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A function f(r) on the set of permutations of { 1, 2, . . . . n) is called arrangement 
increasing (AI) if it increases each time we transpose a pair of coordinates in 
descending order, i < j and x, > 5, putting them in ascending order. We define and 
develop a partial ordering <“I on densities of rank vectors in terms of expectations 
of AI functions. Specially, one density g is defined to be AI-larger than another 
density f (fGA’ g) if the expectation under g of any AI function is at least as large 
as its expectation under f: We show that the uniform density is the Al-smallest AI 
density, and this leads to power results for tests of agreement of two rank vectors. 
The extreme points of the convex set of AI densities are determined, from which 
additional results concerning the minimum power of rank tests are shown to follow. 
We also give applications to ranking and selection problems. (0 1992 Academic 

Press, Inc. 

1. INTRODUCTION AND SUMMARY 

A function j(rc) on the set of permutations of (1, 2, . . . . a> is called 
arrangement increasing (AI) if i < j and rci > x, *f(x) < f(rr i, . . . . rci, . . . . 
7ci, . . . . rcn,). Henery [4] proposes a probability model for outtomes of horse 
races, and in the process hints at the notion of an AI function, though he 
does not use this term. Sobel [8] defines the concept of an AI function, as 
does Lehmann [6], although Lehmann abandons it in favor of another 
partial ordering of permutations. The first thorough investigation of the 
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properties of these functions is by Hollander, Proschan, and Sethuraman 
[S], who use the term decreasing in transposition. They define an AI 
function of two vectors and show that their definition is equivalent to the 
function being AI in the second vector after ordering the first. Marshall and 
Olkin [7] prefer the term arrangement increasing. 

We define a partial ordering <*I on densities of rank vectors. Specifically, 
if f and g are densities for the rank vectors R and S, we say that f is 
AI-smaller than g (R is AI-smaller than S) and writef,<*’ g (R,<*‘S) if 
E&R) < E&S) VA1 4. It is shown that to determine whether f <*I g it 
suffices to check that E&R) < E&S) for certain AI functions called upper 
set functions. More basic functions called branch functions, whose expecta- 
tions are shown to completely determine a density on S,, are discussed. It 
is shown that among all AI densities, the uniform is the AI-smallest. This 
fact is used in Section 3 to show that a number of tests to determine 
whether there is a positive association between two rank vectors are 
unbiased against AI alternatives. The uniform density is just one extreme 
point of the convex set of AI rank densities. The extreme points are shown 
to consist of upper set densities, and these are used to find the least 
favorable distribution in testing situations. Other applications in ranking 
and selection are presented in Section 4, including power results in ranking 
problems concerning location and scale parameters. 

2. THEORETICAL RESULTS 

Let S, denote the set of permutations of { 1,2, . . . . n}. If z E S,, A E S,, we 
define roa to be the composition tort = 2, = (r,,, . . . . TJ. Under this 
operator S, is a group with identity e = (1,2, . . . . n). We say that A is better 
ordered than z, and write t <” II, if n: is obtainable from t by a sequence of 
transpositions of out of order pairs, i < j and zi > TV. We say that a function 
f(n) on S, is arrangement increasing (AI) iff(z) <f(n) whenever z <” II. 

Although we have defined an AI function on S,, we could extend 
the definition to any function whose domain is permutation invariant. 
Hollander, Proschan, and Sethuraman [S] define and give many examples 
of AI functions of two vectors. Each of these is AI in the second vector 
after ordering the first. We shall make use of the following result from 
Hollander, Proschan, and Sethuraman [S]. 

2.1. THEOREM. If f and g are AZ functions then 

is AZ. 

h(n)= 1 f(ff,-l) g(t) 
res. 
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We now define and develop properties of a partial ordering on the set of 
densities on S,. 

2.2. DEFINITION. Let f(a) and g(a) be densities for the rank vectors R 
and S. We say that f is AI-smaller than g (R is AI-smaller than S) and write 
fg*’ g (R <*I S) if Ed(R) <Ed(S) VA1 4. 

2.3. Notes. (a) This definition does not require for g to be AI. 
(b) To show that f<*’ g it suffices to verify that &5(R) <E&S) for 

all AI rank densities 4. 
(c) Let e denote the identity permutation (1,2, . . . . n) and e’ denote 

the worst ordered permutation (n, n - 1, . . . . 1). Any rank density g satisfies 

f(n)= l(rr=e’)<*‘g(~)<** l(n:=e)=h(lr). 

For fixed z E S, the set B, = (1~: ‘I <” z} will be called a branch and the 
indicator function f(n) = l(n E B,) of a branch set B, will be called a branch 
function. Branch functions are, of course, AI. The branch sets are a 
determining class, as shown in the following lemma. 

2.4. LEMMA. Zf P and Q are 2 probability measures on S, which agree on 
all branches then P = Q. 

Proof. We prove the lemma by induction. Associate with each permuta- 
tion R the integer rr, x 10’ + ... + z, x lo”- ‘. Number the permutations in 
ascending order of these associated integers, IC(‘) = (1,2, . . . . n), . . . . Al = 
(n, n - 1, . . . . 1). {n”‘} = ((1, 2, . ..) n)} is a branch, so P({I~“‘})=Q({x”‘]). 
Now assume that P and Q agree on {@), j< k. Because rr(‘) 6” r&j) =z. 
j < i, the branches B, satisfy B,w+ ,) = {n@ + ‘I} u A, where A is a subset of 
the first k permutations. By the induction hypothesis P(A) = Q(A), and 
since P(B,Cr+,,) = Q(BnCk+,,), P( (x(~+‘)))= Q({@+‘))). By induction, 
P=Q. 1 

2.5. COROLLARY. g*' is a partial ordering of the class of rank densities. 

Proof Clearly the symmetry and transitivity properties are satisfied, 
. so it suffices to prove anti-symmetry. That is, that f g*r g and 
g <*I f * f = g. But this follows from Lemma 2.4 since branch functions 
are AI. 1 

It is difficult to verify that J-<*I g using Definition 2.2, since we would 
have to check that Egb 2 Efq4 VA1 rank densities 4. To narrow the class of 
AI functions we need to check, we examine the structure of the convex set 
{ 4: 4 an AI rank density}. 
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A subset U c S, is called an upper set if II E U and II <” z =- z E U. Note 
that if q5 is any AI function and K is a constant then {II: 4(a) > K} is an 
upper set. Conversely, any upper set U may be written as {II: &II) > K} for 
some AI function q4 and constant K, namely d(n) = l(n E U) and K= 0. If 
U is an upper set with cardinality n,, the function b(n) = ( l/nU) l(lr E U) 
will be called an upper set density. 

2.6. THEOREM. The extreme points of the convex set of AI densities on S, 
are the upper set densities (4,: I$,,(Ic)= (l/n”) l(rr~ U), U an upper set}. 
Consequently, any AI density may be written as a convex combination of 
upper set densities. 

Proof First we will show that 4v are extreme. Suppose that for some 
~~(O,l)~~(~)=~~f(~)+(l-a)g(~)forAIdensitiesfandg.Letebethe 
identity permutation. Clearly 4 U(n) = 0 * f (rr ) = 0 and g(n) = 0, while 
4o(n)>O=>af(n)+(l--)g(ff) = do(n) = 4”(e) = af(e)+(l-a)g(e). 
Because f and g are AI, f(n)< f(e) and g(n)< g(e), so f(n)= f(e) and 
g(n) = g(e). Since f and g are both densities, f SE g E $o. 

Next we show that there are no other extreme points by demonstrating 
that every AI density can be written as a convex combination of upper set 
densities, If f is any AI density, let n(l), rr(*), . . . . rc(“!) be a relabeling of the 
permutations such that f(sc(‘)) ,< f (n(i)) for all i < j. Then 

f(a)=f(n’l’)+ z [f(n”‘)-f(rt’“‘)] l(f(a”))df(@). 
i=2 

Hence any AI density may be written as a nonnegative combination of 
upper set densities, and therefore as a convex combination of upper set 
densities. 1 

Recall that the random variable Y is said to be stochastically larger than 
the random variable X, written X<” Y if Pr(X> t) d Pr( Y> t) Vt. The 
next theorem is discussed in Marshall and Olkin [7] in a more general 
partial ordering setting. 

2.7. THEOREM. The following are equivalent: 

(a) R<*‘S 
(b) $(R) C* $(S) VA1 Ic/. 
(c) Pr(R E U) < Pr(S E U) V upper sets U. 

If f and g are rank densities we define 

f 0 g(n)= 1 f(u,+) g(r). 
T E S” 

(2.8) 
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If R and S are independent rank vectors with respective densitiesfand g, 
then f 0 g is the density of R 0 S. 

2.9. PROPOSITION. Under the operation 0, 

(a) the set of rank densities forms a semigroup with identity element 
the density assigning probability 1 to the identity permutation IC = (1, 2, . . . . n), 
and zero element the density assigning probability l/n ! to each permutation, 
and 

(b) the set of AI rank densities forms a subsemigroup containing the 
above identity and zero elements. 

Proof: The assertions in (a) are easy to verify, and (b) follows from 
Theorem 2.1. 1 

2.10. THEOREM. Let R be a rank vector with an AI density, and let UC” 
and UC*’ be rank vectors independent of R, with U(l) g*’ U(*). Then 
R o U(l) <*I R o UC*’ and U(l) 0 R <*I UC*) 0 R. \ 

Proof. Let f, g,, and g, be the respective densities of R, U”‘, and U’*‘. 
If d is an AI function then 

= .L $(t) g,(r), 
n 

where W)=Ls d(n) f(n,-l). By Theorem 2.1, 1+5(t) is AI. Because 
g, GA1 g,, E~(RoUi”) < E~#(RoLJ’~‘). This being true for arbitrary AI 4, 
RoU(‘)<*‘R~U(~). That U Cl ) 0 R 6 *I UC*) 0 R follows from the representa- 
tion 

U(‘)oR=(R~‘~(U(“)-‘)~’ 
9 

and the facts that RAIoR-’ AI, and R<*‘SOR-~<*~S-‘. 1 

As a special case of this result we conclude that if R has an AI density 
and z CD x then R <*I R,, from which we may deduce many of the 1 3 
stochastic rearrang&ent inequalities found in Chan, D’Abadie, and 
Proschan [2]. 

We see then that composition is a kind of smoothing operation. That is, 
composition R OS of an AI random vector R with any random vector S 
makes it AI-smaller. The AI-largest density is the identity element of the 
semigroup of densities of S,, as we have seen. We next prove that the 
AI-smallest AI density is the zero element. 
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2.11. THEOREM. The uniform density (the zero element) is the AI- 
smallest of the AI rank densities. That is, iff is the un$orm rank density and 
g is any other AZ rank density, then f GA1 g. 

Proof: Let R, S, and Z be independent random vectors, R having 
density g, S having the uniform density, and Z having the density assigning 
probability 1 to the identity permutation. SG~’ Z (because UGA’ Z for 
any random vector U), so R 0 S <A1 R 0 Z by Theorem 2.10. But R 0 S is 
uniformly distributed and RoZ has density g. 1 

3. APPLICATIONS TO TESTS OF AGREEMENT BETWEEN RANKINGS 

Suppose we have two rank vectors, and we are interested in testing the 
degree of agreement between them. We put the first vector in ascending 
order, permuting the second in the same way as the first. In this way we 
reduce the problem to a single observation vector R with density f: The 
null hypothesis in such a test is that R is drawn from a specific rank density 
f. (usually uniform), and the alternative is that R is drawn from a density 
that is AI-larger than fo. We shall use a randomized test function 4(r), 
which means having observed R = r, we reject H, with probability 4(r). 

3.1. PROPOSITION. Zf f. is any rank density and 4(R) is an AI test 
function of 

Ho:f=hJ 
H,:f, <“‘f,f #fO, 

then I$ is unbiased. In particular, any test of 

H,: f uniform 

H, : f AI but not uniform, 

using an AI test function is unbiased. 

Proof The first statement follows from the definitions, while the second 
statement follows from the first statement and Theorem 2.11. 

If we are testing whether R has a uniform distribution, and we have a 
specific AI alternative density f, in mind then the Neyman Pearson lemma 
implies that the most powerful size LX test of 

H,:f =fo 

H,:f =f,, 
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after observing R = r, is to reject H, with probability 

i 

1 if f,(r) > C, 
Q(r)= i if f,(r) = C, 

0 if f)(r) <: C 

where C and 1 are suitably chosen constants. We know that &d(R) > CI 
(the inequality is strict unlessf, -so), but with Proposition 3.1 we can say 
much more. We conclude that E&R) > c1 for any AI alternative f: Thus 
the most powerful test against a specific AI alternative fi will also be 
unbiased against all AI alternatives. 

Now consider the general problem of testing 

H, : f = f0 not necessarily uniform 

ff,:f#fo,fAI. 

We may wish to have good power against certain alternatives, and this 
motivates the choice of test function 4. Having chosen a test function 4, we 
may be interested in finding the least favorable AI alternative density, that 
fwhich minimizes the power Ef4(R). We have seen that if 4 is AI the least 
favorable distribution is the uniform, but we may not wish to use an AI test 
function. 

Enumerate the n! permutations and think of an AI function as a point 
in R”!. Let ai= &n(“) and x;=f(n”‘), i= 1, 2, . . . . n! We must find a point 
x minimizing Cli, aixi over all x representable as xi=f(rr”‘), i = 
1,2, . . . . n !, fan AI density. In linear programming terms we must minimize 
the objective function C:i, aixi over the set F of feasible x (points which 
satisfy the AI condition). Any feasible x may be written as a convex com- 
bination of the extreme points of F, namely the upper set densities by 
Theorem 2.6. Hence the search for an optimal solution (one which satisfies 
the AI constraints and minimizes the objective function) may be confined 
to upper set densities. 

4. APPLICATIONS TO RANKING AND SELECTION PROBLEMS 

Our next application concerns attempting to lind the smallest and/or 
largest group of parameters from a continuous density g(0, x), either in 
order or without respect to order. This is very general. We may wish to 
completely order the parameters, find a subset containing the smallest j or 
largest k parameters, find a subset containing the smallest j and largest k 
parameters, etc. We will use the empirical rank order R of the x’s and 
assert that the parameters are ordered the same way. Assuming that g 



RANK DENSITIES 91 

satisfies g(8,, x,) = g(8, x) Vn E S,, to evaluate whether we are successful 
we may without loss of generality suppose that 8, < ... < 8,. Then it is 
logical to measure success in terms of whether R belongs to a specified 
upper set, such as any of the ones below. 

4.1. EXAMPLES. (a) {a:rcl=l, 7-r2=2 ,..., 7cj=j}, wherej<n. 
(b) (rc:n,<k, z,<k ,..., nj<k}, wherej<k<n. 
(c) {mn,%k, 7c;‘bk ,..., x,7’ 

jth component of 11-i. 
dk}, where j<kdn, and z,:’ is the 

(d) The analogs of (a)-(c) above with (7c,, . . . . nj) replaced by 
tnj + 1 7 .-9 z,) and (zn;‘, . . . . z,: ‘) replaced by (z,;‘, , . . . . ret, ‘). For example, 
the analog of (a) would be {n:r~~+~=j+l, 7rj++=j+2,...,7c,=n}. 

For example, suppose we have a problem of partial ranking, as discussed 
by Critchlow [3]; we wish to specify the smallest j parameters in order, 
and we do so on the basis of the smallest j ranks, in order. Then being 
successful means observing a rank vector R belonging to the upper set in 
Example 4.1(a). If we are not concerned about the order of the j smallest 
parameters, we might assert that they are among the populations yielding 
the k smallest observed rankings, k 2 j, and then being successful means 
that R belongs to the upper set in Example 4.1(b). On the other hand 
4.1(c) says that the parameters we decide are the j smallest are actually 
ranked no worse than kth. Many other upper sets might be used as criteria 
for success, and each has an analog if we are attempting to find the largest 
instead of smallest parameters, by 4.1(d). 

Suppose that we have a familiy g,,, of continuous densities with location 
parameter vector 8 and scale parameter A> 0. That is, there is an 
exchangeable random vector U whose distribution does not depend on 
(0, A) such that (AZJ, + 8,, . . . . AU,, + 0,) has density g,, j,. Let X be from 
g,,, , and for 1’ > 0 let 

x’=ax+ehe, (4.2) 

where CI = Al/A. Then X’ has density g,.,,.. Let R be the rank vector 
associated with X and R’ be the rank vector associated with X’. 

4.3. THEOREM. Under the above hypotheses R <A1 R’ if either 

(a) A’/lzGl, Cl’=& and6,< . . . CO,, or 

(b) il’=A andO;-O,< .I. <8:,-e,. 

Proof: It is clear from representation (4.2) that if either of conditions 
(a) or (b) is satisfied then R <” R’ with probability 1, hence R <Ar R’. 1 
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This says that the probability of successfully ordering the B’s (as defined 
above in terms of upper sets) increases as the scale parameter decreases. 
This is useful in connection with so-called least favorable configurations. 
For example, suppose we are trying to find the largest location parameter, 
and suppose that f3,<02< ... ~8,. Let 6=d,,--dHP,. For fixed en-, and 
0,=0,_,+6, the values of 8, ,..., 8,-, which minimize the probability of 
correctly selecting 0, as the largest are known as the least favorable 
configuration. It is intuitively clear that the least favorable configuration is 
given by 0, = . . . = 6,-z = 8, _ i. To deduce this from our work above, 
note that if 9’ is any other ordered vector with f3:- I = 8,-i, (3; = 0,, then 
0’--0 is increasing. We can conclude that the probability of success (as 
measured by our upper set criteria), is smaller with this least favorable 
configuration than with any other configuration. 

We say that a density g, has scale parameter vector I if there is an 
exchangeable random vector U whose distribution does not depend on h 
such that (1, Ui, . . . . I, U,) has density g,. Let g, be a family of continuous 
densities of random vectors with positive components, and suppose 1 is a 
scale parameter vector, Ai > 0 V i < IZ. Let R be the rank vector associated 
with an observation vector from g,, and R’ be the rank vector associated 
with an observation vector from g,.. In a manner similar to the proof of 
Theorem 4.3 (or by taking logs and using Theorem 4.3) we may prove the 
following. 

4.4. THEOREM. Under the above hypotheses i;l1, < . . . < 2:/2,, = 
R <*I R’ \ . 

As with Theorem 4.3, this may be interpreted in terms of the probability 
of successfully ordering parameters-this time scale parameters. As above, 
this may be used in connection with the least favorable configuration of 
scale parameters. For example, suppose that we are trying to find the 
largest scale parameter and that A, < . . . < 2”. Let 6 = &/1, _ i. For fixed 
/I n--l and I,=61,_,, the least favorable configuration of the other scale 
parameters is A,= ... =Iz,P2=Iz,_1. 

4.5. THEOREM. Let X be multivariate normal with mean vector 0, 
8, < 6, < . . . < 6,, and covariance matrix 

o2 t ... z 

c= : q2 :y’ : ) 

i I 

. . . . : 
z t . . 02 

0 < r/c2 < 1. Let R = rank(X). For fixed 0 and CT, R becomes AI-larger as T 
increases to 02. 
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Proof: Let (Z, Y) be mutually independent, Z univariate normal with 
mean 0 and variance r, and Y multivariate normal with mean 0 and 
covariance matrix (02 - r) I. Then X =D (Z + Y,, Z + Y,, ..,, Z + Y,,). Now 
Rank(X) = Rank(Y), and increasing r decreases the variance of the Y’s. By 
Theorem 4.3(a) this makes Rank(Y) AI-larger. a 

This says that the probability of successfully ranking the means of a 
multivariate normal vector with this covariance structure increases as the 
common covariance increases. This may be seen explicitly in some of 
the formulas of Bechhofer [ 1 ] in which the observations are independent 
sample means with equal sample sizes and common variance. The scale 
parameter in this case is the standard deviation of 1, and one implication 
is that the larger the sample size, the greater the probability of success. 
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