppose A = i’ [S, l] where p is t(U)-closed and 6 E 1. Let 
,Y E ~r(LUtu)‘. then for all r E II and for all E E I,, x E ;’ 1s. l](A), i.e., for all 
r E II and for all E E I, there exists z, E X such that I > 6 and 
v(z,, -Y) > E; consequently, 

(i) if 6 < 1, th en choose E > S 3 I A I-‘(z,, -u) > 6 such that 
SUPZEX &z) :‘\ I’(Z. x) > 6, 

(ii) if 6 = 1. t hen for all E < 1, I = 1 so that I A r(z,. .u) = 
v(z,, ?c) > E which again implies supZGx,u(z) A V(Z, x) > 1 = 6. 

Since this holds for all u E II, we have 

inf sup AZ) A r(z, x) > 6. 
r‘EU :EX 

i.e., 

which implies x E A. Consequently, A is T(l,(U))-closed. 

(vii) Follows at once from (v) and (vi). 

DEFINITION 3.1. We say that a fuzzy topological space (X, A) is fuzzy 
uniformizable if and only if there exists a fuzzy uniformity U on X such that 
A = t(U). 

COROLLARY 3.2. A topological space (X, S) is untformizable tfand on& 
tf (X, o(F)) is fuzzy unifo;.mizable. 

Proof. If P- = T(P), then w(K) = w(T(P)) = t(w,(V)) and conversely if 
w(F) = t(U), then F = (t(U)) = T(r,(LI)). 

THEOREM 3.3. (i) If (X, %) and (X’, 9’) are untform spaces, then 
f: X- X’ is untformly continuous in the usual sense tf and only tf it is 
uniformly continuous when considered as a map between the fuzzy uniform 
spaces (X, w,(p)) and (X’, co&?‘)). 

(ii) If (X, U) and (X’, U’) are fuzzy uniform spaces and f: X + x' is 
untformlv continuous, then it is also untformly continuous when considered as 
a function between the uniform spaces (X, t,(U)) and (X’. r,(U’)). 

Proof: This is an easy consequence of the definitions and the obvious 
fact that for any p’ E 1x’“x’ and any E E I, (f x f)-‘(p’-‘Is, 11) = 
((f x f )-‘(P’))-‘lG 1 I. 
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4. INITIAL FUZZY UNIFORMITIES 

An important construction is that of initial-r weak-fuzzy uniformities. 
More precisely, given a family (Xj, Uj, jJ)jEJ where for each j E J. (Xj, Uj) is 
a fuzzy uniform space and fj a function from some set X to Xi, we want to 
construct on X a coarsest fuzzy uniformity making each function fi 
uniformly continuous. 

By methods which, apart from some technicalities, are perfect duplicates 
of the classical ones the reader can easily establish the proof of the following 
theorems. 

THEOREM 4.1. Given a family (Xi, lZj, &)jEJ where for each j E J, 
(Xi, Uj) is a fuzzy uniform space and fi a function from some set X to Xi 
there exists a coarsest fuzzy untformity on X making each f. untforml) 
continuous. This fuzzy untformity has as basis the familJt 

and is called the initial-or weak-fuzzy uniformity on X for the family 
(Xi, Uj, f;.)jEJ. It is denoted SUpj,,(f, X fj)-‘(U,). 

If (X’, U’) is a fuzzy uniform space and f: X’ +X, then if X carries the initial 
fuzzy uniformity, f is uniformly continuous ifand only if each J; o f is 
uniformly continuous. 

THEOREM 4.2. Given a set X, a family of fuzzy uniform spaces 
Cxj, Uj)jeJ3 a partition (JF.l)., EL of J, a family of sets (X!I).AEL, for each L E L 
a function h,, from X to X(, and for each A E L and j E J.I a function gjA from 
X; to Xj. We equip each Xi with the initial fuzzy uniformity for the family 
Cxj, uj3 gj-L)jeJ,. Then the initial fuzzy? uniformity on X for the family 
(Xi, Uj, gj., 0 h.,)jp, is equal to the initial fuzzy uniformit-v on Xfor the farnib 
(x.i 7 sUPjE-/,( gi.l X gj.O- ‘oJj>, h.11.l.L. 

Three particular cases of the result of Theorem 4.1 are worth considering. 
Given a set X a fuzzy uniform space (X’, U’) and a functionf: X+ X’, the 

initial fuzzy uniformity on X for (X’, U’, f) is also called the reciprocal 
fuzzy uniformity and it follows that a basis for it is given by the family 

(;f x f))‘(v’): v’ E U’}. 

Given a fuzzy uniform space (X. U) and a subset YC X, the fuzzy 
uniformity induced on Y is the reciprocal fuzzy uniformity for (X. U, i,,) 
where i,.: Y 4 X is the canonical injection. The fuzzy entourages for this 
structure are given by 

(VI,,).: VE U); 
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we denote it by III,,,. (Y, UJ,, F) is called a fuzzy uniform subspace of 
(X3 U). 

Given a family (Xi, Ui)jeJ of fuzzy uniform spaces, the product fuzzy 
uniformity on n jeJXj is the initial fuzzy uniformity on mEJXi for the 
family (xj, uj, Prj)jcJ, where prj denotes the jth projection. 

We now return to the general case and show the following theorem which 
proves that the operation of taking an initial fuzzy uniformity is compatible 
with that of taking an initial fuzzy topology [4]. 

THEOREM 4.3. If X is a set, (Xj, Uj)jeJ a family OffUZzy uniform spaces 
and for each j E J, f.: X -+ xi, then 

t(SuP (fi X fj)-'("j))= ~Jpfi-'CtCuj)). 
jcJ 

LEMMA 4.4. If X is a set, (X’, A’) a fuzzy topological space and 
f: X-+X’, then the fuzzy closure operator associated with the reciprocal 
fuzzy topology on X is given 6)) 

F=f -‘(f(p)) for all ,a E Ix. 

Prooj Let ,u E Ix, then 

,L? = inf( f - ‘(p’): 1’ closed, f - ‘(,u’ ) > ,u ) 

= f -‘(inf(,u’: p’ closed p’ > f (p)}) 

= f-‘(f (lu)). 

LEMMA 4.5. If X is a set? (X, U’) a fuzzy uniform space and f: X + X’, 
then t((f x f)-‘(U’)) = f -‘(t(U’)). 

Proof. Denote the fuzzy closure operators associated with 
t((f x f)-‘(U’)) and f-‘(t(U’)) respectively -‘ and -*. Let ,O E F’ and 
x E X, then from Lemma 4.4 

P*(x) = f - ‘(f(P))(X) 

= ,,i$, v’(f ol))(f (x)) 

= &f, yg, (,,JJ,, cl(t)) * v’(x’, f(x)) 

= inf sup P(Y) * v’(f (Yh f (X)) L”EU’ )‘EX 

= ,,i$f,, (f x f )r’(~+)(Pxx) 

=/i’(x). 
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LEMMA 4.6. If X is a set and (llj)j,, a family offuzzy uniformities on X, 
then 

Proof: t(supjeJ Uj) 3 supjEJ t(Uj) is clear. To prove the other inclusion 
we shall denote closures in t(supj,, , U.) and in supjsJ t(Uj) respectively by -’ 
and -I. 

Closure in t(Uj) shall be denoted -j. Let p E 1’ and x E X. Now put 

p = pJ/eJv, 

then 

= inf sup inf sup r(Y) A v,(y, x) 
KEK (j.I)eK L'/cuj YEX 

= inf inf sup SUP r(Y) A g(Jit)(Y,x), 
KEK g%G, (j.[)EK YEA' 

(2) 

where we have put 

GK = 
I 

g: K + (J Uj, V(jv C) E KY g(j, <) E Uj * 
(i,b)cK I 

Since we want to show that p’(x) >p’(x), it suffices from (1) and (2) to 
show that for all If E Z and for all h E Hx there exists K E Z and g E G, 
such that for all y E X 

P(Y) A h(y!(y, xl >, (;z’E~ t(y) A g(J O(Y, xl 

Let H = (v, E Uj ,,..., v,, E U,,) and h E Hx. 
Then for all i = l,..., n, put Xi = h- ‘(vi). Clearly, the family (XJ’, , covers 

X and is mutually disjoint. Then we define 
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Since sup:, ,01.,,” > sup:, , ,U I,yi = ,D, we thus have that K E f. Next define 
gEG, by 

g(jiyPij,J=~‘i. 

Now if y E X, then if k is such that ~1 E X,. it follows that 

which completes the proof of Lemma 4.6. 

Proof of Theorem 4.3. This now follows at once from Lemmas 4.5 and 
4.6 since 

‘(;T,P (fi X fj)-‘(uj)) = SIJF f((f;. x h;.)-'("j)) 

= ;,tJp f,’ ‘(f(uj))* 

That the operation of taking an initial fuzzy uniformity or an initial 
uniformity also behaves well when connected to the operators w, and I, is 
shown in the next two theorems. 

THEOREM 4.7. If X is a set, (Xi, q.)jeJ a family of uniform spaces and 
for each j E J, fj: X + Xi, tilen 

Proo$ Since for each choice of a finite number of entourages 
uj, E q., )..., uj, E q 

lffj,Xfj,)m’CCj,b n. ’ ’ “(fin X fi,) ‘( L’i,) 

= CL, x fi,)-‘(lrj,) A *.. A <fi, x &-‘vL:i”) 

and since the fuzzy sets on the left-hand side form a basis for 
w,(supjEJ(fj x fj)-‘(P,)) and those on the right-hand side form a basis for 
supjcJ(fj x fj)- ‘(o,(q)) the result follows. 

THEOREM 4.8. If X is a set, (Xj, U,),,, a family offuzzy uniform spaces 
and for each j E J, fi: X -+ Xj, then 

l,(SUP (4 X fi>p'(uj>> = SiP (fj x fi)-'(lu(uj)). 
/EJ 



FUZZY UNIFORM SPACES 383 

ProoJ: Since for each choice of a finite number of fuzzy entourages 
l’,;, E Ujl 1*.., Uj” E Uj”. 

((A, X fi,)-‘(l!j,) A “’ A (4, Xfi,)m’(1’j,)>Fi]E3 ll 

= cfi, x fi,,-‘(l~J;‘]lE. 1 ],n ... f-7 (& x fj,,)-‘(u,;‘]E, 11) 

and since the fuzzy sets on the left-hand side form a basis for 
lU(supjEJ(fj x fj)-‘(U,)) and those on the right-hand side form a basis for 
supjEJ(fi x J~))‘(z,(U,)) the result follows. 

As an immediate consequence of Theorems 4.3, 4.7, and 4.8 we have the 
following corollary: 

COROLLARY 4.9. If X is a set, (Xi. Uj)j,, a family of fuzzy uniform 
spaces, (Xj, ?<)jEJ a family of uniform spaces and for each j E J, f.: X-, Xi. 
then 

Ci) t(Wu(SUPjE.f(fj x J;)-'(?4))) = SUPjeJ(fj X fj)-'(t(o,(q))); 

(ii) T(zu(suPjEJ(fj X fj)-'("j)))=suPj~J(fj X fi)-'(r(l,(uj))); 

(iii) s"PjcJ(fi X fi)-'("j)= s"PieJ(fi X h)-'(Uj). 

5. SOME RESULTS ON THE FUZZY TOPOLOGY ASSOCIATED WITH A FUZZY 
UNIFORMITY 

PROPOSITION 5.1. If (X, U) is a fuzzy uniform space and ,u E Ix*,‘, then 
for t(U) X t(ll) we hatle 

Proof. If pr, and pr, denote first and second kxojection, respectively, 
then for any l E Zx xx and any (x, J) and (x’, J’) in XX X 

(pr, X pr,)-‘(t)((x, ~9)~ (x’. .v’)) = t(x, .x’), 

(pr] X prJ’(Q((s, J), (.u’,J’)) = <(?: 4”). 

If for all v, v’ E Jl we put 

1’ t u’((x, y), (x’,y’)) T= v(x, x’) A l”( y, y’); 

then it follows at once from Theorem 4.1 that r) = (V * v’: I’, V’ E $I) is a 
basis for U x ll. Since for any V, 13’ E ,U(V A ~1’) * (v A v’) < v * v’, it is also 
clear that ‘21’ = (17 t I): v E ,U 1 is a basis for U x Lt. Consequently, from 
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Proposition 2.4 and Theorem 4.3 it follows that for any ,D E IX’.’ and any 
(x, 4’) E x x x 

= inf SUP 1(x, t) A ‘u(t, s) A 1’(% ?‘) 
VEIlI (r,s)EXXX 

= i&f, v 0 ,u 0 v(x, y). 
I 

COROLLARY 5.2. If (X, U) is a ~UZZJJ uniform space, then the closed 
fuzzy entourages form a basis for U. 

Proof: Let v E U and let E E I,. Choose vO E ,U such that i,, - E < v. 
Then 

3 
iiO--E= inf v’ovO~v’--&< v,-&<v. 

P’E,U 

We recall that a fuzzy topological space is called Hausdorff [6] if and only 
if each (prime-) pretilter has a limit which is non-zero in at most one point. 

THEOREM 5.3. (X, f(U)) is Hausdorflifand on/~, ifinf,,., v = l,,,Y,. 

Proof. Suppose (X, r(U)) is Hausdorff and let x # 4’ E X and E E I, be 
such that for all v E U v(x, ~7) > E. It is very easy to see that 

and 

g,= (v,:vE U} 

5, = {v,: v E U) 

are prelilters in X. Since for all v, v’ E U v,r A v:,(y) = v(x, 4’) > E, it follows 
that 3, V 3, exists and that ~(3, V 5,) 2 E. Consequently, it follows from 
Proposition 2.1 in [5] that there exists 0 E P,(s, V 5,) such that 
c(B) 2 ~/2. Then it follows that 

Analogously, however, 
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which is in contradiction with the Hausdorffness of (X, t(U)). Conversely, 
suppose 8 is a prime prefllter, x # y E X, and E E I, such that lim B(x) > E 
and lim @(jr) > E. From inf,,,, v = I,(,, it follows that there exist v E II such 
that V(X, u) < c/2. Choose v’ E $.I such that V’ o v’ - 42 < v; clearly then 
r: A ~1, < E. If we put 

N, = v;-‘[O, E]. 

N, = vi.- ’ [0, E], 

then from the fact that 8 is prime it follows that, for instance, l,S,l E 6. Con- 
sequently, 

lim B(x) = tif, Pii;(,u) 

which is a contradiction. 
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