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Abstract This paper represents the finite element results for the local buckling of tapered plate

girders subjected to combine pure bending and shear stresses. An idealized model is developed

representing the loading of the tapered panel that generates uniform normal stresses due to flexure,

or uniform and constant shear stresses in the case of shear. Eigen-value analysis was performed for

several tapered web plate girders that have different geometric parameters. A parametric study is

made to reduce the FE model size showing the effect of decreasing the tapered panel adjacent

straight panels, maintaining the same result accuracy as a complete girder model. The combined

buckling capacity of bending and shear is determined by applying all possible load pattern combi-

nations, together with different interaction ratios. An analysis study is presented to investigate the

effect of the tapering angle on the combined bending–shear capacity of the girder. The study also

includes the effect of the flange and web slenderness on the local buckling of the girder. Considering

residual stresses as part of the loading stresses, the analysis procedure is repeated for some cases,

and the effect of combining of the residual stresses together with the external loads is found.

Empirical approximate formulae are given to estimate the combined flexure–shear buckling

resistance of the tapered girder safely.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Housing and Building National Research

Center. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/3.0/).
Introduction

Plate girders are widely used in steel structures, especially when

there is a need to resist high loads, such as in bridges. The use
of deep slender web girders is often chosen to give an adequate
design. The tapering of the web depth can be implemented to
avoid the use of excessive material quantities. Due to the web

slenderness, the girder panel usually suffers instability due to
the presence of normal and/or shear stresses. Normal stresses
are usually induced due to flexural stresses, or due to the

inclined component of shear stresses. For relatively short
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panels, flexural stresses may cause compression buckling of the
web or local buckling of compression flange. Shear stresses
mainly cause shear buckling of the web.

Current design codes such as EN 1993-1-5 [1], AASHTO
[2], are based on the theoretical and numerical research of
prismatic girders, and they determine bending and/or shear

resistance of tapered girders as prismatic ones.
This paper is divided into three parts. The first part demon-

strates the finite element model, as well as the idealized loading

model that is aimed at generating uniform flexural stresses
without shear stresses, or vice versa. Hence, by applying both
bending and shear patterns with different loading ratios and
various direction combinations, the interaction bending–shear

resistance is determined for loading ratios that express the
accurate effect of bending and/or shear stresses on the elastic
buckling strength of the tapered panel. The second part

represents the analysis studies performed using the FEM
Eigen-value analysis. Bending–shear interaction diagrams are
plotted for different loading ratios, including several web

and flange slenderness ratios, panel length ratios and tapering
ratio. Furthermore, the obtained results investigate the effect
of web tapering angle on the interaction capacity of the

tapered plate girder.
Finally discussion and conclusions are given upon the

performed analysis, and recommendations are given for future
work.
Literature review and state of the art

Eid [3], presented the first known analysis of tapered thin

plates using the finite difference method. He established
numerical expressions for the inclined plate edges. He also
solved the bending of plates under randomly distributed lateral

loads, as well as buckling problems of tapered thin plates
subjected to in plane acting loads. He compared the tapered
thin plates with equivalent rectangular ones having the same

critical load under different types of loading. He considered
the effect of buckling shape and the number of half waves
on the minimum critical buckling stresses.

Mirambell and Zarate [4], Estrada [5], and Chacon [6] pre-
sented a series of research papers concerning the elastic and
inelastic ultimate strength for shear buckling of tapered web
plate girders. Estrada [5] developed an expression to determine

the critical shear buckling stress in steel web panels. This expres-
sion takes into account the effects of material nonlinearity
together with the actual boundary conditions of the web panel.

Mirambell et al. [7–9], introduced an analytical formulation
to determine the shear elastic buckling stress factor including the
effect of flange slenderness and tapering angle. They also

introduced an interaction formula for bending–shear interac-
tion that depends on tension field theory. They considered that
the ability to represent the ultimate shear resistance of the
tapered girder for the givenmodel depends on the fact that when

the maximum shear resistance is reached, the bending moment
in the largest cross section is null. Recently, Mirambell and
Zarate [8] continued their research on the shear resistance of

tapered web plate girders considering geometrical imperfections
and residual stresses numerically, and comparing the results to
experimental tests.

Abu-Hamd and Abu-Hamd [10] conducted full girder
model demonstrating and determining the effect of flange
slenderness on the pure flexural or pure shear elastic local
buckling of a tapered panel. They were the first to introduce
a model with a self-equilibrated loading pattern to achieve

pure flexural or shear stresses in order to study each buckling
case solely. The loading pattern developed in this paper
depends on the same principal of equilibrating the loads such

that the stresses are pure, but with the pattern configuration
implemented to increase stress uniformity for either shear
stresses or flexural normal stresses. They compared the results

of pure bending and pure shear to the AASHTO [2] specifica-
tions. In addition, they conducted a parametric study and
evaluated the buckling stress factors of pure shear and pure
bending by varying the tapering ratio and web and/or flange

slenderness. They recommended an investigation of the effect
of combined shear and bending and post buckling behavior.
Herein, the study aims at investigating the effect of combined

shear and bending on the stability of tapered web plate girders,
including geometrical parameters such as the web and flange
slenderness, as well as, the tapering ratios.

Finite element analysis

Elastic buckling strength

The theoretical elastic buckling stress of a rectangular plate,

rcr, is given by the widely known formula [11]:

rcr ¼ kr
p2E

12ð1� t2Þ
t

d

� �2
ð1Þ

where E is the modulus of elasticity, m is Poisson’s ratio, t is the
thickness of the plate, d is the width of the plate, and kr is the
plate buckling factor, which depends on the type of stress
distribution and the edge support conditions.

Finite element analysis may be used effectively to obtain the

elastic buckling stress under a wider scope of design variables
related to the applied stresses and actual boundary conditions
Earls [12], Ziemian [13], and Real et al. [14]. The buckling

stress is obtained by solving the Eigen-value problem:

KE ¼ kKG ð2Þ

where KE is the elastic stiffness matrix, KG is the geometric
stiffness matrix, and k is the Eigen-value, which represents

the buckling load factor. The corresponding Eigen-vector
represents the mode shapes of the buckled plate.

Idealized loading of the model

The plate buckling solution initiated by Timoshinko [11] is
based on homogeneous and pure stresses, normal or shear,

in one or two directions, and acting in the middle plane. Later
different code provisions adopted simplified interaction analy-
ses between different stress cases to simplify the design
approach. Abu-Hamd and Abu-Hamd [10] presented idealized

load patterns providing pure normal or shear stresses and cal-
culated accurate basic buckling analysis for either shear or
bending.

They found that interaction-buckling analysis is very sensi-
tive and requires accurate models.

The given idealized loading in Abu-Hamd and Abu-Hamd

[10] is further improved to achieve acceptable interaction
accuracy for the large amount of cases expected. The accuracy
of the proposed idealized loading is assured as follows:
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� The loading pattern should apply close to the tapered web.

� The structural model size should be minimized.
� The loading should be distributed along the tapered web
circumference to allow best pure distribution.

� The idealized loading distribution should comply with the
web height variation.
� The idealized loading should be perfectly balanced [10].
� The idealized balanced loading should be valid and accurate

as well, when reversed.

In order to study the effect of homogenous pure bending

stresses and/or pure shear stresses on the buckling resistance
of a tapered plate girder, two loading patterns are developed.
Two patterns were delivered to generate either pure shear

stresses or pure bending stress distribution on the tapered
web panel of plate girder.

Initial loading pattern for pure shear

As shown in Fig. 1, at the start of numerical iteration, the
panel is loaded at both ends with Shear Loads distributed
along the web edges such that:

Q1 ¼ H1 � tw �
Fyffiffiffi
3
p ð3Þ

Q2 ¼ H2 � tw �
Fyffiffiffi
3
p ð4Þ

where Q1 and Q2 are the web shear forces of the web larger and
lower depths, (H1) and (H2) , respectively. tw is the web thick-

ness. Fy is the yielding stress.
However, since Q1 is larger than Q2, a balancing vertical

load (qv) equal to the difference between their values is distrib-

uted along the upper and lower edges of the web panel such
that:

qv ¼
ðQ2 �Q1Þ
2 � a �H1

ð5Þ

where a is the tapered panel aspect ratio.

So far the given loads are force equilibrated only. In order
to establish rotation equilibrium, a horizontal balancing load
(qh) is distributed along the upper and lower edges of the

web panel, the relation between this load and the other forces
can be deducted using moment equilibrium condition around
point (A), hence (qv) vanishes, and the total horizontal load
per unit length is:
Fig. 1 Loading pattern for pure shear.
qh ¼
2ðQ1 þQ2ÞðaH1=2Þ
ðH1 þH2ÞaH1

¼ ðQ1 þQ2Þ
H1 þH2

ð6Þ
Initial loading pattern for pure moment

As shown in Fig. 2, the panel is loaded at both ends with pure

moment loads (M1 and M2) that are distributed on the web
edges and flange edges according to the following criteria:

M1 ¼ FytwH
2
1=6þ Pfy �H1 ð7Þ

M2 ¼ FytwH
2
2=6þ Pfy �H2 ð8Þ

where Pfy is the flange yielding force defined as following:

Pyf ¼ Bf � tf � Fy ð9Þ

where Bf and tf are flange width and thickness, respectively.

Web moment stresses are applied on the vertical web ends
in a triangular distributed pattern on the web nodes such that
each stress on the web, (f1wi or f2wi), is given as follows:

f1wi ¼
2Fy � h1i

H1

ð10Þ

f2wi ¼
2:Fy � h2i

H2

ð11Þ

where (h1i) and (h2i) are the vertical distances between the
panel web node and the section centerline, for the larger
section and smaller section, respectively.

However, sinceMw1 is larger thanMw2, balancing stress (fh)

and force (Pfy) are applied to the model to balance the web
moments (Mw1) and (Mw2) and the moment that results from
the lower flange ends eccentricity due to web tapering, where

balancing force (fh) is distributed along the upper and lower
flange directions such that:

fh ¼
2 � ðMw1 �Mw2Þ

a �H1 � twðH1 þH2Þ
ð12Þ

The relation, between the balancing force (Pv) and the
moment that resulted from the lower flange end eccentricity,

can be deducted using a moment equilibrium condition, so
that:

Pv ¼
Pyf � ð/ �H1Þ
ða �H1Þ

¼ Pyf � /
a

ð13Þ
Fig. 2 Loading pattern for pure moment.



Fig. 3 Tapered girder model.

Fig. 4 Finite element model with shear loading.
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Fig. 5 Comparison to the results given in Abu-Hamd and

Abu-Hamd [10].

Table 1 Fcr/Fy for different model dimensions.

L3/L2 (ms) k = 140 k = 140 k = 200 k = 200 k = 200

/ = 0.5 / = 0.25 / = 0.5 / = 0.25 / = 0.25

a = 1 a = 2 a = 1 a = 1 a = 2

4.0/4.0 1.174 0.870 0.737 0.601 0.512

3.0/3.0 1.175 0.871 0.737 0.601 0.512

2.0/4.0 1.177 0.872 0.738 0.602 0.513

2.0/1.0 1.177 0.872 0.738 0.602 0.513

1.0/0.5 1.181 0.875 0.743 0.604 0.513

Table 2 Comparison to the results given in [9].

Model dimensions (mm) Load Vcr (kN) Vcr (kN),

num [9]

Vcr (kN),

test [9]

A: 6008008003.918015 Q 237.8 223.9 225.0

B: 50080012003.918015 Q 218.5 212.0 220.0

C: 4808008003.918015 Q 284.2 269.1 265.0

D: 6008008003.918015 M+ Q 238.3 236.6 225.0

Fig. 6 Pure flexural stresses for moment pattern.

Fig. 7 Pure shear stresses for shear pattern.
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where / is the tapering ratio, that is the ratio between the

difference of the larger and lower depths to the larger web
depth, as shown in Figs. 1 and 2.

Hence, all the applied loads for each pattern are in equilib-
rium, and the stress uniformity is validated for each case to be
constant shear stresses all over the tapered panel without bend-
ing for the shear loading pattern, or uniform normal flexural
stresses without shear stresses for the moment loading pattern.
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Description of the idealized model

Fig. 3 shows the geometric configuration and dimensions, in
addition to boundary conditions, of the tapered girder used
in the study. The girder consists of three segments, and the

middle one is the tapered panel under consideration. The
straight segments each have a length of 1.0 m. The tapered seg-
ment length varies from 2 to 4 m to give variable aspect ratios
(a) of 1 and 2. The deeper end web depth is taken equal to 2 m

while the smaller end depth is varied from 1 m to 2 m at inter-
vals of 0.25 m to give different tapering ratios (/) of 0.125,
0.25, 0.375 and 0.5. The flange width is kept constant at

0.4 m or 0.5 m.
Fig. 8 Shear deformations.

Fig. 9 Polar coordinates of combined load.
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The two points (A) and (B), including their rigid stiffener,
are restrained for displacement in all directions, while the rest
of the points from (C) to (H) are restrained only for the

out-of-plane displacement as shown in Fig. 3.

Finite element model

Fig. 4 shows the finite element model representing the model
girder. All plate elements are modeled with an iso-parametric
finite strain shell element designated as ‘‘Shell 181’’ in the

ANSYS [15] element library. Shell 181 is a four-noded shell
element with six degrees of freedom per node and has
geometric and material nonlinearity capabilities. It is well

suited for linear, large rotation, and/or large strain nonlinear
applications. In the construction of the finite element
model, convergence was achieved by using an element size of
40–60 mms. Lateral-torsional buckling was prevented, as the

flange out-of-plane stiffness was adequate to restrain the panel
against this phenomenon. The material properties used are
Elastic modulus E = 210 GPa, yield stress Fy = 350 MPa,

and Poisson’s ratio m = 0.3. The number of models established
and presented in this study is 546 models including variance in
parameters such as flange slenderness, web slenderness and

moment-shear variable load pattern ratios.

Validation of the finite element model

In order to check the accuracy of the finite element solution

procedure a comparison is made with the pure bending results
given in Abu-Hamd and Abu-Hamd [10]. The selected param-
eters for comparison are aspect ratio (a) of 1.0, and tapering

ratio (/) of 0.25, using a tapered panel largest depth of
2.0 m. The variation of the buckling stress was compared at
different web slenderness ratios (H/tw) for: compact flange

(CF), non-compact flange (NCF), and slender flange (SF) as
shown in Fig. 5.

The effect of adjacent straight panels is maintained by

reducing their lengths through a parameter variation. This
effect was almost negligible (Table 1).

Furthermore, the results of the currently used model
showed good agreement with the results of the previous study,
ALPHA=1.0, FI=0.5,LAMBDA=140
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which proves that the model of the current study is represent-
ing the behavior of the tapered panel as the complete girder
model does.

Another model is compared to the results given in the
extensive numerical and testing research of Mirambell and
ALPHA=1.0, FI=0.375,LAMBDA=140
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Fig. 11 Stresses and relative interac
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ALPHA=1.0, FI=0.125,LAMBDA=140
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Fig. 12 Stresses and relative interactio
Zarate [4], and is considered as half of its almost symmetric
model. The comparison of results is given in Table 2:

For Table 2, the mentioned dimensions are the shorter

depth, the larger depth, the panel length, the web thickness,
the flange width and the flange/stiffener thickness respectively.
ALPHA=1.0, FI=0.375,LAMBDA=140
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ALPHA=1.0, FI=0.375,LAMBDA=200
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Fig. 13 Stresses and relative interaction (k = 200, a = 1, / = 0.5, 0.375).

ALPHA=1.0, FI=0.25,LAMBDA=200

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Critical Normal Stresses (Fcr/Fy)

C
rit

ic
al

 S
he

ar
 S

tre
ss

es
 (q

cr
/.5

8F
y)

SL
NC
C

ALPHA=1.0, FI=0.25,LAMBDA=200

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Relative Critical Normal Stresses

R
el

at
iv

e 
C

rit
ic

al
 S

he
ar

 S
tr

es
se

s

SL
NC
C

Fig. 14 Stresses and relative interaction (k = 200, a = 1, / = 0.25).
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Fig. 15 Stresses and relative interaction (k = 200, a = 1, / = 0.125).

ALPHA=2.0, FI=0.25,LAMBDA=140

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

Critical Normal Stresses (Fcr/Fy)

C
rit

ic
al

 S
he

ar
 S

tre
ss

es
 (q

cr
/.5

8F
y)

SL
NC
C

ALPHA=2.0, FI=0.25,LAMBDA=140

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Relative Critical Normal Stresses

R
el

at
iv

e 
C

rit
ic

al
 S

he
ar

 S
tre

ss
es

SL
NC
C

ALPHA=2.0, FI=0.25,LAMBDA=200

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Critical Normal Stresses (Fcr/Fy)

C
rit

ic
al

 S
he

ar
 S

tre
ss

es
 (q

cr
/.5

8F
y)

SL
NC
C

ALPHA=2.0, FI=0.25,LAMBDA=200

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Relative Critical Normal Stresses

R
el

at
iv

e 
C

rit
ic

al
 S

he
ar

 S
tre

ss
es

SL
NC
C

Fig. 16 Stresses and relative interaction (k = 140,200, a = 2, / = 0.25).
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Fig. 17 Tapering element stress analysis.
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Fig. 18 Comparison between approximate and accurate analysis

(//a = 0.5, Types 1 and 3, Hw/tw = 140, a = 1.0).
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Considering the differences between the models, the accuracy
is acceptable.

Analysis and results

Accuracy of the numerical model

Applying the idealized loading on an evaluation sample case, a
pure stress and uniform deformation patterns are found for

either bending stresses or shear stresses, as illustrated in
Figs. 6–8. Fig. 6 shows the variation of the normal stress
resulting from the case of pure flexure; the normal stresses

along the upper and lower flanges indicate the validity of the
assumptions of the finite element loading model.

We note in Fig. 7 that the stress color border falls on the

input shear stress value of Fy=
ffiffiffi
3
p

with minor variation in shear
stresses of about 0.5% in both directions. The minor variations
are due to corner concentrations, and do not affect the unifor-
mity of the web stress.

Presentation and analysis of the results

Fig. 9 sketches the used polar determination of the Eigen-value

of the buckling interaction of moment and shear. It starts with
a stress vector OS and h. The analysis outputs the multiplier of
the final result that equals OF/OS. The bending and corre-

sponding shear results are then (OF cos h) and (OF sin h)
respectively. The forces shown in Fig. 9 are the respective
resultants of the web edge model stresses. A logo is placed

on the result plot sketch to indicate the type of combination
as described in Section ‘Approximate direct solution’.

The starting stress values (Fstart) are either Fy or 0.58 Fy in
cases of pure moment or pure shear respectively. By selecting

the starting fractions in polar coordinates, with the radius
equal to unity and taking the angle ‘‘h’’, as a variable, thus
the starting stresses are:

Fstart;M ¼ Fy � cos h ð14Þ

Fstart;Q ¼
Fyffiffiffi
3
p sin h ¼ 0:58Fy � sin h ð15Þ

The buckling multiplier bcr, resulting from the buckling
analysis, is the buckling ratio of the mixed loading as a whole,

and should then be multiplied to each of the above two values
to finally determine the two critical buckling stresses (Fcr,M)
and (Fcr,Q) of one interaction case. Two different methods to

plot the results are used: the interaction critical stress values
and the relative interaction relationship: which is related to
each of the critical values of pure stresses starting and ending

the relationship at unity. The corresponding parameters are
given on each plot, where:

Fcr;M

Fy

¼ bcr � cos h ð16Þ

Fcr;Q

0:58Fy

¼ bcr � sin h ð17Þ

By varying h from 0 to 360�, all results, before or beyond 1.0,
can be captured, and all kinds of direction combinations
between the combined moment and shear can be considered.

The results of tapered web buckling behavior, under all load
typologies, are displayed by the critical values, from Figs. 10–16.
Approximate direct solution

It is easier and safe to use the following approximate formulae
to estimate the relative buckling stresses of combined bending

and shear, where Type 1 load orientation is shown in Figs. 1 and 2.
Type 2 load orientation is shown in Fig. 1 and reversed Fig. 2.
Type 3 load orientation is the reverse of what is shown in

Figs. 1 and 2. And finally Type 4 load orientation is shown
in Fig. 2 and reversed Fig. 1.

For Types (1) and (3)

Mi

Mcr

� �A

þ Qi

Qcr

� �A

¼ 1 ð18Þ

where Mi and Qi are the relative interaction bending and shear
stresses, and

A ¼ 1:9þ 4
/
a

� �
ð19Þ

The increase in shear resistance due to moment character-
izes these two types, as indicated in Figs. 10 and 13. Fig. 17

demonstrates this phenomenon.

For Types (2) and (4)
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Fig. 19 Comparison between approximate and accurate analysis

(//a = 0.25, Types 1 and 3, Hw/tw = 140, a = 1.0).
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Mi

Mcr

� �B

þ Qi

Qcr

� �B

¼ 1 ð20Þ

where Mi and Qi are the relative interaction bending and shear

stresses, and

B ¼ 1:9�
ffiffiffiffi
/
a

r !
ð21Þ

These two types suffer a reduced shear resistance due to
moments.

The accuracy of the approximate formulae is given in
Figs. 18–22, noting that in Fig. 18 no use could be made above
a relative value of 1.0 because it gives double results and the
least one must be taken: (For example: a relative Q= 1.08 gets

relative M = 0.16 or 1.07). In the above equations: a is the
aspect ratio and / is the tapering ratio (Fig. 3).

Effect of residual stresses

By assuming the residual stresses as ‘‘Element Loads’’, the val-
ues of these stresses are included in the ‘‘Element Stiffness
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Fig. 24 Comparison between stress interaction with and without

residual stresses (a = 2.0, / = 0.25, k = 200).
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Fig. 25 Comparison between relative interaction with- and

without residual stresses (a = 1.0, / = 0.5, k = 200).
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Fig. 26 Comparison between relative interaction with- and

without residual stresses (a = 2.0, / = 0.25, k = 200).

Buckling strength of tapered bridge girders 173
Matrix’’ and the resulting Eigen-values shall change. By apply-
ing the analysis on the following examples, we can estimate

such influence on the interaction between shear and bending
stresses. The example covers the following parameters:
a = 1.0, / = 0.5 and 0.25, for Lambda =Hw/tw = 200. By

inspecting Figs. 23 and 24, we notice a clear reduction in the crit-
ical shear and moment stresses. Nevertheless, Figs. 25 and 26
show values that are almost identical with those according to

cases without residual stresses. Therefore, it is safe to use the
same interaction formulae in Eqs. (18)–(21).

Discussion of results

� The flange stiffness affects remarkably the web buckling
resistance by resisting the web deformations outside its
plane.
� A compact flange may increase the bending buckling resis-
tance remarkably [10], but the increase in shear buckling
resistance is quite limited.

� Comparing relative interaction results, Fig. 12, for a = 1,
/ = 0.125, with those for a = 2.0, / = 0.25, Fig. 16, we
notice that both plots are almost identical. This indicates
the parameter ‘‘//a’’ as an important one, which is consis-

tent with the results indicated in Mirambell and Zarate [4].
The effect of web slenderness is small, when inspecting
relative values related to pure critical bending, or, shear

stresses.
� The resistance of the tapered web against buckling is

directly proportional to the tapering angle value only in

cases, where the moment stresses increase the shear resis-

tance of the tapered web (Loading Types 1 and 3). The

increase in moment resistance due to tapering is limited.

Nevertheless, the tapering angle increases the shear resis-

tance significantly (up to 20%), This behavior can be graph-

ically explained as given in Fig. 17: The primary horizontal

tensile stress ‘‘fM’’, which is proportional to Fy, remarkably

reduces the primary shear stress ‘‘qV’’, which is proportional

to 0.58Fy.

� Figs. 25 and 26 show that residual stresses do not influence

the relative interaction; yet, it remarkably reduces the shear
and bending critical stresses.
� Flange slenderness affects clearly the tapered web buckling

stresses. A compact flange increases the stresses up to 30%
in case of pure moment. However, the slenderness of flanges
has no, or little, effect on relative values.

Conclusions and recommendations

The current work presents a geometric and loading FEM
model to determine the behavior of plate girder tapered web
under interactive combination of shear- and bending stresses.
The model provides accurate and homogeneous values of

either stress type. The loading is applied to provide either con-
stant shear or moment stress separately. In each investigated



174 M. Abu-Hamd, F.F. El Dib
case, the ratio between both stresses is kept the same, and their
value is iterated until convergence. This method makes it pos-
sible to capture all critical values, especially those beyond 1.0.

The critical stresses and corresponding relative values are plot-
ted representing the behavior of tapered web plates under com-
bined moment and shear.

The results are given directly graphically, or, it is easier and
safe to apply the direct solution using the proposed approxi-
mate formulae. Accurate values of critical stresses could either

be taken from the given figures, or directly from (18) and (20).
Assuming that residual stresses are element Loads, the

elements of the stiffness matrix change and influence
the Eigen-values (critical buckling loads). We notice a

remarkable reduction in critical shear and bending stresses.
However, almost no influence on relative values is found.
Therefore, the same proposed approximate formulae are valid

for cases with residual stresses.
It is recommended that future works study the ultimate

pure load behavior of such tapered plates.
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