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Abstraci. A connected mattoid M s calied a critical’y connected matroid 1f the dedetion of amy
vne element trom M resalts m a dnconnected matroid. We show that u cntically connected
matroid ot tank w52 3 can have ot most 2n- 2 elements. We also show that a cittically con-
nected matrowd ef zank o on 2n- 2 elements s isomorphic to the forest matroid of Ky 55

. Introduction

A non-separable graph ¢ 1s called a critically non-separable graph if
the deletion of any edge from & results in a graph which is separable.
Dirac { 1] and Plummer {2] have characterized critically non-separable’
graphs. Dirac {11 has shown that a critically non-separable graph on n
vertices has at most 2n - 4 edges. In this paper we generalize this result
to matroids. The relevant definitions and theorems from matroid theory
are given in Section 2. The results of this paper are proved in Section 3.

2. Matroids

A matroid M = (E, 1) 1s 4 finite set F of elements together with a non-
empty family ] of subsets of £. calied independent sets, such that:

(I Every subset of an independent set is independent.
(I2) For every 4 C F. all maximal independent subsets of .1 have

the same cardinality. called the rank r(A) of A.
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An example of a matroid is obtained as foliow~: Let & be a graph.
Lot £ denote the set of edges of & and let T Jdenote the family of edge
sets ot forests contained in . Then M = (&, T)1s a matroid vailed the
Jorest matroid of G. 1t is denoted by FiG). A matroid is cal.ed a graphic
matroid if it is isomorphic to the forest matroid of some grapl.

A maximal independent subset of 4. where 4 C £ is called a dasiv of
A (or M-basis of A if we wish to specify the matrowd being considered).
An M-basis of E is called a basis of M. (M), the rank of M, equals r(E).
A subscet of E is called dependent if it is not independent. Minimal de-
pcndent sets are called circuits. The family of circuits of M determines
a matrc d. Indecd ‘Whitney [5) showed that a family C of non-empty
subsets of 2 finite set £ is the family ¢f circuits of a matroid M on F if
and onlv if the following conditions ¢ ! o be called circuit axioms) are
satisfiec:

(C1) A proper subset of a member of C is not 4 member of C.

(C2) (Exange axiomj. Ifa€ C; N Cy and b€ - Cy. where
(,.Cy € Canda. b€ E, then there exisis a C3 € € such that
be C3 c (‘l (V) (jz - {a}.

The cruits of the forest matroid + (G ) of a graph G are the edge sets of
cycles of G, the bases are the edge sets of maximal spanning forests of
G. and the rank of F(G) is equal {0 the number of vertices minus the
number of connected components of 4.

Let M =(E. 1) be a matroid. If X C E. then the matroid on E-X
whose circuits are those M-circuits which are centained in £~ X is called
the resriction of M to E-- X (or the matroid obtained by deleting X
from M) and is denoted by My . There is another derived matro:d of
importance introduced by Tutte {4]. If X C E, then the family of mini-
mal non-empty intersections of E - X with M-circuits is the family of
circuits ¢f a matroid on £- X called the contraction of M to E-- X (or
the matroid obtained by contracting X out of M) and is denoted by
My If X = {e}, we shall simply writc M, and M, for restriction and
contraction to E-- {e}. respactively. Deletion and contraction of ele-
ments in e jorest matroid F(G) of a graph G correspond to deletion
and contraction of edges in G. Tutte [4] has shown that the operations
of dcletion and contraction of eleme:nts from a matroid commute. More
precisely we have the following:
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Lemma 2.1./f M is a marroid and if X and Y are two disjoint sets of
elements of M. then

(My )y =(My)y.

A subset § of the set of elements £ of a matroid M is called a separator
of M if every circuit of M is cither contained in S or £ S Tutte [4] has
shown that a subset § of £ is a scparator if and only if i(S)Y+ (£ S) =
r(E). Union and intersection of two separators of M is also a separator of
M. 1f Qand £ are the only separators of M, then M is said to be coonnect-
¢d. The minimal nonwmpty separators of M are called the components
of M. An elument ¢ of a connected matroid M is said to separate elements
x and v if ¥ and ¥ belong to different components of M, . If G is a graph,
the components of F(G) are blocks of G and F(G) is connected if and
only if & 18 nonscparable.

We now state two lemmas which are used in the proofs in Section 3.
Lemma 2.2 is due to Whitney [5]. a proof of Lemma 2.3 can be found
in{l).

Lemuna 2.2. A matroid M is connected if and only if for every pair e,
ey of distinct elements of M. there is a circuit contairing both ¢ and

€y,
-

Lemma 2.3. /f M is a connected matroid. then for every ¢ € E, either
M, or M is aiso connected.

A matroid is called simple if it does not contain any one or two ele-
ment circuits. Simple matroids are also known as combinatorial geom-
etries.

Lemma 2.4.! A simple matroid M of rank 3 is connected if and onlv it
it contains a circuit of cardinality 4.

Proof. Let M be a simple matroid of rank 3 which contains a circuit €
of cardinality 4. If possible, let S. S # Q. F. be a separator. Then

r(S) + r(E--S) = 3. Without loss of generality, we may assurne that

C € S. Then r(S) 2 r() = 3. But this implies that #(E--S) = 0. Since M

! Thia lemma 15, 1n fact, true for alt matrowds. The proof given here can be extended to prove this
more genetal statement.
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is a simple matroid. we have £ - S = Q. which implies that § = #. This is
contradictory to our assumption. Thus M is connected.

Conversely, let M be a simple connected matroid of rank 3. Suppose.
if possiblc, that 4f does not contair any cincuit of cardinality 4 Then
all circuits of M are of cardinality 3. Let {e. £ g} be a basis of M. By
Lemma 2.2, there exist circuits Cy = {e. fLh} and &, = {e.g. i} . T h=i
then. by apply:ng the exchange axiom 1or circuits, we obtain that
{e.f. g} is a circuit. Therefore & # i. Now by the exchange axiom. € =
C, vy et ={f.g hi: contains a circuit containing /. If Citself is
not a circuit, thea atleast one of Cy = S g h} . Cy = fig it and € =
J. M is o circuit. If Cy s a circuit, then, by the exchange axiom,

C, vy h = e f g} contains u cir.uit. But this is impossible he-
cause ¢ f. g} is a basis of 3. Similarly . we may e<tabhsh that both C,
anc C, are akso not circuits thereby establishing that Cis a circuit. The
proof is complete.

let M= (L, 1) beamatroid. Let U be a subset of £, The elements of
X are said to be in series in M if any circuit of M which contains an cle-
ment of X contains all the elements of X. /

Let o be an element not in £ and let ¢ be ar element of £ Define

t.‘ zlf.'v: *:(’I NN
hW=Tuilovietc€lIel;vilv cpiile]-.

Then it may be verified that (£, . T, : is a matroid. In this matroid. e
anc ¢ are in senies - thus it is said Uy have been obtained by extend-
ing M by series ai e. In case of graph: : matroids. series extension corre-
ponds to subdivision of an edge by 1aserting a vertex.

A matreid M i called a one element e xtension of another matroid

() r iy =n Ny and

(1) there s an clement e of M such that M, =\

let M =:£ [ "¢ amatroid and let 3 denote the family of bases of
M Let B® wenon the family of complements of members of 8 in £
Then Whitney {5 showed that B* is the family of bases of a matroid.
dennted by M* called the dual of M. 1T G is a graph. then the dual of
11G) is called the co-forest matroid of G. The circuits of this matroid are
rimmal cuisets ¢ bonds of G,

she aircaiis of W* are called the co-circuits of M. A maximal subset
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of £ that is of M-rank r(M) -1 is called a Avperplane of 5. The tollowing
lemma follows from the definition of the dual.

Lemima 2.8. A subsct Y of Eis a co-circuit of M if and only if E- Y is
d hyperplane of M.

The folinwing lemma is due to Tutte [4].
Lemma 2.6. /1 X C £, then
(M) =M%y .

Thus a co-circut of My is a co-cireuit of M.

We are now ready to state and prove the resulis of this paper.

3. Critically connected matroids

Let M = (£, 1) be a connected matroid. An elemeit e of M is called
an essential clementaf M s disconnected. Otherwise it is called an in-
essential clement. A connected matroid cach of whose elements is eswen-
tial is called a crtically connected matroid or simply a critical matroid.
As mentioned in the introduction, Dirac [ 1] and Piummer [ 3] have
charactenized critical graphic matroid-. However, not every critical ma-
troid is graphic. By <eries extension ot each of the elements of any sim-
ple connected matroid of rank > 2, one obtains a cnitical matroid. No
usetul characterization of critical matroids is known. Here by a usetul
charactenization | mert one which suggests a recursive construction of
all critical matroids.

The following lemma generalizes the fact that every critically non-
sepirable graph on 3 or more vertices contains a vertex of degree 2.

Lemma 3.1. A critical matroid of rank 2 2 contains g co-circuit o} car-
dinality two.

Proof. If ridf) = 2, it 1s casy to observe that M hw a co-circuit ot card:-
nality two. If the lemma is fabse, let 7 be the least integer 2 3 tor which
there is a critical matroid of rank n with no co-circuits of cardiaabty two.
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Let e be an clement of M. Since M is critical, M is disconnecte d. Hence,
by Lemma 2.3. M, is connected. Now if x is any clement of £ - {e'},
the matroid (M, ), is disconnected unless {¢} is a component »f M.,
But if {¢} s a componcnt of M, . then {e. xj is a co-circuit of .f; which
i« a contradiction. It follows that (M, ), is disconnected for cach

ve £ {e}. Since. by Lemama 2100y, = (M), we have that (M),
s disconnected foralix € £ (e}, It follows that M is a critical ma-
troid. But r(M;) = n 1. Therefore. by the minimahty of n, M has a
corcircuit of cardinality two. But a co-sircuit of M) is also a co-circuit
of M. This contradiction proves the le-1ma.

Of all the critical matroids of a given rank. one with the largest num-
ber of clements is called an extre’na! critical matroid or simply an ex-
tremal matroid. In the sequel we sivdll characterize extremat matroids.
Our characterization is 2 generalizat on of a theorem due to Dirac [1]
for graphs

We obscrve that the forest matroid of K, | (2 > 31 is a critical ma-
tread of rank n. Thus. if we define f{n) as the number of ¢lements in an
extroinal matroid of rank 7, we have for n > 3,

h) finy>2n- 2.
Theorem 3.2. If M = (E. 1)isan extremal matroid of rank 1, n > 3. then
(> foy=1Ei< 2n - 2.

Proof. It follcws from Lemma 2.4 that the only critical matroid of rank
3 is a circuit of cardinality 4. Thus the theorem is valid when n = 3. We
shall prove it in general by induction on n: Let n be an integer 2> 4 and
assume that f(k) < 2k - 2 for all k such that 3 < k < n. Consider an ex-
tremal matroid M of rank n.

By Lemma 3.1, M has a co-circuit of cardinality two. Let :a. b} be a
co-circuit of M.

Consider M;. Since A, is disconnected, M, is connected. If M, is
critically connected. then. by induction hypothesis, we have

iE- @< fin-1)< 2(n 1)-2,

from which it follows that f(n) = |Ei < 2n - 3. But this contradicts (1).
Thus M, 1 not critical.
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We shall now show that if ¢ € E - {u. b ;. then e is essential in M.
Case (1) Suppose that a, b and e are in series. Then M, has at least
three components; {a} and {b} are two of the components of M,. Thus
(M,), is diwonnccted. But, by Lemma 2.1,4M,), = (M,)] it follows that

(M]), is disconnected. Thus e is essential in M,

Case (1) Now suppose that a, b and ¢ are not in series. In this cas. a
and b would have to be in the same component of M_ Forifa and b
were to be indifferent components in M., then every circuit that con-
tains @ and & would contain ¢ as well, and a, b and ¢ would be in series.
It v and b are 1n the same component of M, then (M.}, would be Jis-
connected Thus (M), = (M), is disvonnected. [t follows that e is essen-
tial in M.

Bui since M, is not critical. the only inessential element in M, is b:
and (M), is connected.

Now we shall show that (M7),, = MY, ;1. The circuits of M, are the
circuits of M which are contained in £~ {a, b}. together with sets of
form Y U {(b: where ¥ U {a b} is a circuit of M. Thus the circuits of
(M), are the circuits of M which aic contained in £ - {a. b}. It now
follows that (W), =My, 5.

Naw we shall show that .-'"'{‘. b } 18 critically connected; or that
(Mg 5, is disconnected foralle € £ - {a. b}.

Since ¢ is essential in M, ¢ separates two elements of M. If e separates
a and b. then we know that a. b and ¢ are in series, in which case M,
would be critical (because in this case (M), = (M), is disconnected
implying that’b is essential in M) Thus 2 and b ure in the same com-
ponent ot 3.

Now there are two possibilities.

Case (1) There are two clement: x, y € £ {a. b. e} such that x and v
are separated by e. Since (M }:a‘b })(' =M, sf‘d.,,}. x and v belong to dit-
ferent components of (M, ). implying that e 15 essential in M7, 3.

Case (1) There do not exist x, v € £ {a, b, ¢! which are separated by
e. In this case, {4, b} 1s component of M, which implics that {a, b} 1sa
circuit of M. This is a contradiciton because a critical matroid cannot
have two clement circuits.

Therefore M7, 4 & s critically connected. By Lemma 2.5, the rank of
M yyisn- 1. It riow follows from the induction hypothesis that



$A U SR, Murty, Extremal criticarlv connected matrutds

3 oo b <y -N<An 2.

It follows from (3) that

fimy=i1Ei< n -
fhe proof of the theorem now follows from the principle of induction.
CoroMary 3.3.If n > 3. then finy= 2 2.

Theorem 3.4. An « ctremal critical mat-oid of rank n (n 22 3) is isomorphic
too the torest matrcad of Al,n 1-

Proof. It fullows from Lemma 2.4 that the only critical matroid of rank
2 is isomorphic to the forest matroid of K, . Assume inductively that
the theorem is valid for all A, 3 < & <. n Consider an extremal cntical
matroud M = (£, 1) of rank n. It follows from the arguments used in
the proof o the previous theorem that there is a co~circuit {u. b} in

M. b i incwential in M and that M, 1 is an extremal critical matroid
of rank # 1. By the inductior: hypothesis. M}, , 1 is isomorphic to the
fore-t mawtowd of a K, ,, ». Denote M, , , by M, and M by M,. We
have shawa during the proof of Theorem 3.2 that (M), = 37, , 3. Thus
M, 15 2 one element extension of M, . We also note that M is obtained
from M, by extending it in serics at b. Let  and C,. respectively de-
note the circuit sets of M; and M, . It foilows that C; C C,. In fact,
cach circwit of M, in 5 - {; contains the element b.

l N < \
7R f’; N

’ / )ﬂl
S
o b 1 "?&-2 Pa-2
‘-'f / 7 ‘\\ \‘ \
/ 9 o N YN
/ N \ 0

! RSN

Fig. i
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Lemma 2.5. M, is isomorphic to the forest matroid of the graph in Fig.1.

Proof. The case n = 4 has to be dealt with separately. We shall first deal
with the case n > 4. Consider the K, ,, , with the labels as shown in
Fig. 2. Denote this graph by G .

We miay assume without loss of generality that M, is the same as
F(G)). Now (M,), is disconnected since b is the only inessential ¢le-
ment of M. If we wmeR = ‘a5, by, .04, . b, }, then the restric-
tion of M, to R is connected, being the forest matroid of Ky, 3. (Note
that this assertion is false if 7 = 4.) Thus R is contained tn one of the
companents of (M, ), . Now since the ranks of (M 2);: and R are. respecti-
vely.n 1 and n-- 2. it follows that there is only one component of
(M, ),  other than thr ~omponent that contains R. This component will
have to be a singleton. If this component were (b ;. then the other com-
ponent would be R U (b, ;. But if R U {h, } were a component of
(M3),, . then it would be a component of (M, ), . which is not the case.
It follows that {b } is a component of (M), lt means that g, ~epa-
rates b, and & in M, . Thus every circuit of U, that umtams banc k)
also contains a, . Similarly, every circuit that contains dy and b contains
b;.In gcm.ral. a circuit containing b contains 4, if and only 1t it contains
b, i=1.,2,...,n-2. Now if a circunt € containing b contains ¢; for some ¢,
then it cannot uomama ifj# i Forith.a,.a,€ C then {h.a; b q,.

b;} CC Ths Lontmduts the first circuit axiom because {a,. b;. ;. h,}
18 a circuit. We may now conclude that

Ca - Cy={fapb.b}:1<i<n-2;.
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This in turn implics that M. s komorphic to the forest matraid of the
graphin Fig. 1.

We shall now deal with the case n = 4. In this case. r(M,) = Jand b
is the only inessential element of M. Let {€.¢,. €5, ¢4. b} be the set
of clements of M. Then C; = {e). e, e3. ¢4 is a circuit of H,. Now
since (M), is disconnected. it contains a4 component of rank 2 and
cardinality 3. This component will have to be a circuit. Without loss of
generality. let € = {¢. e, b} be this circuit. By arguing with (M) .
we may now show that (3 = {e;. ¢4 b} is a circuit. (Both {e, e, b}
and .o b # & cannot be circunc. For if both of them were cir-
cuits, then, by the exchange property. : ¢ implies that {e, ¢, ¢; - isa
circut. But thideontradicts the first o cuit axiom because 1€y g €}
is 4 propet subset of C.)

It nuow follows that the only circuits of M, are €. Cs and C5. We
may no'v conclude that when n = 3 the lerfima is valid.

Returning to the proof of Theoremn 3.4, we observe that serios exten-
sion of the forest matroid of the graph in Fig. 1 is isomorphie to the
forest matroid of Ay, . The theorem now follows from the principle
of 1nduction.
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