A Representation Theorem for Algebras with Involution

H.-G. Quebbemann
Mathematisches Institut der Universität
Einsteinstraße 62
D-4400 Münster, Federal Republic of Germany

Submitted by Edward Formanek

Abstract

Algebras with involution are represented as commutants of two adjoint vectorspace endomorphisms.

Let K be a field with an involution . We shall consider finite-dimensional K-algebras A with an involution * extending ${ }^{-}$(for short: algebras with involution). So $\alpha \mapsto \alpha^{*}$ will be an antiautomorphism of the ring A satisfying $\alpha^{*}=\bar{\alpha}$ for $\alpha \in K$ and $\alpha^{* *}=\alpha$ for all $\alpha \in A$. Everyone knows that if (V, h) is a nondegenerate ε-hermitian space over K (where $\varepsilon \in K$ satisfies $\varepsilon \bar{\varepsilon}=1$), then End ${ }_{K}(V)$ carries the "adjoint" involution $f \mapsto f^{h}$ given by

$$
h(f v, w)=h\left(v, f^{h} w\right), \quad v, w \in V
$$

If a subalgebra B of $\operatorname{End}_{K}(V)$ is stable under this involution, the same is clearly true for its centralizer $C=\operatorname{End}_{B}(V)$. For example, we may pick one $f \in \operatorname{End}_{K}(V)$, and let B be generated over K by f and f^{h}; hence

$$
C=\left\{g \in \operatorname{End}_{K}(V) \mid g f=f g, g f^{h}=f^{h} g\right\}=: \operatorname{End}_{K}\left(V ; f, f^{h}\right)
$$

This special construction of an algebra with involution turns out to be already the most general case.

Theorem 1. Any algebra with involution is isomorphic to an algebra $\operatorname{End}_{K}\left(V ; f, f^{h}\right)$ with the adjoint involution, for some triple (V, h, f) as above (ε fixed).

Proof. Given A, ${ }^{*}$, we first find a space $\left(V_{0}, h_{0}\right)$ such that $\left(A,{ }^{*}\right)$ is isomorphic to $\left(\operatorname{End}_{B}\left(V_{0}\right),{ }^{0}\right)$ for some subalgebra $B=B^{0}$ of $\operatorname{End}_{K}\left(V_{0}\right)$, where ${ }^{0}$ denotes the adjoint involution with respect to h_{0}. This is done by a "hyperbolic" construction: Set $V_{0}=A \oplus \operatorname{Hom}(A, K)$, a left A-module by $\alpha(\beta, \lambda)=(\alpha \beta, \alpha \lambda)$ for $\alpha, \beta \in A, \lambda \in \operatorname{Hom}(A, K)$, where $\alpha \lambda$ is defined as the functional $\gamma \mapsto \lambda\left(\alpha^{*} \gamma\right)$ on A. Furthermore, set

$$
h_{0}((\beta, \lambda),(\gamma, \mu))=\overline{\lambda(\gamma)}+\varepsilon \mu(\beta)
$$

an A-invariant nondegenerate ε-hermitian form. In this way ($A, *$) becomes a subalgebra (with involution) of $\left(\operatorname{End}_{K}\left(V_{0}\right),{ }^{0}\right)$. Since V_{0} contains the "regular" A-module A as a direct summand, it is balanced (cf. [2, p. 451]), i.e., we have $A=\operatorname{End}_{B}\left(V_{0}\right)$ for $B=\operatorname{End}_{A}\left(V_{0}\right)$.

The final step of the proof depends on a well-known lemma (which can be proved by direct computation):

Lemma. In the ring of $m \times m$ matrices over an arbitrary ring R, let $\Phi=\left(\varphi_{i j}\right)$ commute with some matrix of type

$$
\left(\begin{array}{llllll}
0 & 1 & & & & * \\
& \cdot & \cdot & & & \\
& & & \cdot & & \\
& & & & \cdot & 1 \\
0 & & & & & 0
\end{array}\right) .
$$

Then Φ is upper triangular and $\varphi_{11}=\cdots=\varphi_{m m}$.
This will be applied to $R=\operatorname{End}_{K}\left(V_{0}\right)$ Let $\beta_{1}, \ldots, \beta_{n}$ be a K-basis of B, and put

$$
\begin{aligned}
(V, h) & =\underbrace{\left(V_{0}, h_{0}\right) \perp \cdots \perp\left(V_{0}, h_{0}\right)}_{n+2 \text { copies }}, \\
f & =\left(\begin{array}{cccccc}
0 & 1 & \beta_{1} & & & \\
& \cdot & \cdot & \cdot & & \\
\\
& & & \cdot & \cdot & \cdot \\
\\
& & & & \cdot & \cdot \\
0 & & & & \cdot & 1 \\
0 & & & & & 0
\end{array}\right) .
\end{aligned}
$$

Clearly, $\operatorname{End}_{B}\left(V_{0}\right)$ is embedded diagonally into $\operatorname{End}_{K}\left(V ; f, f^{h}\right)$. Now consider an arbitrary $g \in \operatorname{End}_{K}\left(V ; f, f^{h}\right)$. Then both g and g^{h} commute with f. So, by the lemma, g must be both upper and lower triangular, i.e., $g=\varphi \perp$ $\cdots \perp \varphi, \varphi \in \operatorname{End}_{K}\left(V_{0}\right)$. Furthermore, $g f=f g$ implies $\varphi \beta_{i}=\beta_{i} \varphi$ for all i, which means $\varphi \in \operatorname{End}_{B}\left(V_{0}\right)$. This proves that $\left(\operatorname{End}_{B}\left(V_{0}\right){ }^{0}\right)$ is isomorphic to the algebra with involution associated to (V, h, f).

The main conclusion is that one cannot expect to classify the triples (V, h, f). In the second part of the proof it was merely used that (V_{0}, h_{0}) defined an ε-hermitian representation of B, i.e., a representation $B \rightarrow$ $E \operatorname{End}_{K}\left(V_{0}\right)$ compatible with the involutions; what we have proved then is:

Theorem 2. For any algebra with involution there is a full embedding of the category of its ε-hermitian representations into the category of triples (V, h, f) as above.

This result has been modeled after analogous ones for linear representations (cf. [1]). It was contained in my thesis (unpublished) and recently dug out [3].

REFERENCES

1 S. Brenner, Some modules with nearly prescribed endomorphism rings, J. Algebra 23:250-262 (1972).
2 S. Lang, Algebra, 3rd printing, Addison-Wesley, New York, 1971.
3 W. Scharlau, Involutions on simple algebras and orders, in Quadratic and Hermitian Forms (C. Riehm and I. Hambleton, Eds.), Amer. Math. Soc., Providence, R.I., 1984.

Received 16 October 1986

