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Abstract b-Catenin/Tcf and NF-jB pathways play an impor-
tant role in biological functions. We determined the underlying
mechanisms of differential interaction between two pathways in
various human cancer cell lines. NF-jB positively regulated
b-catenin/Tcf pathways in human glioblastoma, whereas it has
an opposite effect on b-catenin/Tcf pathways in colon, liver,
and breast cancer cells. Expression of lucine zipper tumor sup-
pressor 2 (lzts2) was positively regulated by NF-jB activity in
colon, liver, and breast cancer cells, whereas negatively regulated
in glioma cells. Downregulation of lzts2 increased the b-catenin/
Tcf promoter activity and inhibited NF-jB-induced modulation
of the nuclear translocation of b-catenin. These data indicate
that the differential crosstalk between b-catenin/Tcf and NF-jB
pathway in various cancer cells is resulted from the differences in
the regulation of NF-jB-induced lzts2 expression.
� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The Wnt family of secretory glycoproteins plays an impor-

tant role in embryonic development, the induction of cell

polarity, and in the determination of cell fate. Deregulation

of Wnt signaling disrupts axis formation in embryos [1–3]

and is associated with multiple human malignancies [4]. Wnt

signaling also plays an important role in the proliferation

and differentiation of stem cells including human mesenchymal

stem cells (hMSCs) [5,6]. The NF-jB signaling pathway is an-

other important signal transduction pathway that plays a crit-

ical role in activating the expression of genes involved in the

immune and inflammatory response and in regulating cellular
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apoptosis [7–10]. NF-jB is an important mediator for the pro-

duction of cytokine and chemokines in hMSCs [11].

Deng and colleagues [12] first suggested that b-catenin inter-

acted with and inhibited NF-jB in human colon and breast

cancer cells. They found that b-catenin could physically com-

plex with NF-jB, resulting in a reduction of NF-jB DNA

binding, transactivation activity, and target gene expression

[12]. Subsequently, several studies have demonstrated that

the activation of the b-catenin/Tcf pathway negatively regu-

lates the NF-jB pathway in colon and breast cancer cells

[12,13] and in response to bacterial stimulation in intestinal

epithelial cells [14]. On the other hand, stimulation of the

Wnt cascade through the upregulation of either Wnt or degra-

dation-resistant b-catenin significantly enhances both baseline

and TNF-a-induced NF-jB activity, which is mediated

through the E3 ligase TrCP1, in vascular smooth muscles [15].

A recent study showed that lzts2 (lucine zipper tumor sup-

pressor 2), a putative tumor suppressor [16], interacts with b-

catenin, represses the transactivation of b-catenin, and affects

the subcellular localization of b-catenin. We found that the

activity of NF-jB regulated the expression of lzts2 in human

adipose tissue-derived mesenchymal stem cells [17]. These find-

ings highlight the complex interactions between the b-catenin/

Tcf and NF-jB signaling pathways and further emphasize the

importance of characterizing their interactive role in biological

functions. In this study, we determined crosstalk between b-

catenin/Tcf and NF-jB pathways in various human cancer

cells.
2. Materials and methods

2.1. Cell culture
All cancer cell lines (human glioma cell line, U87MG and GBM-05;

human colon cancer cell line, COLO201 and KM12C; and breast can-
cer cell line, SKBR3; human hepatocellular liver carcinoma cell line,
HepG2 and Hep3B) were grown in the specified media (Dulbecco�s
modified Eagle�s media containing 10% fetal bovine serum).

2.2. Reporter gene assay
All transient transfections were performed with Lipofectamine Plus

Reagent (Invitrogen). The transient transfections were performed
using pTOP-flash, pFOP-flash, pNF-jB-Luc, pCMV-b-Gal plasmid
(Clontech Laboratories Inc., CA) and the p65 plasmid (pCMVp65
NF-jB). Reporter gene assay done as described [18].
blished by Elsevier B.V. All rights reserved.
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2.3. Nuclear and cytosolic fractionation and Western blot analysis
The cells were separated into cytoplasmic and nuclear fractions as

described [19]. Monoclonal antibodies (b-catenin and b-actin; BD Bio-
sciences Clontech, CA, NF-jBp65, Santa Cruz Biotechnology Inc.,
CA) were used for immunoblotting.

2.4. Decoy oligodeoxynucleotide (ODN) technique
The NF-jB decoy technique was performed as described previously

[20].

2.5. Small interfering RNA (siRNA) transfection
siRNA duplex oligo (on-TARGET plus SMART pool, Dharmacon

Inc., CO) targeting lzts2 (leucine zipper, putative tumor suppressor 2)
mRNA or non-targeting duplex oligo (on-TARGET plus siCON-
TROL, Dharmacon Inc., CO) as a negative control were transfected
using DharmaFECT Transfection Reagent.

2.6. Reverse transcription-polymerase chain reaction (RT-PCR)
analysis

The total cellular RNA was isolated from the cells and reverse tran-
scribed using the conventional protocols. The cDNAs were amplified
by PCR with 30 cycles at 94 �C for 30 s, 60 �C for 30 s, and 72 �C
for 30 s. PCR amplification was performed using the following primer
sets: GAPDH 5 0-TCCATGACAACTTTGGTATCG-3 0, 5 0-TGTA-
GCCAAATTCGTTGTCA-3 0, lzts2, 5 0-CTGTGTCCTGGAAGG-
AAAGC-3 0, 5 0-CTCCCACTTGGTCTCCTCAA-30. The designed
primers were used to amplify the PCR, and GAPDH was used as a
control.

2.7. RT-PCR
The primer sequences used in the experiment were as follows:

b-actin, 5 0-CTGGTGCCT GGG GCG-3 0, 5 0-AGCCTCGCCT-
TTGCCGA-3 0; lzts2, 5 0-AGAAGCGGCAATTGCAGGAC-3 0, 5 0-
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Fig. 1. Effect of NF-jB inhibitors on NF-jB and b-catenin/Tcf signaling path
constructs and b-Gal vector. (B) Cells were cotransfected with either TOPFLA
cells were treated without or with SN50 (50 and 100 lg/ml) for 48 h. Lucifer
means ± S.E.M. of four different experiments. *P < 0.05 compared with data
CTCGCCTGATTTCTGGCACA-3 0. Real-time quantitation done as
described [21].

2.8. Statistical analysis
Comparisons between two groups were analyzed via a Student�s

t-test. (P < 0.05), and comparisons between three groups were ana-
lyzed by ANOVA with a Student–Newman–Keuls post hoc test
(P < 0.05). Data are presented as means ± S.E.
3. Results

We determined the effect of inhibition of NF-jB signaling by

treatment with SN50, an inhibitor of NF-jB nuclear transloca-

tion on b-catenin/Tcf signaling. In this experiment, we used

two colon cancer cells (COLO-201 and KM12C), two glioma

cells (U87MG and GBM-05 [22]), two hepatoma cells (HepG2

and Hep3B), and one breast cancer cells (SKBR3). The treat-

ment with SN50 (50 or 100 lg/ml) inhibited the luciferase

activity of the NF-jB promoter-luciferase construct in all of

cells to be tested in the experiment (Fig. 1A). The treatment

of SN50 inhibited the luciferase activity of the Top-Flash con-

struct in glioma cell lines, U87MG and GBM-05, without

affecting that of the Fop-Flash construct (Fig. 1B). In contrast,

the treatment of SN50 (50 or 100 lg/ml) increased Tcf pro-

moter activity in the COLO-201, KM12C, SKBR3, HepG2,

and Hep3B cell lines (Fig. 1B).

To confirm the differential crosstalk between the NF-jB and

b-catenin/Tcf signaling pathways in cancer cell lines, we trea-
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ted COLO-201, SKBR3, U87MG, HepG2, Hep3B, KM12C,

and GBM-05 cancer cells with mutant and NF-jB decoy.

The treatment with NF-jB decoy decreased the luciferase

activity of NF-jB in comparison to treatment with the mutant

decoy in all cancer cell lines (Fig. 2A). In Tcf promoter activ-

ity, treatment with NF-jB decoy increased activity of Tcf pro-

moter in colon, hepatic, and breast cancer cells in contrast with

glioma cells in which the treatment of NF-jB decoy decreased

Tcf promoter activity (Fig. 2B). The overexpression of p65 by

plasmid transfection increased the luciferase activity of both

the Tcf and NF-jB promoters in U87MG and GBM-05, but

decreased Tcf promoter activity in COLO-201, KM12C,

HepG2, Hep3B, and SKBR cells (Fig. 2A and B).

To understand the mechanisms underlying the crosstalk be-

tween the NF-jB and b-catenin/Tcf signaling pathways in can-

cer cells, the b-catenin levels in the total, nuclear, and cytosolic

fractions were determined by Western blot analysis. The SN50

treatment inhibited the nuclear translocation of p65 in COLO-

201, SKBR3, and U87MG cells. Although SN50 (100 lg/ml)

treatment did not affect the total b-catenin levels, it increased
A
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Fig. 2. Effect of NF-jB activity on b-catenin/Tcf pathway in cancer cells. (A
constructs vector in combination with b-Gal vector, and incubated with eit
overexpression, cells were cotransfected with either pCMV65 or pCMV empty
determined at 48 h after transfection and normalized by b-galactosidase ac
*P < 0.05 compared with the data of mutant decoy or pCMV vector-transfect
and b-catenin in cancer cells. Cells was treated without or with SN50 (10
immunoblotted with antibodies against b-catenin, p65 and b-actin. One repr
the b-catenin levels in the cytosolic fractions and decreased

the b-catenin levels in the nuclear fractions of U87MG, indi-

cating that SN50 inhibited nuclear translocation of b-catenin

as well as NF-jB (Fig. 2C). In contrast, SN50 increased nucle-

ar translocation of b-catenin in COLO-201 and SKBR3.

A recent study showed that lzts2 is involved in the nuclear

translocation of b-catenin [16]. Therefore, we determined

whether differential regulation of lzts2 expression by NF-jB

according to cell types is responsible for opposite responses

of b-catenin/Tcf pathway by NF-jB activity. RT-PCR and

real-time PCR analysis showed that SN50 (100 lg/ml) and

NF-jB decoy increased lzts2 expression in U87MG and de-

creased it in COLO-201, SKBR3, HepG2, Hep3B, and

KM12C cells. In contrast, p65 overexpression by plasmid

transfection decreased lzts2 expression in U87MG and in-

creased it in COLO-201, SKBR3, HepG2, Hep3B, and

KM12C cells (Fig. 3A and B). To further confirm the role of

lzts2 on the interaction between b-catenin/Tcf and NF-jB

pathways, siRNA duplex oligonucleotides were transfected

for the downregulation of lzts2 expression. lzts2 siRNA-trans-
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fected cells showed significant downregulation of the lzts2 gene

in the cancer cells (by 70–80%) (Fig. 4A and B). We then deter-

mined Tcf and NF-jB promoter activity in lzts2 siRNA-trans-

fected cells. The downregulation of lzts2 increased Tcf

promoter activity in COLO-201, SKBR3, U87MG, HepG2,

Hep3B, and KM12C cells (Fig. 4C). The transfection of lzts2

siRNA increased NF-jB promoter activity in U87MG,

whereas it inhibited NF-jB promoter activity in COLO-201,

SKBR3 HepG2, Hep3B, and KM12C cells (Fig. 4D). To con-

firm these findings, Western blot analysis was used to deter-

mine the levels of b-catenin in the cancer cell lines. The

downregulation of lzts2 expression increased the total and nu-

clear b-catenin levels, but decreased the cytosolic b-catenin lev-

els in the cancer cells (Fig. 4E).

To further determine the role of lzts2 on b-catenin/Tcf path-

way, we measured the effect of lzts2 downregulation on nuclear

translocation of b-catenin. In COLO-201, SKBR3, and

HepG2 cells, the treatment of SN50 (100 lg/ml) increased nu-

clear translocation of b-catenin, but the overexpression of p65
decreased it. In U87MG and GBM-05 cells, the treatment of

SN50 decreased nuclear translocation of b-catenin, but the

overexpression of p65 increased it. In lzts2 downregulated

cells, the alterations of the ratio of nuclear/cytosolic b-catenin

levels induced by p65 overexpression or SN50 treatment were

significantly decreased (Fig. 4F).
4. Discussion

b-Catenin inhibited the activity of NF-jB in colon and

breast cancer cells [12], but induced the activation of NF-jB

in vascular smooth muscle cells [15] and human embryonic

kidney cells [23]. Studies concerning the crosstalk between

NF-jB and the b-catenin/TCf pathways have revealed that

the interaction between the two pathways occurs at multiple

cellular levels. The data from studies in colon and breast can-

cer cell lines showed that b-catenin is able to bind to NF-jB

and reduce the amount of NF-jB DNA binding [12]. The
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activity of NF-jB was enhanced by glycogen synthase kinase-

3b (GSK-3b), which contributes to the degradation of b-cate-

nin and represses the b-catenin/Tcf signaling pathway [4,24].

The transactivation of Tcf/Lef has been known to lead to the

upregulation of the E3 ligase b-TrCP1 [15]. b-TrCP1 binds

identical phosphorylated motifs on b-catenin and IjB, result-

ing in the tethering of the ubiquitin ligase machinery and sub-

sequent degradation of IjB by the 26S proteasome [23,25,26],

which can provide an explanation for the b-catenin-induced

activation of NF-jB. However, these studies were focused on

the b-catenin-mediated modulation of NF-jB, and the NF-

jB-mediated modulation of the b-catenin/Tcf signaling path-

ways has not been studied well.

The results of our study showed that the modulation of the

NF-jB signaling pathway differentially affects the b-catenin/

Tcf signaling pathways according to the type of cancer cells.

The modulation of NF-jB by the inhibition of NF-jB nuclear

translocation, decoy oligonucleotides, and the overexpression

of NF-jB directly affects the b-catenin/Tcf pathway in glioma

cells, but inversely affects this pathway in colon, hepatic, and

breast cancer cells. The mechanisms mentioned above do not

provide a sufficient explanation for the NF-jB-induced modu-

lation of b-catenin/Tcf pathways.

A recent study showed that lzts2 [16] interacts with b-cate-

nin, represses the transactivation of b-catenin, and affects the

subcellular localization of b-catenin. In this study, we demon-

strated that NF-jB increased the expression of lzts2 in colon,

breast, and hepatic cancer cells, but inhibited lzts2 expression

in glioma cancer cells. These findings provide a good explana-

tion for the differential effects of NF-jB activity on the b-cate-

nin/Tcf pathways. That is, the increased nuclear translocation

of b-catenin in colon, hepatic, and breast cancer cells by SN50

could be explained by a concomitant decrease in lzts2 expres-

sion. Conversely, the decreased nuclear translocation of b-

catenin by SN50 in glioma cells could be related to the increase

in lzts2 expression. The findings that the downregulation of

lzts2 by RNA interference upregulated the levels of b-catenin,

increased the translocation of b-catenin into the nucleus, in-

creased the activity of the Tcf promoter, differentially regu-

lated the activity of NF-jB according to cancer cell types

and inhibited NF-jB-induced modulation of b-catenin translo-

cation provide further support that lzts2 plays a central role in

the interaction between the NF-jB and b-catenin/Tcf path-
Wnt stimuli

GSK3 IKK

β-catenin IκB

Tcf-dependent
transcription

NF-κB
transcription

lzts2

Tcf target(s)

Glioma

Colon, Liver and Breast cancer

Fig. 5. lzts2 mediates crosstalk between NF-jB and b-catenin/Tcf
pathways in cancer cells.
ways. A schematic diagram in Fig. 5 illustrates our current

understanding of the reciprocal interaction between the Wnt

and NF-jB signaling pathways in cancer cells. Activation of

NF-jB decreases lzts2 expression in colon, but increases it

in. The changes in lzts2 level result in differential modulation

of nuclear translocation of b-catenin and transactivation of

Tcf/Lef.

Acknowledgements: This study was supported by a Grant
(R012006000105250) and the MRC Program of MOST/KOSEF
(R13-2005-009).
References

[1] Funayama, N., Fagotto, F., McCrea, P. and Gumbiner, B.M.
(1995) Embryonic axis induction by the armadillo repeat domain
of beta-catenin: evidence for intracellular signaling. J. Cell Biol.
128, 959–968.

[2] Heasman, J. et al. (1994) Overexpression of cadherins and
underexpression of beta-catenin inhibit dorsal mesoderm induc-
tion in early Xenopus embryos. Cell 79, 791–803.

[3] Laurent, M.N., Blitz, I.L., Hashimoto, C., Rothbacher, U. and
Cho, K.W. (1997) The Xenopus homeobox gene twin mediates
Wnt induction of goosecoid in establishment of Spemann�s
organizer. Development 124, 4905–4916.

[4] Polakis, P. (2000) Wnt signaling and cancer. Genes Dev. 14, 1837–
1851.

[5] Cho, H.H., Kim, Y.J., Kim, S.J., Kim, J.H., Bae, Y.C., Ba, B. and
Jung, J.S. (2006) Endogenous Wnt signaling promotes prolifer-
ation and suppresses osteogenic differentiation in human adipose
derived stromal cells. Tissue Eng. 12, 111–121.

[6] Boland, G.M., Perkins, G., Hall, D.J. and Tuan, R.S. (2004) Wnt
3a promotes proliferation and suppresses osteogenic differentia-
tion of adult human mesenchymal stem cells. J. Cell Biochem. 93,
1210–1230.

[7] Bours, V. et al. (2000) Nuclear factor-kappa B, cancer, and
apoptosis. Biochem. Pharmacol. 60, 1085–1089.

[8] Ghosh, S., May, M.J. and Kopp, E.B. (1998) NF-kappa B and
Rel proteins: evolutionarily conserved mediators of immune
responses. Annu. Rev. Immunol. 16, 225–260.

[9] Gilmore, T.D., Koedood, M., Piffat, K.A. and White, D.W.
(1996) Rel/NF-kappaB/IkappaB proteins and cancer. Oncogene
13, 1367–1378.

[10] Wang, W., Abbruzzese, J.L., Evans, D.B., Larry, L., Cleary, K.R.
and Chiao, P.J. (1999) The nuclear factor-kappa B RelA
transcription factor is constitutively activated in human pancre-
atic adenocarcinoma cells. Clin. Cancer Res. 5, 119–127.

[11] Abdallah, B.M. et al. (2007) dlk1/FA1 regulates the function of
human bone marrow mesenchymal stem cells by modulating gene
expression of pro-inflammatory cytokines and immune response-
related factors. J. Biol. Chem. 282, 7339–7351.

[12] Deng, J. et al. (2002) Beta-catenin interacts with and inhibits NF-
kappa B in human colon and breast cancer. Cancer Cell 2, 323–
334.

[13] Masui, O., Ueda, Y., Tsumura, A., Koyanagi, M., Hijikata, M.
and Shimotohno, K. (2002) RelA suppresses the Wnt/b-catenin
pathway without exerting trans-acting transcriptional ability. Int.
J. Mol. Med. 9, 489–493.

[14] Sun, J., Hobert, M.E., Duan, Y., Rao, A.S., He, T.C., Chang,
E.B. and Madara, J.L. (2005) Crosstalk between NF-kappaB and
beta-catenin pathways in bacterial-colonized intestinal epithelial
cells. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G129–
G137.

[15] Wang, X., Adhikari, N., Li, Q., Guan, Z. and Hall, J.L. (2004)
The role of [beta]-transducin repeat containing protein ([beta]-
TrCP) in the regulation of NF-[kappa]B in vascular smooth
muscle cells. Arterioscler. Thromb. Vasc. Biol. 24, 85–90.

[16] Thyssen, G., Li, T.H., Lehmann, L., Zhuo, M., Sharma, M. and
Sun, Z. (2006) LZTS2 is a novel beta-catenin-interacting protein
and regulates the nuclear export of beta-catenin. Mol. Cell Biol.
26, 8857–8867.



622 H.H. Cho et al. / FEBS Letters 582 (2008) 616–622
[17] Cho, H.H., Joo, H.J, Song, J.S., Bae, Y.C. and Jung, J.S. (in
press) Crossregulation of b-catenin/Tcf pathway by NF-jB is
mediated by lzts2 in human adipose tissue-derived mesenchymal
stem cells. Biochim. Biophys. Acta.

[18] Cho, H.H., Kyoung, K.M., Seo, M.J., Kim, Y.J., Bae, Y.C. and
Jung, J.S. (2006) Overexpression of CXCR4 increases migration
and proliferation of human adipose tissue stromal cells. Stem
Cells Dev. 15, 853–864.

[19] Schreiber, E., Matthias, P., Muller, M.M. and Schaffner, W.
(1989) Rapid detection of octamer binding proteins with �mini-
extracts�, prepared from a small number of cells. Nucleic Acids
Res. 17, 6419.

[20] Viedt, C., Dechend, R., Fei, J., Hänsch, G.M., Kreuzer, J. and
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