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Background:While the underlying causes of cancer are genetic modifications, changes in cellular states mediate
cancer development. Tumor cells displaymarkedly changed glycosylation states, of which the O-GalNAc glycans
called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The
expression levels of glycosylation enzymes fail to explain it.
Scope of Review:Wedescribe the regulation of O-GalNAc glycosylation initiation and extensionwith emphasis on
the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway— a change in GALNTs compart-
mentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and
GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives.
Major conclusions: Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incom-
plete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels
reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven
by membrane trafficking events.
General Significance:Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine develop-
ment have beenmade, but suffer limitations including poor sensitivity and/or specificity that may in part derive
from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open
new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Gly-
cans in personalised medicine" Guest Editor: Professor Gordan Lauc.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. Glycosylation in health and cancer

Cancer remains one of the leading causes of mortality and a major
loss of years of potential life, with an estimated 8.2 million deaths
worldwide in 2012 [1]. Cancer continues to pose tremendous challenges
for treatment and diagnosis. This is due to the complicated pathology of
the disease that involves awhole panel of dysregulated cellular process-
es, which are interconnected and often vital for proper cell functioning.
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Identifying the key alterations specific to the neoplastic tissues and un-
derstanding the underlying mechanisms would allow precise targeting
and detection of the disease. Current detection and treatment methods
still suffer insufficient selectivity between tumor and normal tissues.
This could be due in part to a primary focus on genetic aspects of the dis-
ease. In tumor formation, genetic changes in tumor cells and interaction
with normal cells lead to emerging cellular states that often cannot eas-
ily be traced to specific changes in DNA. These cellular states ultimately
define the behavior and evolution of a tumor and their understanding
could be exploited for better specificities in diagnosis and treatment.

Among the processes defining cellular states, themost frequently oc-
curring and also the most complicated post-translational modification
(PTM) is glycosylation. Glycosylation is the enzymatic process that
adds carbohydrate chains or glycans on protein and lipids. Glycosylation
occurs in a complex and concerted series of steps taking place in the en-
doplasmic reticulum (ER) andmore predominantly, in the Golgi appara-
tus [2,3]. Unlike other biopolymers, glycan synthesis is not template-
driven, not directly encoded in the genome and as a consequence it is
not well understood how this synthesis is controlled. Yet, the result is
a vast diversity of glycan structures with many important functions.
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Inmammals, glycan structures are assembled from tenmonosaccha-
rides: fucose (Fuc), galactose (Gal), glucose (Glc), N-acetylglucosamine
(GlcNAc), N-acetyl-galactosamine (GalNAc), glucuronic acid (GlcA),
iduronic acid (IdoA), sialic acid (Sia), mannose (Man) and xylose (Xyl)
[4–6]. Combinations of thesemonosaccharides coupledwith differences
in linkages (1–3 versus 1–4, etc.), anomeric states (α versus β),
branching, length and substituted components (phosphate, sulfate,
etc.) creates further diversity.

Glycan addition to substrate proteins and lipids also further gener-
ates different subsets of glycoconjugates. In proteins, glycans can be at-
tached to at least nine out of 20 types of amino acids and the two
prevailing processes involve amide linkages to asparagine residues
(N-glycosylation) and glycosidic linkages to serine and threonine
(Ser/Thr) side chains (O-glycosylation) [7,8]. Even within O-
glycosylation, there are subtypes. Several sugars can be added to the
Ser/Thr to yield different classes of O-linked glycans, such as α-linked
O-GalNAc, α- or β-linked O-galactose, α- or β-linked O-glucose, α-
linked O-fucose, α-linked O-mannose, β-linked O-GlcNAc and β-
linked O-xylose. O-GalNAc glycans represent the most abundant O-
glycans type. In this review, we will sometimes refer to O-GalNAc
glycosylation as the process of sugar addition and O-GalNAc glycans
as the various products of this process. We will sometimes use sim-
ply O-glycosylation or O-glycans when there is no risk of confusion.

Hence, glycosylation exponentially expands and diversifies the
encoded genomic information [9,10], increasing the biochemical com-
plexity of eukaryotes [11]. However, it should not be perceived that gly-
cosylation occurs randomly with huge variations even within a specific
protein. Normally, only specific sites of a given protein are glycosylated,
and with a limited number of glycan structures at each site (microhet-
erogeneity) [12]. This suggests precise regulatory mechanisms in place
to control glycan biosynthesis, particularly within the Golgi, where
most of the glycosylation machinery resides [13].

Glycans contribute a wide range of biological functions in the organ-
ism, particularly as part of glycoproteins. This is emphasized by the fact
that some glycan functions are well conserved in the evolution of mul-
ticellular vertebrates [14]. Glycosylation by GlcNAc can occur in the cy-
tosol. By contrast, most glycosylation pathways occur within the
secretory pathway and generate the complex glycans.

In the early secretory pathway, glycans are essential for protein sta-
bility and secretion by regulating the folding of newly synthesized pro-
teins, for quality control in the ER and for protein targeting in the
secretory pathway [15,16]. At the cell surface, glycans contribute to
multiple processes such as cell‐cell communication, cell adhesion and
migration, signal transduction, immune surveillance and host-
pathogen interactions [14,17]. In fact, nearly all cell surface and secreted
proteins are glycosylated [5,18–20].

Recent studies have found that O-GalNAc addition occurs on at least
one Ser/Thr residue inmore than 85% of secreted proteins [19]. Cell sur-
face glycans can modulate their carrier protein conformation as well as
provide ligands for glycan-binding proteins such as selectins, galectins
and siglecs. Glycans are often required for physiological processes
such as cell-matrix adhesion and cell–cell interactions [21–24]. Alto-
gether, this stresses the importance of glycosylation for coordinating
multi-cellular life. Interestingly, many glycoproteins have been impli-
cated in tumor pathology [2,25,26]. It therefore makes sense that glyco-
sylation would be significantly perturbed in cancer.

Altered glycosylationwasfirst describedmore than60 years ago and
has since been recognized as a hallmark in oncogenic transformation
[2]. Various glycan changes including under- or over-expression of spe-
cific glycan structures, expression of unprecedented or incomplete/
truncated glycan structures or increased levels of precursor structures
have been observed on tumor cells compared to their normal counter-
parts [27]. It is apparent that different glycan structures affect the cellu-
lar processes, as well as the tumor microenvironment, that play a
pivotal role in cancer progression, angiogenesis, metastasis, cell‐cell
contact and epithelial-mesenchymal transition (EMT) in cancer cells.
A few glycans are markedly associated with malignant transformation
and progression. Given that a key aspect in tumor progression is clonal
selection of the fittest cells from a genetically heterogeneous popula-
tion, it suggests that these cancer-specific glycans are selected for and
are likely to promote tumor cell survival [27].
1.2. Cancer-specific O-GalNAc glycans: the Thomsen‐Friedenreich related
antigens

Among the cancer-specific glycans are the Thomsen‐Friedenreich
(TF)-related antigens, which comprise several short O-GalNAc glycans:
T antigen nouvelle (Tn antigen), TF (aka T antigen or core 1) and their
downstream sialylated counterparts (S-Tn and S-TF). The Tn antigen con-
sists of a monosaccharide GalNAc alpha-O-linked to Ser/Thr in the poly-
peptide chain (GalNAc-α1-Ser/Thr) and the TF antigen is formed from
the subsequent addition of Gal to GalNAc (Gal-β1–3GalNAc-α1-Ser/
Thr). Sialylation of Tn and TF antigens involves the addition of terminal
sialic acid to carbon 6 on GalNAc (S-Tn) and to carbon 3 on galactose
(S-TF) respectively which prevents further elongation of the structure
(Fig. 1). Because they tend to be observed also during development,
they were initially named oncofetal antigens [28].

The initial discovery of these antigens came from the observation of
occasional agglutination of stored blood cells in 1930. The agglutination
was due to contaminating bacterial neuraminidases that exposed the TF
antigen on blood cells and the TF antigen was recognized by anti-TF anti-
bodies in the sera, contributing to hemagglutination [29]. Tn was subse-
quently discovered in 1957 to be expressed in the subpopulations of
blood cells of lineages in patients with Tn syndrome, a rare hematological
disorder [30]. Tn on the cell surface leads to increased polyagglutinability
of erythrocytes and consequent hemolytic anemia, possibly due to the
anti-Tn IgM [31].

The link between Tn and cancer was first observed in 1969 based on
the binding of tumor cells to the snail Helix pomatia lectin (HPL) [32],
and subsequent work by Springer and colleagues showing that Tn was
highly expressed in around 90% of breast tumors [33]. Subsequent stud-
ies in the 1970–1980s established Tn to be a pan-carcinoma antigen as it
is frequently expressed in cancers. Tn is expressed in 70–90% of most
human solid tumor tissues, such as breast, colon, lung, bladder, cervix,
ovary, stomach, and prostate while there is very low expression in the
corresponding normal tissues [34–36]. Only the embryonic brain has
been reported to express high levels of Tn [37]. Tn appears to be
expressed mainly in epithelial carcinomas and less in blood cancers
[38,39]. Expression of Tn appears in early tumor stages [40–42] and cor-
relates with cancer progression, tumor metastasis and poor patient
prognosis [43–46].

The mechanistic understanding of Tn expression has long been un-
clear. As high levels of Tn suppose large amounts of unmodified GalNAc
residues, a long-standing hypothesis is loss of activity of the down-
stream core 1 β3-galactosyltransferase (C1GALT1) and/or the Core 3
synthase Core 3 β1–3 N-acetylglucosaminyltransferase (B3GNT6)
[47–49]. As most tissues display Core1 glycans, loss of C1GALT1 activity
was the driving hypothesis and proposed to be due to defects in Cosmc,
a dedicated molecular chaperone required for proper folding of
C1GALT1 [47,50]. As Cosmc is X-linked, its loss in cancers could arise
more easily through genemutations, chromosomal deletions and epige-
netic silencing. These changeswere indeed observed in a few specimens
of cervical, colon, pancreatic tumor samples and cell lines derived from
leukemia andmelanoma [47,51,52]. However, theproposedmechanism
is unlikely in most cancer types for various reasons described below.
The main argument is that the TF antigen is also highly prevalent in
many of the same cancers [53–57]. Yet, loss of Cosmc/C1GALT1 would
abolish its expression.

In this review,we examine the regulation of O-GalNAc glycosylation,
focusing on the initiating enzymes GALNTs.We describe current knowl-
edge on the roles of O-GalNAc glycans and GALNTs in cancer



Fig. 1. The O-GalNAc glycosylation biosynthetic pathway. Cancer-associated structures are highlighted with blue boxes.
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progression. Finally, we illustrate the clinical perspectives of the use of
cancer-specific O-GalNAc glycans for cancer diagnosis and therapeutics.
2. The diversity and functions of O-GalNAc glycosylation

2.1. The GALNTs: a huge and diverse family of enzymes

The Tn antigen is synthesized by a large family of enzymes, the poly-
peptide N-acetylgalactosaminyltransferases (GALNTs), that are local-
ized at the Golgi apparatus. GALNTs catalyze the transfer of GalNAc
sugar from UDP-GalNAc to the hydroxyl group of Ser/Thr residues α-
linked with an O-glycosidic bond (Fig. 1). This forms the first step of
O-GalNAc glycosylation cascade. In normal cells, this GalNAc sugar is ex-
tended to form various core O-glycans, branching out the glycosylation
pipeline. The core O-glycans are further extended and capped by histo-
blood group-related structures or sialic acid [58] (Fig. 1).

There are about 20 differentGALNT isoforms in humans [59–61]. The
family is evolutionarily conserved with numbers increasing across evo-
lution: C. elegans,Drosophila and humans have 9, 12 and 20 GALNTs iso-
forms respectively [58,62,63]. This is in contrast to other glycosylation
initiation processes which usually involve only one or two isoenzymes
or complexes. Interestingly, GALNTs are present in all metazoans, but
not in yeast or plants [64], suggesting an expanding role of GALNTs dur-
ing the evolution of metazoans [60].

GALNTs are type II transmembrane proteinswith a short N-terminal
cytoplasmic tail and a C-terminal domain comprising a stem region and
a globular catalytic domain that extend in the Golgi lumen. GALNTs are
about 600–800 amino acids and are generally larger than most other
glycosyltransferases due to an additional C-terminal ricin-like-type lec-
tin domain [65]. Both domains are connected by a short flexible linker
region that varies in length among isoforms [65–67].

GALNT isozymes have distinct, yet partially overlapping substrate
specificities with no clear global consensus motifs or isoform-specific
motifs [60]. All GALNTs (except for GALNT10) appear to show a prefer-
ence for protein regionswith a Pro residue at the+3position of Ser/Thr,
which possibly increases exposure of Ser/Thr residues in a β-turn con-
formation, and varying degrees of preference when the Pro is at ‐3, ‐1
and+1 positions depending on the GALNT isozyme [68–70]. The lectin
domain also acts in concert with the catalytic domain to facilitate
further addition of GalNAc on existing substrates as the enzyme slides
along the protein [71].

Phylogenetic analysis has allowed the classification of GALNTs into
twomajor families (I and II) based on their peptide or glycopeptide sub-
strate preferences respectively. While “peptide-preferring” isoforms
readily glycosylate peptide substrates and some glycopeptides [72],
“glycopeptide-preferring” members mostly act on Ser/Thr-O-GalNAc
glycosylated peptides solely, although some isoforms (GALNT4 &
-T12) can also act on unglycosylated peptides [73,74]. Within each fam-
ily, they are divided into subfamilies of similar functions (Ia–g and IIa–
b) based on their amino acid similarities [60,62]. Subfamily members
tend to have similar substrate selectivity but generally show tissue spe-
cific expression, resulting in partial functional redundancy [75].

The catalytic domain is thought to be themain driver for substrate se-
lectivity; it is poorly conserved between isoforms, yet highly conserved
among orthologous isoforms among different species [59]. This suggests
that during evolution, orthologous GALNTs maintain similar substrate
repertoires while newly evolved GALNTs acquired new substrate prefer-
ences, allowing a diverse range of substrates to be O-glycosylated.

Another level of complexity derives from the lectin domains. While
the lectin domainwas thought to primarily promote further GalNAc ad-
dition on neighboring sites of existing GalNAc residues [71,73,76,77],
lectin domains of different isoforms also show differential substrate se-
lectivity [78]. Furthermore, the orientation of a remote Thr-O-GalNAc
(N- or C-terminal to glycosite), recognized by the lectin domain, also in-
fluence the catalytic activity of isoforms in subfamilies Ia–Id and the
preferences for this orientation also varies among isoforms [72].

More recently, depending on the isoform, glycosylation is observed
at ‐3, ‐1 and +1 residues relative to the neighboring Thr-O-GalNAc
and both catalytic and remote lectin interactions have to work in con-
cert to control O-glycosylation [79]. Consequently, the addition of a
GalNAc also alters the binding of and competition for the substrate to
other GALNT isozymes, given that GALNTs have overlapping substrate
specificities [80]. This, hence, adds additional levels of regulation and
complexity in the process.

Variations in patterns and density have been thought to mostly de-
pend on the differential control of GALNT expression. However, the lo-
calization of GALNTs in the Golgi may also be important for regulating
O-glycan density as the lectin domain of GALNTs might compete with
elongation enzymes for access to the GalNAc residue. Various GALNT
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isoforms have been found to localize in different Golgi cisternae of HeLa
cells [81]. More recently, we reported that the trafficking of GALNTs be-
tween the Golgi and the ER is regulated and can influence O-glycan pat-
terns [82].

In sum, while all other types of glycosylation initiation occur by one
or two enzymes or an oligomeric enzyme complex (in N-glycosylation),
the huge number of isoenzymes in the GALNT family allowsmuchmore
room for differential regulation of O-GalNAc glycosylation initiation,
allowing an incomparable cell- and protein-specific regulation of O-
GalNAc glycan attachment sites. This eventually leads to a diverse
array of O-GalNAc glycoproteomes existing in nature [60].

2.2. The O-GalNAc glycoproteome and functional roles of O-GalNAc
glycosylation

O-GalNAc glycoproteins were traditionally defined as mucins and
mucin-like proteins. Mucins carry dense clusters of O-GalNAc glycans
on PTS (Pro, Thr and Ser) repeats and are expressed on the mucous
membranes of various organs, such as ocular, gastrointestinal,
respiratory and genitourinary tracts. The hydrophilic and negatively
charged O-glycans form highly hydrated dense arrays that provide tis-
sue lubrication and as a protective barrier against pathogens and phys-
ical or chemical damage [21]. Hence, O-GalNAc glycosylation is often
termed mucin-type O-glycosylation [83,84].

More recently, it is increasingly evident that O-GalNAc glycans are
widely distributed on numerous proteins that do not have mucin-like
features [83–86]. Many glycosites tend to be GALNT isoform-specific as
verified by in vitro glycosylation assays [58,87,88]. These isoform-
specific O-glycans have specialized functions in the cell, including hor-
monal regulation, lipid metabolism and growth factor signaling [10] as
verified by animal and disease association studies. The high incidence of
embryonic lethality or severe phenotypes inDrosophilaGALNTknockouts
also illustrates the importance of site-specific O-glycosylation during de-
velopment [89,90].

For instance, O-GalNAc glycosylation of extracellular (ECM) proteins
are important for their secretion and, in turn, influencing ECM composi-
tion and affecting cell adhesion, growth and overall organogenesis. Loss
of drosophila pgant3 disrupts wing development due to defective secre-
tion of the ECM protein and integrin ligand Tiggrin [91]. Similarly, mice
deficient in Galnt1 suffered growth defects in submandibular glands
(SMGs) [92] and heart [93] due to defective secretion of ECM proteins
and altered ECM composition. O-glycosylation of tissue-specific
membrane proteins also impacts organ development. For instance,
specific O-glycan changes on podocalyxin and podoplanin affect kidney
formation [94] and endothelial development [95] respectively. O-
glycosylation also controls secretion directly by affecting regulators of
the secretory pathway. Tango1, a player in secretory cargo formation,
requires O-glycosylation to be protected from furin-mediated proteoly-
sis [96]. This protective effect of O-glycosylation against proteolytic
cleavage appears to be a recurrent theme.

Perhaps one of the well-established regulatory mechanisms of site-
specific O-glycosylation is the protection from proprotein convertase
(PC) processing [10], an essential PTM for protein maturation. As
many as 700 proteins could be regulated by both site-specific O-
glycosylation and PC processing [10]. However, the regulation mecha-
nisms of only a few of these proteins have been well elucidated.

A clear example involves the processing of fibroblast growth factor-
23 (FGF23) whose defects have been linked to the metabolic disorder
familial tumoral calcinosis (FTC; OMIM 211900). FGF23 is a circulating
peptide hormone that decreases phosphate reabsorption in the kidney
[97,98] and is processed in the cell by subtilisin-like proprotein
convertases (SPC) at the furin processing site RHTR↓SA181 [99–101].
Based on genetic-linkage studies, GALNT3 was found to glycosylate
FGF23 at Thr178 that blocks PC processing and enhances intact FGF23 se-
cretion [102]. Loss of GALNT3 led to increased secretion of the cleaved C-
terminal region FGF23 that inhibits signaling and renal phosphate
reabsorption [103]. Similarly, in lipidmetabolism, high serum triglyceride
andhigh-density lipoprotein cholesterol (HDL-C) levels is associatedwith
loss of GALNT2 based on genome-wide associations and mouse model
studies [104–106]. GALNT2 glycosylates Thr226 next to the furin process-
ing site of Angiopoeitin like-3 protein (ANGPTL3) (RAPR↓TT226),
inhibiting processing and allowing secretion of full length ANGPTL3
[107]. Cleaved N-terminal ANGPTL3 inhibits endothelial lipase, lipopro-
tein lipase and hepatic triacylglycerol lipase [107]. Premature growth fac-
tor pro-IGF-II has to undergo sequential cleavage to generate amature 67
amino acid IGF-II. Interestingly, both endogenous and recombinant pro-
IGF-II are O-glycosylated at various sites (Ser71, Thr72 and Thr139) [108].
Aberrant O-glycosylation of IGF-II has been described in non-islet cell
tumor hypoglycemia. Non-glycosylated recombinant pro-IGF-II E-
domain showed greater growth stimulatory effects compared to the gly-
cosylated variant [109,110], indicating the importance of O-glycosylation
in modulating its processing and activity.

PC processing occurs differentially in different tissue types and
this could be regulated by differential GALNT expression. For in-
stance, pro-opiomelanocortin (POMC), the precursor of peptide hor-
mones adeno corticotropic hormone (ACTH), α-, β- and γ-MSH
(melanocyte stimulating hormone) and β-endorphin, is differential-
ly processed in different tissues, resulting in various peptide hor-
mones in distinct lobes of the pituitary gland [111]. The longest
peptide, N-POMC1–77 is O-glycosylated at Thr45, suggesting inhibi-
tion of PC processing of N-terminal POMC [112]. In the heart, PC pro-
cessing of the pro-brain natriuretic peptide (pro-BNP) releases a C-
terminal peptide hormone during cardiomyocyte stress, leading to
vasodilation and natriuresis. Pro-BNP is O-glycosylated at Thr71

close to the furin cleavage site (LYTLRAPR↓SP78), protecting against
pro-BNP cleavage [113,114]. Indeed, plasma concentration of pro-
BNP is increased in heart failure [115].

The mechanism by which the site-specific O-glycan modulates PC
processing has recently been explored. In silico modeling revealed that
a single hydrophilic O-GalNAc sugar ±3 residues to the furin cleavage
site, is sufficient to block processing [115] and this appears to be more
specific for furin proteases. This has been validated in in vitro cleavage
studies of the substrate glycoproteins [116]. These studies hence dem-
onstrate that the biological function and activity of the O-glycoprotein
depends on the delicate balance between the two processes.

Apart from intracellular PC processing, O-GalNAc glycans also
protect membrane and secreted proteins such as the low-density li-
poprotein receptor (LDLR) from extracellular proteolytic cleavage,
affecting their stability. O-glycans added on the stem region of
LDLR and several of its family members such as VLDLR, LRP1, and
ApoER2, protect them from proteolytic cleavage by secretase and
ectodomain shedding [117–119]. Lack of O-glycosylation on LDLR
consequently alters cellular LDL uptake [117]. O-glycans on the ex-
tracellular tails of G-protein coupled receptors (GPCRs) also protect
from disintegrin and metalloprotease (ADAM) protease processing
and has implications in heart function with the ®1 adrenergic recep-
tor. Similarly, O-glycosylation on Thr27 on the extracellular region of
copper transporter CTR1 protects it from proteolytic cleavage, alter-
ing its activity [120]. Secreted proteins such as TNFαmature and are
secreted via cleavage by ADAM-17 on membranes (QA↓VR78) [121,
122]. Interestingly, O-glycosylation at Ser80 blocks cleavage,
resulting in various truncated peptides (QA↓V↓R↓SSSR82) observed
in lymphoblastic leukemia B-cells, explaining the disease [123]. Se-
cretion of amyloid precursor protein (APP) is dependent on its site-
specific O-glycosylation on various residues, particularly at Tyr10

close to the β-secretase cleavage site, which has implications with
Alzheimer's disease [124].

In addition to the above-mentioned proteins, the repertoire of
identified O-GalNAc glycosylated proteins has exponentially expanded
in recent years, mostly due to the development of the ‘Simple cell’ tech-
nology developed by H. Clausen's lab. ‘Simple cells’ are knockouts of the
Cosmc gene and hence, have an inactive C1GalT1, resulting in all O-
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GalNAc glycans being Tn or S-Tn. This greatly reduces O-glycan hetero-
geneity, allowing lectin enrichment and facilitating mass spectrometry
identification of glycosites on O-glycoproteins. A screen of cell lines
and their secretomes from various tissues identified about 3000
glycosites in N600 proteins [19]. In addition to the general role in
blocking protein proteolysis [10,113], the data suggests that there is
still a vast number of biological functions modulated by O-glycans that
remains undiscovered. It is notable that many O-GalNAc glycosylated
proteins are ECM (fibronectin, collagen, etc) and cell surface proteins
(such as receptors GPCRs LDLR, VLDLR, LRP1, LRP1B, LRP2, LRP8,
adhesion proteins CD44, cadherins, integrins, etc). Given that many of
these proteins are linked to cancer processes, it would not be too sur-
prising if O-GalNAc glycosylation is directly involved in the molecular
mechanisms of cancer progression.

3. Regulation of O-GalNAc glycosylation initiation and extension

The regulation of O-GalNAc glycosylation occurs on two different
levels: first, which proteins and which sites are being glycosylated and
second, how is GalNAc further modified into the final O-glycan. In
other words, there is regulation at the initiation as well as elongation
level. This review is mostly focused on regulation of initiation and we
will discuss only briefly elongation. Initiation is controlled by GALNTs,
which can be regulated at the expression level as well as through com-
partmentation through the GALA pathway [125].

3.1. Evidence of transcriptional regulation of GALNTs

Given that different GALNT isoforms have partially overlapping but
distinct substrate specificities, increasing the number of family mem-
bers directly increases the overall repertoire of potential substrates.
The diversity of GALNT isoforms increaseswith the complexity of organ-
isms, suggesting that this evolutionary expansion allowed for a better
modulation of the O-glycoproteome. Congruently, the human GALNTs
exhibit differential expressions in cells and tissues during development
and differentiation [60]. Some members are more ubiquitously
expressed in organs, such as GALNTs 1 and 2, whose broad expression
patterns have been demonstrated by Northern studies [126,127], RT-
PCR expression profiling [128] as well as immunohistochemistry. How-
ever, some cell type-specific expression patterns were also revealed
within tissues [129]. GALNTs 4 and 6 in salivary glands are strongly
expressed in mucous cells but only weakly in serous cells [60,130],
and GALNTs 11 and 14 in the kidney are found only in tubules but not
glomeruli [62].

Other family members show more organ-restricted expression. For
example, Northern blot analysis of GALNT3 located it mainly in the pan-
creas and testis, and only weakly in a few other organs [131]; GALNT5
showed abundant expression in rat sublingual gland and lower expres-
sion in stomach, small intestine and colon [132]; while human GALNT9
and rat GALNT19 appeared largely brain-specific [133,134]. Develop-
mentally, in a study of spatial expression patterns of seven GALNTs in
mouse embryo, Galnt3, 5 and 7were found to have more restricted ex-
pression than Galnt1, 2, 4 and 9. Furthermore, during organ differentia-
tion therewere instances of GALNT expression being restricted to either
mesenchymal or epithelial tissue; concurrent expression of a specific
GALNT in both tissue types was never observed [135]. In a Drosophila
development study of 12 GALNT isoforms, four displayed unique ex-
pression patterns, two ofwhich (pgant2 and CG30463)were specifically
related to eye development [136].

The variable expression of the members of this large family suggests
precise individual regulation. However, little is known yet about how
this regulation is achieved and integrated in regulatory networks.
These expression patterns also point to specialized roles for each iso-
form. Indeed, although no overt phenotypes have been reported in
knockout mice for Galnt 4,5,8,10, or 14 [137–139], other Galnt knockouts
were found to have various deficiencies. For example, Galnt1 deficient
mice displayed disorders in bleeding and B-cell maturation [140]. Muta-
tions in Drosophila pgant35a, ortholog of human GALNT11, were reces-
sive lethal due to defects in tracheal epithelia morphogenesis [141], and
pgant3 deficient Drosophila showdefects inwing development due to in-
appropriate secretion of ECM components which affect cell adhesion
events [91], while another four Drosophila pgant genes (CG31956,
CG31651, CG6394 and CG30463) have been identified to be essential
for viability [90]. Xenopus xgalnt11, ortholog of human GALNT16, has
been suggested to have specialized and necessary roles in normal neural
and mesodermal differentiation [142].

In humans, GALNT3has been shown to be required for proper FGF23
activation, and gene inactivation results in familial tumoral calcinosis, as
mentioned above [102,143]. Genome-wide association and other stud-
ies have linked other GALNTs with specific functions and diseases, in-
cluding GALNT2 in plasma lipid level regulation and cardiovascular
disease [104,105], GALNT4 in acute coronary disease [144], GALNT14
in death receptor-mediated apoptosis resistance [145], and GALNT11
in left–right body patterning and congenital heart disease [146].

These examples illustrate the importance of O-GalNAc glycosylation
in diverse fundamental biological pathways, and specifically of differen-
tial regulation of the initiating event in organismal development and
survival. However, an earlier study linking a GALNT1 single nucleotide
polymorphism with decreased epithelial ovarian cancer risk [154] was
later found by the same authors to be non-replicable in a larger study
[147], underscoring the importance of providing a mechanistic under-
standing to explain genetic association studies.

The expression of some GALNTs has been proposed to be regulated
by microRNAs. In a bioinformatics analysis of miRNA regulation of gly-
cosylation related genes, three GALNTs (1, 7 and 3) were among the
top 10 most “highly regulated” glycogenes identified [148].

In cervical cancer,miR-214was found to be frequently downregulat-
ed; its expression in cervical cancer cells reduces proliferation, migra-
tion and invasion, which can be countered by restoring expression of
its target GALNT7 [149]. miR-34a/cwas also found to be downregulated
in laryngeal squamous cell carcinoma, with enhancement of cell prolif-
eration and migration potentially mediated by its direct target GALNT7
[150]. On the other hand, upregulation of miR-17 in hepatocellular car-
cinoma (HCC) appeared to enhance tumor growth and vascularization
via silencing of three proteins including GALNT7 [151]. In melanoma
cells, GALNT7 was found to be downregulated by increased expression
of miR-30b/30d, correlating with poorer prognosis; its downregulation
possibly lead to immunosuppression by increasing IL-10 synthesis and
secretion, which reduced immune cell activation and recruitment
[152]. These examples illustrate how GALNTs can be regulated by
miRNAs. However, the apparently opposite trends observed with
GALNT7 depending on context invite prudence and suggest that a better
understanding of GALNT substrate repertoire in cancer is required.

The involvement of miRNAs provide a probable way in which con-
text specificity can be rendered, via co-regulation of GALNTs with
other proteins. Indeed, a recent systems-based study on a panel of 60-
cancer cell lines integrated lectin array data and miRNA expression
data to generate miRNA/glycogenes/glycans regulatory networks.
They identified a cluster linked to Tn and TF expression involving 15
miRNAswith a large number of predictedGALNT targets [153]. Focusing
on targets of the miR-200 family, regulators of EMT, the same group
identified “promesenchymal glycosylation enzymes” and proposed
their likely involvement in TGFβ-induced EMT, indicating that miRNA
networks can be used to identify important glycosylation enzymes crit-
ical in disease development [154].

3.2. Regulation of GALNT activity through subcellular localization: the GALA
pathway

An additional layer of GALNT regulation is happening at the level of
spatial localization. Asmentioned above, we recently reported that acti-
vation of the proto-oncogene Src activates Golgi-to-ER trafficking of



Fig. 2. The molecular regulation of the GALA pathway. Under normal conditions without GALA activation, most O-GalNAc glycosylation initiation of secreted/membrane glycoproteins
occurs in the Golgi. The GalNAc residues are rapidly modified by downstream galactosyltransferase C1GALT1, in turn, preventing lectin domain binding and secondary GalNAc addition
by the same or different GALNTs. Upon GALA activation with Src activation/loss of ERK8, ppGalNAcTs are trafficked to the ER and can glycosylate ER-resident proteins. ER localization
of GALNTs may facilitate lectin-dependent GalNAc addition on secondary glycosites and also in unexposed regions of the proteins that are normally folded when present in the Golgi.
For reasons still unclear, some GalNAc added after GALA remain unextended and appear at the cell surface, where it typically concentrates in focal adhesions.

1628 J. Chia et al. / Biochimica et Biophysica Acta 1860 (2016) 1623–1639
GALNTs, resulting in a strong increase in intracellular Tn levels [82] (Fig.
2). Src is a tyrosine kinase that associates with multiple cellular mem-
branes [155], and can be activated by cell surface receptors such as
EGFR. A fraction of Src in the cell is localized at the Golgi [156], and
has been shown to have consequences on Golgi organization [157,
158]. The Src-dependent enzyme relocation appears to be specific to
the GALNTs and not other glycosylation enzymes (hence we have
termed it “GALA”, for GALNT Activation), and requires the COPI traffick-
ing machinery [82,159]. COPI vesicles are required for transport within
the Golgi and Golgi-to-ER trafficking and the latter is known to trans-
port a number of proteins including KDELR [160,161]. Interestingly,
GALNT containing COPI vesicles appears to be differentially regulated
to the KDELR containing carriers [159]. However, what drives GALNTs
recruitment in COPI vesicles is not known at this stage. It is therefore
not clear why GALNTs and not other Golgi enzymes are relocated to
the ER upon Src activation.

Evidences indicate that Src is able to activate the formation of
COPI vesicles, however it is not known how Src is connected with
the COPI machinery. The basic elements of this machinery comprise
a heptameric COPI coatomer protein complex, the Arf small GTPases
and guanine nucleotide exchange factors (GEFs) among other ele-
ments [161]. The vesicles that transport from the Golgi to ER are con-
trolled mostly by Arf1, 3 and 5 GTPases and their GEF GBF1 [162].
Upon reaching the ER, the transport carriers fuse with ER mem-
branes and discharge their content.

GALNTs are enzymatically active in the ER and seem to have access
to a host of protein substrates, including ER resident proteins [59,159]
(Fig. 2). C1GALT1 does not seem to be relocated by the GALA pathway,
and would probably be inactive in the ER anyway due to binding by
its ER-resident chaperone Cosmc [50]. Thus Tn generated by GALNTs
in the ER cannot be extended in the same compartment. This lack of
extension allows for further GALNT activity due to their lectin domain,
and indeed Tn levels after GALA activation highly depend on a function-
al GALNT lectin domain [82], suggesting that lectin-dependent glycosyl-
ation are the key events promoted by ER relocalization [59]. Altogether,
these various elements probably explain why relocation leads to high
intracellular Tn levels.

Semi-quantitative analysis revealed that most Tn is localized in the
ER with a small fraction at the cell surface [82]. This suggests that
most GalNAc residues added in the ER are extended when their cargo
proteins are trafficking through the Golgi. Why some residues are able
to reach the cell surface without being modified is not clear at present.

Activation of GALA and loss of C1GALT1 activity lead to very different
predictions forO-GalNAc glycans intracellular patterns andnature in tu-
mors. With GALA, most Tn is expected to be in the ER with a small pool
at the Golgi and cell surface, while loss of T-synthase leads to Tn being
mostly at the Golgi and cell surface. GALA will affect the pattern of
glycosites (the glycoproteome) andmaybe to some extent the distribu-
tion of extended glycans. By contrast, loss of C1GALT1 activity should
not affect glycosites but induce a drastic reduction in extended glycans.
In human solid tumors, extended O-glycans are often observed, being
the TF antigen or the Lewis type antigens. The intracellular pattern
strongly supports an ER accumulation of Tn. Therefore, GALA is the
more likely mechanism driving high Tn in human solid tumors.

GALA is an analog rather than binary phenomenon, displaying vary-
ing levels of Tn elevation depending on the method of stimulation.
GALNTs relocation irreversible upon release of activation, with Tn levels
reverting to baseline within hours and GALNTs returning to the Golgi
apparatus [159]. This suggests that GALNTs are constantly cycling be-
tween the Golgi and ER, their steady-state distribution being deter-
mined by the balance between retrograde export from the Golgi by
COPI carriers and anterograde transport from the ER by COPII. This
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pathway thus affords a dynamic way to acutely regulate Tn levels inde-
pendent of enzymeexpression level, andmay account partly for some of
the differences, as described above, in GALNT carcinogenicity in differ-
ent tissues.

A systematic RNAi screen of ~1000 signaling genes with stringent
selection criteria found 12 regulators of GALA, withmost of the proteins
being previously described as Golgi-localized or interacting with Golgi-
related proteins, suggesting a complex signaling network regulating
GALNT export from the Golgi [159]. A key node in this network is the
serine/threonine kinase ERK8, which has high basal activity indepen-
dent of growth factor stimulation [163,164], and in fact displaces from
the Golgi upon growth factor stimulation [159] (Fig. 2). Its depletion in-
creases Golgi-associated phosphotyrosines, suggesting that it actively
suppresses a Golgi-localized tyrosine kinase, possibly Src. These obser-
vations indicate that GALA seems to be continuously inhibited by a net-
work of regulators, the perturbation of which allows GALA activation.

Expression of a chimeric construct expressing ER-localized GALNT1
or −2 is sufficient for strong Tn elevation, suggesting that GALNT
Golgi-to-ER relocation is the only trafficking event necessary for GALA
and that UDP-GalNAc is present at sufficient levels in the ER. Further-
more, ER-localized GALNT2 inducesmorphological changes in epithelial
cells similar to those caused by Src activation or ERK8 depletion [159],
and increases their adhesion to various ECM substrates [165] as well
as stimulates cell migration and invasiveness. Thus GALA seems to
play a role in activating a migration process involving enhanced adhe-
sion, possibly mesenchymal-type migration [166]. When an ER-
targeted soluble GALNT lectin domain is expressed in cells with activat-
ed GALA, Tn levels are reduced, suggesting that it functions as a compet-
itive inhibitor of full-length enzymes [165]. Expression of this lectin
domain also reduces cell adhesion and motility.

3.3. GALA impact on TF expression and O-GalNAc glycans extension

O-GalNAc glycans can be elongated in various ways (Fig. 1). The
resulting O-glycans can have various physiological effects, for example
by forming potential binding sites for endogenous lectins. It is not
clear at this stage how initiation and extension are influencing each
other. It is likely that activation of the GALA pathway influences exten-
sion. Indeed a higher density of O-glycansmight hinder extension reac-
tions, favoring shorter O-glycans.

However, extension is probably controlled by various other mecha-
nisms. The TF antigen, alias Core-1, is only one biosynthetic step from
the initiation reaction (Fig. 1). TF is over-expressed in many tumors,
yet levels of TF are not correlated with Tn levels [167]. In addition,
in vitro, activation of the GALA pathway yields only very moderate
levels of TF [167]. Similarly, in an RNAi screen for signaling regulators
of Golgi organization, TF and Tn levels did not correlate [168]. Interest-
ingly, multiple signaling molecules were found regulate TF levels, sug-
gesting that TF regulation might occur at the Golgi level. It also
suggests that high TF expression is not restricted to cancer but a physi-
ological phenomenon. Accordingly, high TF levels have been known to
occur in situ in maturing T- and B-cells [169,170], activated T cells
[171,172], as well as other developing tissues such as colon [173] and
neurons [174] for many years.

3.4. GALA and competition with other O-glycosylation pathways

An interesting potential consequence of GALNT relocation to the ER is
competition between O-GalNAc glycosylation and other O-glycosylation
events. Besides O-xylose proteoglycan biosynthesis which is initiated in
the Golgi and O-GlcNAc glycosylation which occurs in the cytoplasm
and nucleus, all other types of protein O-glycosylation (including O-
mannose, O-fucose, O-glucose and O-galactose) are initiated in the ER.
The GALA pathway may enable GALNTs to compete in the ER for O-
glycosylation sites that are normally modified by the time they reach
the Golgi, thus tipping the balance towardsmore O-GalNAc glycosylation
versus other types. A recent study of the O-mannose glycoproteome re-
vealed sites in target proteins which were also known to be GalNAc-
modified, including PDIA3 [230]. The discovery of the GALA pathway
opens up the possibility for direct competition between O-Mannose and
O-GalNAc pathways and their associated biological functions.

4. Role of O-GalNAc glycosylation in tumorigenesis

4.1. O-GalNAc glycans in tumor progression: general considerations

There are probably multiple ways by which O-GalNAc glycans can
regulate tumor formation, cell invasion and cancer progression (Fig.
3). The O-glycans on a receptor protein tend to affect its properties
such as binding properties, activity, expression level, and/or stability.
In fact, O-GalNAc glycans have been implicated in numerous molecular
mechanisms that could play key roles in tumorigenesis (Fig. 3). While
many evidences point to such roles, what is missing in most cases is a
clear definition of target proteins and especially an understanding of
the mechanisms regulating glycosylation itself. Evidences also suggest
that both the presence or not of an O-glycan and the type of O-glycan
can be regulated and have biological effects on the target protein.

4.2. GALNTs, Tn and GALA in cancer

GALNTs have been associated with a multitude of human cancers.
Mutations in glycosyltransferases have not generally been commonly
found in tumor cells, but one study did find that GALNT12 is amutation-
al target in colon cancers, with two somatic and six germline
inactivating mutations identified [175].

Misregulation of GALNT expression has been described more fre-
quently and in many cancers, with differing trend depending on both
tissue context and GALNT isoform. In HCC, GALNT1 expression was
found to be frequently upregulated and associated with poor patient
survival, possibly by decreasing EGFR degradation, enhancing its activa-
tion and consequently cell migration and invasion [176]. On the other
hand, GALNT2 was found to be frequently downregulated especially in
cases with vascular invasion and recurrence, via inhibition of ligand-
induced endocytosis and downstream signaling of EGFR [177]. Similar-
ly, different isoforms can have opposing effects in gastric cancer.
GALNT5 expression was found to bemarkedly reduced in gastric cancer
tissues compared to non-malignant gastric mucosa [178], and other
studies associated expression of GALNT3 [179] and GALNT10 [180] in
gastric cancer with good prognosis. GALNT2 expression was described
to be significantly higher in a gastric cancer cell line compared to
other poorly differentiated human cancer cell lines [181], and GALNT6
expression was associated with venous invasion in gastric carcinoma
[182]. GALNT6 was also detected to be overexpressed in breast cancer
with consequences on MUC1 stabilization and carcinogenesis [183].
GALNT3, the family member most similar to GALNT6 in amino acid se-
quence, has also been observed to be overexpressed inmultiple cancers,
including renal cell carcinoma inwhich it predicts high tumor grade and
poor prognosis [184], high-grade serous epithelial ovarian tumors in
which it correlates with shorter progression-free survival [185], and
early-stage oral squamous cell carcinoma in which it correlates with
poor differentiation, vascular invasion, and recurrence [186].

On the other side of the coin, strong GALNT3 expression was corre-
lated with good prognosis in human colorectal carcinomas [187] and
non-small cell lung cancer [188]; in a mouse colon cancer model, loss
of expression was correlated with higher metastatic potential [189].
Similarly, loss of GALNT6 expression in pancreatic tumors was correlat-
ed with poor clinical outcome [190]. These examples illustrate the com-
plexity of GALNT glycosylation and are consistent with their diversity
and distinct substrate specificities enabling specific roles in specific cel-
lular contexts.

While GALNTs expression modulation may affect the repertoire of
glycosites, upregulation of a specific GALNT is not likely to explain the



Fig. 3. The roles of O-GalNAc glycans in cancer cell invasion. Black arrows indicate a change in O-glycosylation. Gray arrows indicate signaling pathways or other cellular processes. (I) O-
glycans can stabilize receptor expression on the cell surface by reducing endocytosis, or promote ligand-induced clustering, both of which allow stronger signaling. (II) Specific O-glycans
on cell adhesion or ECMproteins can regulate cell‐cell or cell-ECM adhesion by directly influencing O-glycoprotein binding interactions, aswell asmodulating related signaling pathways.
(III) O-glycans can allow cell surface reorganization of O-glycoproteins to expose other proteins essential for cell‐cell adhesion. (IV) O-glycans can trigger immune suppression by binding
to tolerogenic dendritic cells, or modulate cell killing by natural killer cells via competitive lectin binding. (V) O-glycans can modulate EMT by modifying ECM protein glycosylation.
Changes in O-glycosylation initiation induced by GALA activation could modulate these processes to affect tumor cell invasiveness.

1630 J. Chia et al. / Biochimica et Biophysica Acta 1860 (2016) 1623–1639
high Tn levels observed in cancer. As discussed above, this probably in-
volves GALA activation [167]. The effect of GALA appears to be a signif-
icant change in the O-glycoproteome of tumor cells, with for instance
the increased glycosylation of ER resident proteins. How this induced
glycoproteome affects cancer cells remains to be determined.

GALA activation does not entail that Tn glycans themselves play ac-
tive roles. Indeed, after increased synthesis in the ER, many of the
GalNac residues generated will probably be elongated as their carrier
protein traffics through the Golgi apparatus. These GALA-dependent
elongated O-glycans may correspond to some of the O-glycans de-
scribed below and have unique effects on their carrier proteins. Still,
our recentwork in breast cancer cells showed that Tn could be observed
at the lamellipodia and was associated with increased cell adhesion,
motility and invasiveness [167]. In addition, O-glycans on ER resident
proteins will probably remain mainly in the Tn form. Modification of
ER protein dynamics could play a role in tumor physiology as processes
such as the Unfolded Protein Response have been linked to tumor cell
adaptation.

The effects on cell behavior suggest that GALA is affecting cell sur-
face proteins, presumably by glycosylating important sites in these
proteins. Additionally, GALA could modulate the activity of ER-
resident proteins such as chaperones to affect the folding or traffick-
ing of cell surface proteins. Interestingly, although most Tn detected
in tumor cells is in the ER, GALA induces some cell surface Tn
expression, which tends to localize to adhesion structures. These
Tn-modified proteins appear to be essential for GALA's effects since
Tn binding lectins can inhibit cell migration [167]. At present, it is
not clear why this small fraction of Tn is not modified as it traffics
through the Golgi apparatus.

4.3. The TF antigen in cancer

Similar to Tn, the TF antigen is highly expressed in N90% of all human
cancers including colon, breast, bladder, prostate, liver, ovary and gas-
tric tissues [53–57]. TF seems to correlate less than Tn with cancer pro-
gression and patient prognosis [36]. However, this could in part be due
by the greater variability of the detecting reagents for TF antigen which
could result in cross-reactivity with normal tissues [191].

Upregulated TF expression was also reported to be correlated with
metastasis [53,192]. Shortening of O-glycans into TFwas shown to affect
mammary cancer development in mice [193]. Targeting the TF antigen
with an anti-TFmonoclonal antibody (mAb) showed improved progno-
sis of mice with mammary tumors [194]. Vaccination with purified TF
antigen-conjugated immunogenic carriers led to prolonged survival of
breast and ovarian cancer patients, likely through complement-
mediated tumor cell killing, in a few clinical trials [195–197].

At themoment, it is unclear how tumor cells upregulate the expres-
sion of the TF antigen. The GALA pathway only drives amodest increase
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of TF cell culture in vitro and is an unlikely mechanism. However evi-
dences suggest that like Tn, TF expression in cancer may not result
from an aberrant, cancer specific truncation of O-glycans but rather
from activation of an endogenous pathway (See above 3.3).

4.4. Extended O-GalNAc glycans and tumor biology

Various extended O-GalNAc glycans have been associated with
tumor progression. The core structure on the O-glycan seems to be im-
portant. For example, core 2O-glycans are upregulated in variousmalig-
nant tumors including colorectal, lung, prostate and bladder [191,194,
198–200], while core 3 and core 4 O-glycans appear to be generally
downregulated in cancer [48,201]. However, core 2O-glycan expression
is reduced in breast cancers [202–204], illustrating that there are no
general roles for branching, and the functions of specific glycan
branches are likely tissue- and context-specific.

Sialylation of O-GalNAc glycans, probably by providing a negative
charged residue on glycans also seems to play critical roles in governing
the properties of proteins on the cell surface. For instance, Core 2 O-
glycans are extended into poly-N-acetyllactosamine (poly-LacNAc)
chains (Fig. 1), which in their sialylated and/or fucosylated forms partic-
ipate in various steps of tumor formation [27,205]. Core 2-based struc-
tures are the main carriers of the sialyl Lewisx (sLex) glycan motif (Fig.
1), which is expressed on tumor cells. Control of the core 2/core 1
ratio by change of C2GnT1 expression seems to regulate the expression
of sLex in maturing dendritic cells [192], T cells [206,207], and pre-B
lymphocytic cells [208]. sLex is predominantly formed on Type 2 poly-
LacNAc chains, and the expression of sLex in colon andpancreatic cancer
has been attributed to the relative levels of β3Gal-T and β4Gal-T, which
synthesize Type 1 and Type 2 poly-LacNAc chains respectively [209,
210].

4.5. O-GalNAc glycans in the regulation of cell‐cell and cell-ECM adhesion

Various O-GalNAc glycans on different proteins have been shown to
have marked effects on cell‐cell and cell-ECM adhesion. For instance,
sLex binds to E-selectins on endothelial cells and P-selectins on platelets,
and these interactions are critical for the extravasation of the tumor
cells from circulation into tissue [211,212]. Expression of S-Tn decreases
cell adhesion and increases cell metastatic potential in T-47D breast
cancer cells [213]. Blocking O-glycan extension enhances E-cadherin-
dependent cell‐cell adhesion by decreasing the O-glycan dependent in-
hibitory action of dysadherin [214].

O-GalNAc glycans also impact the protein stability and expression
levels of cell surface adhesive and ECM proteins such as integrins and
MMPs or fibronectin and collagen respectively. These effects probably
modulate invasiveness via affecting cell interactionswith theirmicroen-
vironment. Treatment of lymphoma cell lines with an inhibitor of O-
GalNAc extension, benzyl-α-GalNAc, seemed to enhance their adhesion
to fibronectin mediated by integrin very late antigen (VLA)-4 [215].

An inverse correlation between sialidase NEU1 expression and met-
astatic potential has been found in a number of cell types [216–218].
Expression of NEU1 in colon cancer cells was found to reduce their met-
astatic potential by decreasing cell migration, invasion and adhesion
both in vitro and in vivo. This was mediated by decreasing sialylation
of O-GalNAc glycans on integrin beta-4, decreasing its phosphorylation
and attenuating the focal adhesion kinase and Erk1/2 signaling path-
way, which is possibly linked to the subsequent downregulation of
ECM metallopeptidase MMP7 [219]. Sialylation of integrins regulate
their adhesion to the ECM protein fibronectin [220], and increased
sialylation inhibits adhesion [221,222], which can facilitate cancer
spread and metastasis [223].

Sialic acids on core 2-derived sLex on mucins are also important for
colon cancer cell adhesion and migration. In colon cancer, sialidase
NEU4 is also downregulated. NEU4 was the only sialidase found to act
effectively on mucins, preferentially cleaving the sLex motif [224]. E-
selectin binding to sLex stimulates colon cancer cell adhesion, motility
and growth via the p38-Hsp27-actin reorganization pathway, thus
downregulation of NEU4, which inhibits this pathway, enhances colon
cancer cell invasiveness.

The high metastasis of some lung cancer sublines has been attribut-
ed to trimeric Tn (tTn) on syndecan 1 (Sdc1), generated by upregulation
of GALNT13. tTn-glycosylated Sdc1 promotes integrin-dependent cell
adhesion to fibronectin which induces phosphorylation of FAK and
paxillin, events known to facilitate cell migration. tTn-Sdc1 also forms
a molecular complex with integrin α5β1 and MMP9 in glycolipid-
enriched microdomains/rafts [225], which was previously shown to in-
crease metastatic potential [226].

O-GalNAc glycans can be ligands for members of the β-galactoside-
binding family galectins, which can bind to cell surface glycoproteins
via their carbohydrate recognition domains. This binding can clusters
and polarizes molecules like the cell surface MUC1, allowing exposure
of smaller adhesion proteins such as CD44 and E-selectin ligands,
thus promoting cell adhesion and transendothelial invasion [227]. The
galectin-3-induced polarization of MUC1 also exposes E-cadherin, en-
hancing anchorage-independent homotypic cell‐cell aggregation
which prevents anoikis, thus promoting survival of circulating tumor
cells and facilitating their metastatic spread [228]. Thus O-GalNAc gly-
cans can affect cell physiology through enhanced binding to galectins
[229]. Recently, O-GalNAc glycosylation has been proposed to be impor-
tant in the process of epithelial-mesenchymal transition (EMT). EMT in-
volves a decrease in expression of epithelial markers and increase in
that of mesenchymal markers, which lead to changes in cell morpholo-
gy and increased cell motility. It was found that treatment of prostate
epithelial cell lines with TGF-β, a known inducer of EMT, induced
upregulation of oncofetal fibronectin which bears a specific O-GalNAc
glycosylated threonine in the IIICS domain, alongwith typical EMT char-
acteristics. TGF-β-induced oncofetal fibronectin upregulation and the
EMT process were both inhibited by knockdown of GALNT6 and
GALNT3 [230]. In a different study, GALNT6 overexpression in a
nontumorigenic mammary epithelial cell line was also shown to stabi-
lize fibronectin by increased O-glycosylation, leading to EMT-like phe-
notypes, including morphological changes which disrupted acinar
morphogenesis, and cadherin switching (a shift from E-cadherin ex-
pression to N-cadherin expression) [231].

4.6. O-GalNAc glycans in regulating cell proliferation and cell death

Asmentioned above, GALNT expression can affect EGFR endocytosis
and subsequently its downstream signaling aswell as degradation, hav-
ing consequences on cellmigration and invasion. Site-specific O-GalNAc
glycosylation on secreted ligands such as IGF-II affect their processing
by proprotein convertase and thus their secretion, thereby modulating
their ability to effect growth stimulation. O-GalNAc glycans can also in-
fluence cell number viamodulation of death receptors. O-GalNAc glyco-
sylation of pro-apoptotic death receptors DR4 andDR5 on cancer cells is
critical for promoting their TRAIL-induced clustering, which leads to ac-
tivation of the apoptosis-initiating caspase-8 [145].

4.7. O-GalNAc glycans in regulating interaction with the immune system

O-GalNAc glycan-lectin interactions can also play important roles in
tumor cell evasion of immune surveillance. Tn-modifiedMUC1 on colon
carcinoma cells, but not MUC1 on normal epithelial cells, were found to
bind to macrophage galactose-type lectin (MGL) on myeloid antigen
presenting cells such as macrophages and dendritic cells (DCs) [232].
Binding triggers internalization of both proteins and subsequent pre-
sentation of the Tn-MUC1 ligand on cell surface major histocompatibil-
ity complex class II (MHC II), which can trigger either immune response
and cell killing, or immune tolerance via inhibition of immune response.
Interestingly, MGL is preferentially expressed on tolerogenic DCs [233],
and MGL-positive DCs were detected at colon carcinoma tumor sites
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[232] whose tendency to express Tn correlates with poor prognosis,
suggesting that Tn binding to MGL on these DCs promotes tumor pro-
gression via immune suppression.

Another case of immune evasion is tumor cells expressingmajor his-
tocompatibility complex class I-related chain A (MICA), where core 2-
derived poly-LacNAc on MICA promotes binding to galectin-3 instead
of NKG2D on natural killer (NK) cells. Binding to NKG2Dwould activate
release of apoptotic factors by NK cells to kill the tumor cells, and
C2GnT-expressing bladder tumor cells appear to better evade NK cell
killing and have improved survival in the circulation, thus the O-
glycan-galectin-3 interaction confers protective effects for tumor cells
[200].
5. Clinical perspectives

5.1. Glycosylation in cancer diagnostics and prognostics

Cancer biomarkers are useful for diagnosis, prognosis, staging and
monitoring therapeutic response, as well as to aid therapy selection
and follow-up. Ideally, a cancer biomarker should show high sensitivity
and specificity and be detectable in the early stages of the disease. Its
levels should also correlatewith cancer progression to allow better indi-
cations for staging, measuring responses to therapy and checking for
relapses.

There are only about 20 FDA approved and clinically used bio-
markers, among which only five are validated for diagnostic use [234,
235]. Many of these biomarkers still suffer from insufficient specificity
and sensitivity [235]. As a result, clinical decisions can often only be ob-
tained with the combinatorial use of biomarkers and other tests such as
imaging and tissue biopsy. For instance, HCC diagnosis requires both
alpha fetoprotein (AFP) levels readout and image-based liver ultraso-
nography [236–238].

One potential reason for the insufficient specificity and sensitivity of
current biomarkers may be that readout is based solely on protein
levels. Protein levels may not vary enough to correlate sufficiently
with disease state, they can also vary between individuals and fluctuate
with other diseases, particularly of inflammatory origin [239]. Interest-
ingly, most biomarkers in the clinic are glycoproteins, such as the
prostate-specific antigen (PSA) for prostate cancer, carcinoma antigen
(MUC16, aka CA125) for ovarian cancer, human chorionic gonadotro-
phin β subunit (hCG-b) for non-seminomatous testicular carcinoma,
and carcinoembryonic antigen (CEA) for colon cancer. These proteins
display distinct changes in glycosylation in malignant tissues [114,
240–243], particularly in terms of O-GalNAc glycan patterns [114,
243–245]. However, glycoforms of these biomarkers have yet to be
exploited.

An example of glycoform-based biomarker is the core fucosylated
AFP (AFP-L3) in HCC diagnosis [246,247]. AFP-L3 shows higher specific-
ity than AFP in differentiating HCC from cirrhosis and hepatitis, and is
used in the clinics [248,249]. A drawback that remains is its low sensitiv-
ity (60%) which hampers its full potential as a HCC biomarker [250].
However, glycoforms of other proteins may present better sensitivity.
Given the very frequent changes in O-glycosylation, it is possible that
targeting O-GalNAc glycoforms may provide interesting biomarkers.

O-GalNAc glycans themselves, such as Tn, S-Tn, TF, SLex and SLea,
have been proposed as cancer biomarkers, but robust antibodies are dif-
ficult to raise. These glycans havemostly been targeted by lectins, which
remain the mainstay of tools for glycan detection. Various lectin-based
methods, such as immunohistochemistry, blots, liquid chromatography
andmicroarrays, have been tested and employed. Some antibodies have
also been raised to detect tumor-associated O-glycans or protein
glycoforms [251–258].

The use of tumor-associated antigens has been applied in threemain
areas: (1) detecting biomarkers in the serum and tissue biopsies,
(2) tumor imaging and (3) assessing immune responses or
autoantibodies that are triggered against tumor O-glycans, which are
discussed in the following sections.

5.2. Detection of serum glycoprotein biomarkers

Serum biomarkers provide a non-invasive avenue for cancer detec-
tion. Their pathological presence in the serum may stem from the loss
of epithelial polarity during cancer transformation [259]. Loss of epithe-
lial polarity results in aberrant secretion of various glycoproteins such as
mucins into the serum. Currently, several tumor-associated O-GalNAc
glycoproteins are being used in serological assays in clinics. These in-
clude MUC1 (CA15‐3) and MUC16 (CA125), as well as, O-glycan SLea

(CA19‐9 are used in breast, ovarian and pancreatic cancer monitoring
respectively. S-Tn on TAG-72 (CA72‐4) serves as a pan-carcinoma
marker and is used concurrently with other tests in cancer screening.

All these biomarkers, however, suffer from lack of sensitivity, espe-
cially in early-stage disease, and insufficient specificity for diagnosis as
they can show elevated amounts in non-neoplastic conditions. For in-
stance, MUC1 and MUC16 levels show lack of sensitivity in early detec-
tion of breast cancer [260] and ovarian cancer [261] respectively.
Combined detection of different markers has shown somewhat better
diagnostic specificity and sensitivity [262,263], but use of a singlemark-
er is simpler to interpret and remains the preferred choice in clinics
[264–266]. Thus, more recent attempts involve targeting cancer-
associated O-glycoforms. The principle was proven with sandwich
ELISAs and antibody capture array assays that incorporate measure-
ment of various O-glycoforms of MUC16 in circulation. S-Tn-glycosylat-
edMUC16 showed improved specificity for ovarian cancer compared to
measuring MUC16 levels alone [267,268], although the sensitivity did
not increase significantly, limiting the use in early diagnosis. This
might be resolved by further differentiation of distinct MUC16 O-
glycosite forms.

5.3. Biomarker detection in tissue biopsies

Part of diagnosis, treatment management and intra/postoperative
assessment requires staining solid tissue biopsies and tumor imaging.
Immuno-staining of biopsies is currently the primarymethod for cancer
diagnosis. To improve sensitivity, proximity ligation assays (PLA) have
been applied on tissue sections [269]. As PLA allows combined detection
of both protein and glycan features that are in proximity, it was used to
detect different O-glycoforms of mucins. Using PLA, S-Tn-glycosylated
MUC2 was observed to be upregulated in all intestinal metaplasia and
most gastric carcinoma cases [270]. Tn- and S-Tn-MUC1 glycoforms
were identified in a large proportion of mucinous ovarian carcinomas
[271]. More recently, improved specificity (100%) and sensitivity
(~80%) was achieved through PLA reactions for Tn- and S-Tn-MUC16
and MUC1 glycoforms for tissue screening in ovarian serous neoplasia
[272].

Tumor imaging requires radiopharmaceuticals such as immuno-
radionuclides that requires specific antibodies or antibody fragments
to assess tumor properly. Several antibodies targeting Tn-, S-Tn-, TF-
and S-TF-glycosylated proteins have been developed and used in both
rodents and humans [273]. Interestingly, a humanized mAb CC49, that
targets S-TF and S-Tn on TAG-72, has been found useful radio-guided
immunosurgery in colorectal cancer [274] and is currently in clinical
trial.

5.4. Detection of tumor-specific auto-antibodies in patients

The discovery that tumor formation elicits autoantibodies has
prompted attempts to use them as biomarkers for tumor diagnosis
[275]. Autoantibodies might possibly arise at early stages of the disease,
so they could potentially be used to diagnose malignancy when there
are no detectable tumors and clinical signs. These antibodies can also
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indicate the localization of a tumor lesion if the targeted protein is
organ-specific [276,277].

To identify these autoantibodies, assays based on expressed cDNA li-
braries [275], protein and peptide arrays [278–280], and phage arrays
[281] have been developed that aim at detecting different tumor
types, including breast [280,282–284], colorectal [285] and lung cancer
[286–288],These approaches focus predominantly on screening thepro-
teome and were found to bind to several intracellular and cell mem-
brane proteins such as p53 [289] and MUC1 [290] respectively.

Early evidences from Springer indicate the existence of Tn and TF
glycan-specific immune responses resulting in anti-glycan antibodies
[28]. Cancer-specific human IgM autoantibodies that targeted glycan
epitopes [291] and protein O-glycoforms [292]were later identified. Re-
cently, sera from prostate, breast and ovarian cancer patients were
screened for autoantibodies produced against tumor-associated O-
glycans with a panel of O-glycopeptides. Glycopeptide-specific IgG
against Tn-, S-Tn-, TF-, and core 3-glycosylated MUC1 glycopeptides
could be detected in a number of patients [293]. A subsequent study
with a larger array of O-glycopeptides of MUC1 and MUC4 screened
the sera of colorectal cancer patients and healthy individuals in a blind
case-controlled manner, and IgG autoantibodies against S-Tn- and
Core3-MUC1 were detected in colorectal patients with relatively high
specificity. The sensitivity increased when the data was combined
with the p53 autoantibody signature, improving early colorectal cancer
detection [294]. Autoantibody arrays could also be used in cancer prog-
nosis. A number of breast cancer patients with elevated autoantibodies
against S-Tn- and Core3-MUC1 show increased survival rates [295].

5.5. Targeting O-GalNAc glycans for immunotherapy in cancer therapeutics

mAb-based treatment has been among the most successful
therapeutic strategies for cancer in the last 20 years [296]. Current
cancer immunotherapies involve the use of unconjugated antibod-
ies with intrinsic cytolytic activity, radionuclide-conjugated anti-
bodies (radioimmunotherapy) and toxin-conjugated antibodies
(immunotoxins). The unconjugated IgG antibodies can bind with
high affinity to target tumor cells and induce their destruction
through complement release (complement dependent cytotoxicity
(CDC)) or killing by NK cells (antibody-dependent cell-mediated cy-
totoxicity (ADCC)).

Extensive efforts have beenmade to develop specific antibodies and
therapeutic vaccines to evoke the immune system to target tumor-
associated O-glycans. A variety of antibodies have been produced
against tumor-associated O-glycoforms Tn, S-Tn and mucins. Some
show potential applications in therapy, exhibiting ADCC-dependent
and independent cytolytic activities, and several have been evaluated
in vivo [297–303]. For instance, anti-S-Tn 3P9, an IgM mAb derived
from human colorectal adenocarcinoma SW1116 cell immunization,
inhibited proliferation and migration of S-Tn expressing colon carcino-
ma cells and blocks tumor growth by inducing apoptosis [304]. Various
mAbs, such as KM3413, MLS128 and GOD3-2C4 have been also shown
to inhibit the cell growth of cancer cell lines expressing Tn antigen.
GOD3-2C4 also inhibits the growth of lung carcinoma xenografts
in vivo, altogether suggesting the potential applications of these mAbs
in therapy [303,305].

As for other therapeutic antibodies, anti-glycan antibodies have to
target a highly tumor-specific antigen that is not expressed in normal
cells to avoid toxicity. An immunotoxin antibody specific for Ley showed
dose-dependent toxicities, which is likely due to targeting of normal tis-
sues where low levels of Ley could be observed [306–308].

5.6. Therapeutic vaccines against O-GalNAc glycans

Vaccines for the prevention and treatment of cancer have been pro-
posed over the years, albeit being controversial for a long time. Cancer
preventive vaccines serve to reduce cancer risk in healthy individuals
and the three approved by FDA include Gardasil and Cervarix for
cervical cancer, and hepatitis B vaccine for liver cancer. Cancer treat-
ment vaccines act as immunotherapy for cancer patients. Sipuleucel-T
(Provenge®) is the first FDA-approved cancer treatment vaccine used
for metastatic prostate cancer [309]. Other vaccines such as Vitespen
(Oncophage®) for kidney cancer and gp100 peptide vaccine for mela-
noma treatments are in clinical trials [310,311]. These studies validate
therapeutic vaccines as a feasible approach for cancer treatment.

Early tests by Springer involved vaccination with TF/Tn-RBC. Results
suggest elicited anti-glycan immune responses and improved patient
survival after vaccination [34,312]. Since then,many attempts were car-
ried out to develop vaccines with these glycan antigens. Studies have
shown that immunizationwith S-Tnor Tn-containing proteins/peptides
induces glycan specific antibodies in mouse and human [313–317].
Slower tumor growth in mice and cancer progression in patients were
observed in some studies [315,316]. The vaccine S-Tn conjugated to
KLH protein (Theratope®) stimulates anti-S-Tn antibody production
[318] which correlates with disease-free survival [319]. However,
these observed immune responses were not robust enough to trigger
T cell-mediated immunity; hence, the clinical trials with Theratope re-
main inconclusive.

To improve the immunogenicity of the antigens, carbohydrate-
based vaccines (e.g. GM2, Globo H, Lewisy, TF(c), Tn(c), S-Tn(c), etc)
or glycopeptide-based vaccines (e.g. Tn-MUC1, Tn(c)-MUC1) conjugat-
ed on different carriers (e.g. KLH, BSA, polystyrene) have been com-
pared for their ability to trigger immune response in mice [317,320].
In the initial study, Tn-MUC1 induced high titers against breast cancer
cell line MCF7 [317]. The subsequent study revealed that the
carbohydrate-based vaccines inducedmainly short-term IgM responses
while MUC1 glycopeptides led to long-term IgG responses, particularly
the glycoform with triple Tn (Tn(c)-MUC1) [320]. Increasing the num-
ber of O-glycans on MUC1 glycopeptide seems to further improve the
immunogenicity of the vaccines as the glycopeptides with five Tn
showed the strongest response. Vaccination of MUC1 glycopeptides
with complete O-glycan occupancy elicited high IgG levels to the
MUC1 from human breast cancers but not to MUC1 from normal cells
[191].

Although numerous attempts have been made, most vaccines re-
main insufficient to induce strong T-cell dependent pathways for
prolonged immunity against these tumor antigens. None of the vaccines
against tumor-associated O-glyco-antigens have been approved for the
clinics at present. Further research to characterize glycoforms of O-
glycoproteins and to understand how the immune system reacts to
these antigens would aid design of a vaccine with better immunogenic-
ity and potency.

5.7. Relevance of the GALA pathway in cancer diagnosis and therapeutics

As described above, up until recently, high Tn in tumorswas thought
to reveal a general shortening of O-GalNAc glycans, leading to a focus on
exploiting these short glycans for therapeutic purposes. By contrast, in
the context of GALA, Tn structures are mostly present in the ER and
thus not directly accessible by antibodies or the immune system. On
the other hand, GALA is promoting glycosylation initiation events that
occur otherwise at low frequency, therefore suggesting the possibility
that tumors display relatively tumor-specific glycoforms of secreted
and cell surface proteins. The challenge will be to identify the newly
formed glycosites and to characterize the glycan attached to them.
With this approach, it might be possible to identify leads for novel can-
cer biomarkers.

As the expression of GALNTs can be tissue- or cell type-specific, the
GALA induced O-glycoproteomes could be to some extent tissue-
specific as well. Further research comparing these O-glycoproteomes
could thus point to tissue and/or disease specific glycosites. These
glycosites could be used to generate new antibodies for improving diag-
nosis as well as providing new therapeutic targets. Similarly, potential
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novel GALA-specific glycopeptides could provide greater specificity in
cancer vaccines. In addition, since specific GALNTs appear correlated
with specific cancer subtypes and may be driving factors, it may be in-
teresting to consider drug therapies targeting specific GALNT isoforms
themselves.

It would be important, however, to explore the normal physiological
role of the GALA pathway, as it is likely that GALA is a tightly regulated
pathway co-opted by cancer cells. In the long run, the efficient targeting
of O-GalNAc glycans for therapeutic purposes will also require further
fundamental advances in our understanding of the regulatory mecha-
nisms of both the initiation and extension of O-GalNAc glycosylation.
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