EXTREMAL CRITICALLY CONNECTED MATROIDS

U.S.R. MURTY
Depertment of Combinatorics and Optimizalzon, [niversity of Waterlon. Waterloo. Ont. Cancedo

Recelved 1 May i973*

Abstract

Abstrack. A connected mathond M is called a critical's connected matroid it the efetion of an one element trom Hesults in a $^{\text {a }}$ diconnected matroid. We show that a onteally connected matrond of tank n, , >3, can have at most $2 n$ - 2 elements. We also show that a citically connected matrud of tank n on $2 n .2$ elements is somorphic to the forest matrond of $K_{2, n-2}$:

1. Introduction

A non-sepatable graph G is called a critically non-separable graph if the deletion of any edge from G results in a graph which is separable. Dirac |1] and Plummer [3] have characterized critically non-separable graphs. Dirac $\{11$ has shown that a critically non-separable graph on n vertices has ar most $2 n 4$ edges. In this paper we generalize this result to matroids. The relevant definitions and theorems from matroid theory are given in Section 2. The results of this paper are proved in Section 3.

2. Matroids

A matroid $M-(E . I)$ is a finite set E of elements together with a nonempty family I of subsets of E. called independent sets, such that:
(II) Every subset of an independent set is independent.
(12) For every $A \subseteq E$, all maximal independent subsets of A have the same cardinality, called the rank $r(A)$ of A.

[^0]An example of a matroid is ohtained as foliow: Let G be a graph. Let E denote the set of edges of G and let I senute the family of edge wits of forests contained in $(j$. Then $M=(E . I)$ is a matroid cailed the fiorest ma:roid of G. It is denoted by $F(G)$. A matroid is calced a graphic matroid if it is isomorphic to the forest matroid of some grapt:

A maximal independent subset of A. where $A \subseteq E$, is called a bosic $\cdot f$ A (or M-bais of A if we wish to specify the matroid being considered). An M-basis of E is called a basis of $M: r(1 /)$, the rank of M, equals $r(E)$. A subset or E is called dependent if it is not independent. Minimal dependent sets are called circuits. The family of circuits of M determines a matrc d. Inderd 'Whitney [5] showed that a family C of not-emply subsets of a finitu set E is the family of circuits of a matroid M on E if and only if the following conditions $\mathrm{f}: \mathrm{Q}$ be called circuit axioms) are satisfiec:
(Cl) A proper subset of a nemter of C is not a member of C.
(C:) (Exange axiomi. If $a \in C_{1} \cap C_{2}$ and $b \in C_{1}-C_{2}$, where $C_{1} . C_{2} \in C$ and $a, b \in E$, then thice exisis a $C_{3} \in C$ such that $b \in C_{3} \subset C_{1} \cup C_{2} \cdots\{a\}$.

The crruits of the forest matroids : G) of a graph G are the edge sets of cycles of G. the bases are the edge sets of maximal spanning forests of G. and the rank of $F(G)$ is equal io the number of vertices minus the number of connected components of G.

Let $M=(E .1)$ be a matroid. If $X \subseteq E$, then the matroid on $E-X$ whose circuits are those M-circuits which are centained in $E-X$ is called the rescriction of M to $E-X$ (or the matroid obtained by deleting X from M) and is denoted by M_{X}^{\prime}. There is another derived matro:d of importance introduced by Tutte $\{4 \mid$. If $X \subseteq E$, then the family of minimal ronrempty intersections of $E-X$ with M-circuits is the family of circuits of a matroid on $E-X$ called the contraction of M to $E \cdots X$ for the matrind obtained by contracting, X out of,M) and is denoted by $\boldsymbol{M}_{\boldsymbol{X}}^{\prime \prime}$. If $\boldsymbol{X}=\left\{\right.$ ie, we shall simply write M_{e}^{e} and $\boldsymbol{M}_{e}^{\prime \prime}$ for restriction and contraction to $\boldsymbol{E} \times\{e\}$. respectively. Deletion and contraction of elements in iste forest matroid $F(G)$ of a graph G correspond to deletion and contraction of edges in G. Tutte [4] has shown that the operations of deletion and contraction of elements from a matroid commute. More precisely we have the following:

Lemma 2.1. If 1 if is matroid and if X and Y are two disjoint sets of elements of M, then

$$
\left(M_{x}\right)_{y}^{\prime \prime}=\left(M_{y}^{\prime \prime}\right)_{x}^{\prime} .
$$

A subset S of the set of elements E of a matroid U is called a separator of M if every circuit of H is either contained in S or $E S$. Tutte [4] has shown that a subset S of E is a separator if and only if $r(S)+r(E . S)=$ $r(E)$. Union and intersection of two separators of M is also a separator of M. If D and E are th: only separators of M. then M is said to be comnect ed. The minimal noilempty separators of M are called the components of M. An el ment e of a connected matroid M is said to separate elements x and y if x and y belong to different components of M_{e}^{\prime}. If G is a graph. the components of $F(G)$ are blocks of G and $F(G)$ is connected if and only if G is non separable.

We now state two lemmas which are used in the proofs in Section 3. Lemma 2.2 is due to Whitney 15) a proof of Lemma 2.3 can be found inl:

Lemana 2.2. A matroid M is connected if and only if for evers pair e ${ }_{1}$. e: "f distinct elements of M. there is a circuit contairing both ei, and' e_{2}

Lemma 2.3. If M is a connected matroid, then for every $e \in E$. either M_{e}^{\prime} or $M_{c}^{\prime \prime}$ is aiso connected.

A matroid is called simple if it does not contain any one or two element circuits. Simple matroids are also known as combinatorial geometries.

Lemma 2.4.3 A simple matroid Mof rank 3 is connected if and only if it conrains a circuit of cardinality 4.

Proof. Let M be a simple matroid of rank 3 which contains a circuit © of cardinality 4. If possible, let $S, S \neq \emptyset, F$, be a separator. Then $r(S)+r(E-S)=3$. Without loss of generality, we may assume that $C \subseteq S$. Then $r(S) \geq r(C)=3$. But this implies that $r(E \cdots S)=0$. Since M

[^1]is a simple matroid, we have $E S=0$. which implies that $S=r$. This is contradiutory to our assumption. Thus M is conne sted.

Conversely, let M be a simple connected matroid of rank 3. Suppose. if possible, that M does not contain any circuit of cardinality 4 Then an circuits of M are of cardinality 3 . Let $\{e . \subseteq g$) be a basis of M. B ; Lemma 2.2. there exist circuits $C_{1}=\{0, f, h\}$ and $\check{Z}_{2}=\{e, g, i\}$. If $h=i$. then. by applying the exchange axiom ior circuits, we obtain that \{e, f. g : is a circuit. Therefore $h \neq i$. Now by the exchange axiom, $C=$ $C_{1} \cup C_{2}\{\bullet=\{f, g, h, i$ contains a circuit containing f. If C itself is not a citcuit, then at least one of $C_{3}=\{f, g . h\} . C_{4}=\{f, g . i\}$ and $C_{s}=$ f. h, i is a circuit. If C_{3}, is a circuit, then, by the exchange axiom. $C_{1} \cup C_{3} \quad$ h: $=$ ef.g! contains a cir uit. But this is impossible hecause :e.f.g! is a basis or M. Similaris. we may ectahlish that both C_{4} anc: C_{b} are ako not circuits therery establishing thai C is a circuit. The moof is compiete.
I.et $H=\| E$. I br: a matroid. Len I te a subset of E. The elements of X are said to be in series in M if any sircuit of M which contains an element of $\boldsymbol{\lambda}$ contains all the elements of \boldsymbol{X}.

Iet c, be an element not in E and let e be an element of f. Define

$$
\begin{aligned}
& E_{1}=I \backsim \backsim e_{1}
\end{aligned}
$$

Then it may be verified that $\left(E_{1}, l_{1}\right.$; is a matroid. In this matroid. e ance e, are in series - thus it is said to have been obtained by extending . Ih hy series al e. In casc of graph: : matroids. series extension correponds to subdivision of an edge by taserting a vertex.

A matreid. $1 /$ in called a one clement extension of another matroid \because
(i) $r(1)=r(1)$. and
(ii) there is an clement e of M such that $. V_{e}=N$.

Let $. \boldsymbol{H}=: E . I$ ' e a matroid and het 3 denote the family of bases of 14. Let B^{*} Lenot the family of cemplements of members of B in E. Then Whitney 151 showed that B^{*} is the family of bases of a matroid. denuted by M^{*}. called the dual of M. If G is a graph. then the dual of F G) is called the co-fiores matroid of G. The circuits of this matroid are minimal cuisets as tronds of G.

The cifcuits of U^{*} are called the corcirctits of M. A maximal subset
of E that is of M-rank $r(M) \cdot I$ is called a hyperplane of $: m$. The following lemma follows from the definition of the dual.

Lemma 2.5. A subset Y of E is a co-circuit of M if and only if $E \cdot Y$ is u hyperplane of M.

The following lemma is dive to Tutte [4].

Lemma 2.6. If $X \subseteq E$, then

$$
\left(H_{x}^{\prime \prime}\right)^{*}=\left(I^{*}\right)_{x}^{*}
$$

Thus a co-circunt of $H_{X}^{\prime \prime}$ is a co-circuit of M.

We are now ready to state and prove the resulis of this paper.

3. Critically connected matroids

Let $H=(E . I)$ be a connected matroid. An chemente of $1 /$ is called an essental clement if H_{i} is disconnected. Otherwise it is called an inesiential element. A connected matroid each of whose ciements is essential is called a riticall' connected matroid or simply a critical matroid. As mentioned in the introduction. Dirac |1] and Piummer [3] have characterized critical graphic matroid. However, not every critical matroid is eqraphic. By ceries extension of each of the elements of any simple connected matroid of rank ≥ 2, one ohtains a critical matroid. No useful charaterifation of critical matroids is known. Here by a usefui characterization I me:ry one which sugeests a recursive construction of all critical matroids.

The following lemma generalizes the faet that every critically nonseparable graph on 3 or sore vertices contains a vertex of degree ?.

Lemma 3.1. A critical matroid of rank ≥ 2 comitains a co-circuit of sardinality two.
 nality two. If the lemma is false, let n be the least integer $\geqslant 3$ for which there is a critical matroid of rank n with no co-circuits of cardiality iwo.

Let e be an chement of M. Since $/ /$ is critical, M_{c}^{\prime} is disionnected. Hence. m. Lemma 2.3. . M" is connected. Now if x is any element of E … 他; the matroul $\left(M_{x}^{\prime}\right)_{e}^{\prime \prime}$ is disconnected intess (e) is a component of M_{x}^{\prime}. But if (e) is a component of M_{z}^{\prime}. Then (e, x) is a co-circuit of $: f$, which is a contradiction. It follows that ($\left.M_{r}\right)_{2}^{\prime \prime}$ is disconnected for each $r \in E$ (\boldsymbol{f}. Since by Lenma 2.1. $\left(M_{c}^{*}\right)_{x}^{*}=\left(M_{x}^{\prime}\right)_{e}^{\prime \prime}$. we have that $\left(M_{e}^{\prime \prime}\right)_{x}^{\prime}$ is disconnected for all $x \in E$ ie). It follows that $M_{e}^{\prime \prime}$ is a critical matroid. But r(M)" $=n$ I. Therefore by the minimality of $n, H_{e}^{\prime \prime}$ has a corcurcuit of cardinality two. But a co- :ircuit of $M_{e}^{\prime \prime}$ is also a co-circtit of .3. This contradiction proves the le rma.

Of all the critical matroids of a given rank, one with the largest number of ciements is called an extrena! critical matroid or simply an extremat matroid. In ithe sequel we sisi:d characterize extremal matroids. Our characterization is a generalizat on of a theorem due to Dirac [1] for graphs

We obsurve that the forest matroid of $K_{2, n-1}(n \geq 3)$ is a critical matroud of rank n. Thus. if we define $f(n)$ as the number of elements in an extr. inal matroid of rank n. we have for $n>3$.
(1)

$$
f(n) \geq 2 n-2 .
$$

Theorem 3.2. If $. M=(E .1)$ is an extremal matroid of rank $?, n \geq 3$, then

$$
f(n)=|E| \leq 2 n \quad 2 .
$$

Proof. It follows from Lemma 2.4 that the orly critical matroid of rank 3 is 2 circuit of cardinality 4 . Thus the theorem is valid when $n=3$. We shall prove it in general by induction on n : Let n be an integer ≥ 4 and assume that $f(k) \leq 2 k-2$ for all k such that $3 \leq k<n$. Consider an extremal matroid M of rank n.

By Lemma 3.1, M has a cocircuit of cardinality two. Let a, b be a co-circuit of M.
(ionsider $M_{a}^{\prime \prime}$. Since M_{a}^{\prime} is disconnected, $M_{a}^{\prime \prime}$ is connected. If $M_{a}^{\prime \prime}$ is critically connected. then. hy induction hypothesis, we have

$$
|E-\{a\}| \leq f(n-1) \leq 2(n-1)-2,
$$

from which it follows that $f(n)=|E| \leq 2 n-3$. But this contradicts (1). Thus M" is not critical.

We shall now show that if e $\in E=b_{i}$. then e is essential in $M_{a}^{\prime \prime}$.
Case (i) Suppose that a, b and e are in series. Then M_{e}^{\prime} has at least three components; $\{a\}$ and $\{b\}$ are two of the components of M_{e}^{\prime}. Thus $\left(M_{c}^{\prime}\right)_{a}^{\prime \prime}$ is dixconnected. But. by Lemma 2.1. $\left(M_{a}^{\prime \prime}\right)_{c}^{\prime}=\left(M_{c}^{\prime}\right)_{a}^{\prime \prime}$ it follows that $\left(M_{a}^{\prime \prime}\right)_{c}^{\prime}$ is disconnected. Thus e is essential in $M_{a}^{\prime \prime}$.

Case (ii) Now suppose that a, b and e are not in series. In this case. a and b would have to $b e$ in the same component of M_{e} For if a and b were to be indifferent components in M_{c}^{\prime}, then every circuit that contains a and b would contain e as well, and a, b and e would be in series. If α and b are in the same component of M_{e}^{\prime}. then $\left(M_{e}^{\prime}\right)_{a}^{\prime}$ would be disconnected Thus $\left(M_{a}^{*}\right)_{e}^{*}=\left(M_{c}^{*}\right)_{a}^{\prime \prime}$ is disionnected. It follows that e is essential in $M_{a}^{\prime \prime}$.

But since $M_{a}^{\prime \prime}$ is not critical, the only inessential element in $M_{a}^{\prime \prime}$ is b : and ($\left.M_{a}^{\prime \prime}\right)_{b}^{\prime}$ is connected.

Now we shall show that $\left(M_{a}^{\prime \prime}\right)_{b}^{\prime}=M_{\{a, b\}}$. The circuits of $M_{a}^{\prime \prime}$ are the circuits of M which are contained in $E-\{a, b\}$, together with sets of form $Y \cup\{b ;$, where $Y \cup\{a, b)$ is a circuit of M. Thus the circuits of $\left(M_{a}^{\prime \prime}\right)_{b}$ are the circuits of M which ase contained in $E ;\{a, b\}$. It now follows that $\left(\mathbf{N}_{0}^{\prime \prime}\right)_{b}=M_{(a, b)}^{\prime}$.

Now we shall show that $M_{\{e, b\}}$ is critically connected; or that $\left.(M\}_{\text {a }, b}\right)$) is disconnected for all $e \in E \cdot\{a, b\}$.

Since e is cosential in M. c separates two elements of M. If e separates a and b. then we know that a, b and e are in series, in which case $M_{a}^{\prime \prime}$ would be critical (because in this case $\left(M_{a}^{\prime \prime}\right)_{b}^{\prime}=\left(M_{b}^{\prime}\right)_{a}^{\prime \prime}$ is disconnected implying that" b is essential in $M_{\sigma}^{\prime \prime}$). Thus a and t are in the same component of M_{c}^{\prime}.

Now there are two possibilities.
Case (I) There are two element: $x, y \in E \in\{a, b, e\}$ such that x and y are separated by e. Since $\left(M_{(a, b}^{\prime}\right)_{c}^{\prime}=\left(M_{e}^{\prime} \beta_{, b, b}, x\right.$ and y betong to different components of $\left.\boldsymbol{M}_{\{a, b\}}^{\prime}\right)^{\prime}$ implying that e is essential in $M_{\{a, b\}}^{\prime}$.

Case (II) There do not exist $x, y \in E \in\{a, h, e$, which are separated by e. In this case, $\left\{\left(, b, b\right.\right.$ is component of M_{e}^{\prime} which implies that $\{a, b\}$ is a circuit of M. This is a contradiction because a critical matroid cannot have two element circuits.

Therefore $M_{f e s ;}$ is critically connected. By Lemma 2.5. the rank of $M_{\{a, b\}}$ is $n-1$. It now follows from the induction hypothesis that

It follows (rom (.i) that

$$
f(n)=|E| \leq 2 n-2
$$

The proof of the theorem now follows from the principle of induction.

Corolary 3.3. If $n \geq 3$, the'n $f(n)=$ Ini 2 .

Theoram 3.4. An a : ectrnul critical mat :oid of rank $n(n \geq 3)$ is isomorpihie to the forrevt matroded of $\boldsymbol{X}_{2 . n} 1$.

Proof. If follows from Lemma 2.4 that the only critical matroid of rank $?$ is ismmorptic to the forest matrost of $\mathcal{K}_{2.2}$. Ascume inductively that the "heorem is valid for all $n, 3 \leq k<n$ (onsider an extremal critical matroud $U=(E:, I)$ of rank n. It folliows from the arguments used in live proof ef the previous theorem thak there is a co-circuit \{a. b; in II. h is ine wsintial in H_{c}^{*} and that $H_{s}^{*} b_{j}$ is an extremal critical matroid of rank n 1. By the induction hypothesis. $H_{\text {(e.b }\}}^{\prime}$ is ssomorphic to the fute t makrosd of a $K_{2 . n}:$. Denote H_{i}^{\prime} a b; by M_{1} and $M_{a}^{\prime \prime}$ by M_{2}. We h.ste shown during the proxof of Theorem 3.2 that $H_{a}^{\prime \prime} i_{h}=M_{a b}^{\prime} ;$. Thus U_{2} is a one element extension of M_{1}. We also note that M is obtained from M_{2} thy extending it in series at h. Let C_{1} and C_{2}, respectively demote the circuit sets of M_{1} and M_{2}. It follows that $C_{1} \subset C_{2}$. In fact, each circuit of M_{2} in $C_{2} \cdot C_{1}$ contains the element b.

Fig. :

Fig. 2.
Lemma 3.5. M_{2} is isomorphic to the forest matroid of the graph in fig. 1.
Proof. The case $n=4$ has to be dealt with separately. We shall first deal with the case $n>4$. Consider the $K_{2, n-2}$ with the labels as shown in Fig. 2. Denote this graph by G_{1}.

We miay assume without loss of generality that M_{1} is the same as $F\left(G_{1}\right)$. Now $\left(M_{2}\right)_{a_{1}}$ is disconnected since b is the only inessential element of M_{2}. If we write $R=\left\{a_{2}, b_{2}, \ldots, a_{n}, h_{n}, \quad\right\}$, then the restriction of M_{1} to R is connected, being the forest matroid of $K_{2, n}$. (Note that this assertion is false if $n=4.1$ Thus R is contained in one of the components of $\left(M_{2}\right)_{0_{1}}$. Now since the ranks of $\left(M_{2}\right)_{a_{1}}^{\prime}$ and R are. respectively, $n \mid$ and $n \cdot 2$. it follows that there is only one component of ($\left.M_{2}\right)_{a_{1}}$ other than the component that contains R. This component will have to be a singleton. If this component were $\{b ;$, then the other component would be $R \cup\left\{b_{1} ;\right.$. But if $R \cup\left\{b_{1}\right\}$ were a component of $\left(M_{2}\right)_{e}^{\prime}$. then it would be a component of $\left(M_{1}\right)_{a}^{\prime}$, which is not the calse. It follows that $\left.b_{1}\right)$ is a component of $\left(M_{2}\right)_{a_{1}}^{\cdot}$. It means that $u_{\text {: }}$ separates b_{1} and b in M_{2}. Thus every circuit of M_{2} that contanis b anc t_{1} also contains a_{1}. Similarly, every circuit that contains d_{1} and b contains b_{1}. In general, a circuit containing b contains a_{1} if and only if it contains $b_{i}, i=1,2, \ldots, n-2$. Now if a circuit C containing b contains a_{i} for some 1 . then it cannot contain a_{j} if $j \neq i$. For if $b, a_{i}, a_{i} \in C$, then $\left\{b, a_{i}, h_{i}, a_{i}\right.$. $\left.b_{j}\right\} \subseteq C$. This contradicts the first circuit axiom because $\left\{a_{i}, b_{i}, a_{j}, b_{j}\right\}$ is a circuit. We may now conclude that

$$
\left.c_{2} \cdot c_{1}=\left\{a_{i}, b_{i}, b\right\}: 1 \leq i \leq n-2\right\}
$$

This in turn implies that M_{2}, is isomorphic to the forest matroid of the graph in Fig. 1.

We shall now deal with the case $n=4$. In this case, $r\left(M_{2}\right)=3$ and b is the only inewential element of M_{2}. Lel $\left\{e_{1}, e_{2}, e_{3}, e_{4}, b\right\}$ be the set of ckements of M_{2}. Then $C_{1}=\left\{e_{1} \cdot e_{2}, e_{3} \cdot e_{4} ;\right.$ is a circuit of M_{2}. Now since $\left(\mathrm{H}_{2}\right)_{\text {cs }}$ is disconnected. it contains a component of rank 2 and cardinality 3. This component will have to be a circuit. Without loss of penerality. let $C_{1}=\left\{c_{1}, e_{2}\right.$, b) be this circuit. By arguing with $\left(M_{2}\right)_{c_{1}}$. we may now show that $C_{3}=\left\{c_{3}, c_{4}, b\right\}$ is a circuit. (Both $\left\{c_{i}, e_{j}, b\right.$) and : $\because, ., c_{k}, h_{j}, j \neq k$. Lannot be circuic. For if both of them were circuits. then. In the exchange property, it implies that e_{i}, c_{j}, e_{f} is a sircuit Eut thifeontradicts the first cos uit axiom because $\left\{c_{1}, c_{j}, c_{k}\right\}$ is a propers subset of C_{1}.)

It nuw follows that the only circuits of M_{2} are C_{1}, C_{2} and C_{3}. We may now conclude that when $n=3$, the kerfina is valid.

Returning to the proof of Theorem 3.4, we observe that serise extensim of the forest matrond of the grapis in Fig. 1 is isomorphie to the forest matroid of $\mathbb{K}_{2, n, 1}$. The theorem now follows from the principle of induction.

Acksurwledgment.

At first I did not see the simple pr sof of Lemma 3.1 that appears nere. My first proof was based on a theorem of W.R. Richardson which will appear in his thesis. Using a theory of decomposition of two connected but not three consected matroids into ihree connected components. Richardson has obtained a chisacierication of critical matroids. He will presumably present it in his :hesis. Thanks are due to the refree for sugzesting niany improvements it the presentation of the paper.

References

121 C.S.K. Murty. On the mumioet of bases of matrove. Proc. Serond Loumiana Comference on Cumbtnatosics (1971) 387-410.
(31 M. Murnmet. On minimat blocks, Trans. Ami. Math. Soc. 134 (1968) 85 -94.
(4) W.T. Tutte. I ectures on matooids, J. Res. Nati. Eur. Standards Sect. 869 (1965) 1. 47.
[S| H. Whaney, The abstract properives of limear dependence, Am. J. Muth. 57 (1935) 507 ... 533.

[^0]: * Orignal verson received 14 August 1972: revised version received 9 March 1973.

[^1]: ${ }^{1}$ Thin lemma x, in fact. true for all matronds. The picof given here can be extended to prove this more peneral statement.

