Existence and Decay of Global Solutions of Some Nonlinear Degenerate Parabolic Equations

MITSUHIRO NAKAO

Department of Mathematics, College of General Education,
Kyushu University, Fukuoka 810, Japan

Submitted by C. L. Dolph

0. INTRODUCTION

This paper is concerned with the existence and decay of global solution to the initial-boundary value problem for the nonlinear parabolic equation of the form;

\[u_t - \Delta \beta(u) + \nabla \cdot G(u) + h(u) = 0 \quad \text{on } \Omega \times \mathbb{R}^+ \]

\[u(x, 0) = u_0 \quad \text{and} \quad u|_{\partial \Omega} = 0 \]

(1)

where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with the (smooth) boundary \(\partial \Omega \). On the functions \(\beta(u) \), \(G(u) = (g_1(u), \ldots, g_n(u)) \) and \(h(u) \) we make the following assumptions;

A.1. \(\beta(u) = |u|^m u \) for some \(m \geq 0 \).

A.2. \(g_i(u) \) (\(i = 1, 2, \ldots, n \)) are continuously differentiable in \(u \in \mathbb{R} \) and satisfy

\[|g_i'(u)| \leq k_0 |u|^r \quad \text{for some } r \geq 0, k_0 > 0. \]

(2)

A.3. \(h(u) \) is Hölder continuous in \(u \in \mathbb{R} \) and

\[|h(u)| \leq k_1 |u|^\alpha + 1 \quad \text{for some } \alpha \geq 0. \]

(3)

It should be noted that no monotonicity assumption is made on \(h(u) \) and the so called blowing up term \(-|u|^\alpha u \) is admitted. Though more general functions \(\beta, g_i(u) \) and \(h(u) \) could be treated we restrict ourselves to the above cases for simplicity. Since the case \(m > \alpha \) is easier (at least, concerning the global existence) we assume hereafter that \(\alpha > m \).

As is well known the special case \(m = 0 \), \(G(u) = 0 \) and \(h(u) = -|u|^{\alpha} u \) was studied by Fujita [2] and interesting existence and nonexistence results were established. Recently, such results have been generalized to the...
case: $m > 0$, $G(u) \equiv 0$ and $h(u) = -|u|^2u$ by Galaktionov [3], Nakao [6, 7], Sacks [10] and others. In [3, 6, 7] the so-called "potential well" method is employed, while in [10] comparison theorem is used effectively.

If $G(u) \equiv 0$ multiplication of the equation by u, yields

$$\frac{d}{dt} \left\{ \frac{1}{2} \| \nabla \beta(u) \|^2 + H(u) \right\} \leq 0$$ \hspace{1cm} (4)

where $\| \cdot \|$ denotes $L^2(\Omega)$ norm and we set $H(u) = \int_{\Omega} \int_{\Omega} h(s) ds dx$. The inequality (4) is essential for the argument of the method of "potential well." Since such inequality is impossible in the case $G(u) \neq 0$ this method cannot be applied in its original form to our problem.

For the comparison method in [10] it is required that the stationary problem

$$-\Delta \beta(u) + \nabla \cdot G(u) + h(u) = 0, \quad u|_{\partial \Omega} = 0$$ \hspace{1cm} (5)

have a positive solution. Unfortunately, we do not know the existence of a positive solution to the problem (4) except for the case $G(u) \equiv 0$. Thus the method in [10] also does not seem to be applicable to our problem (1).

The object of this paper is to show that a modified method of potential well can be applied to the case $G(u) \neq 0$. By this we shall show that a global solution exists if the initial value u_0 is small in a certain sense. This result coincides to the result known to the case $G(u) \equiv 0$. Moreover we derive a decay estimate of such solutions as $t \to \infty$ which is a generalization of our previous work [6, 9].

Our method is also related to that in [8], where the case $h(u) \equiv 0$ in (1) is treated. The Cauchy problem for the case $n = 1$ and $h(u) \equiv 0$ was considered by Gilding and Peletier [4]. There the physical meaning of the degenerate parabolic equation with the term $\nabla \cdot G(u)$ is explained.

At this time we have no nonexistence theorem for (1) with $G(u) \neq 0$. This also seems to be an interesting problem for future research.

1. Preliminaries and Theorems

First we recall the well-known Sobolev and Gagliardo–Nirenberg inequalities.

Lemma 1. Let $u \in W^{1,p}_0(\Omega)$. Then $u \in L^q(\Omega)$ and the inequality

$$\| u \|_q \leq C \| u \|_{W^{1,p}_0}$$

holds with a constant $C > 0$ depending on Ω, p, where $1 \leq q \leq np/(n-p)$ if $n > p$, $1 \leq q < \infty$ if $n = p > 1$ and $1 \leq q \leq \infty$ if $n < p$. ($\| \cdot \|_q$ denotes L^q norm).
Lemma 2. For all \(u \in W^{1,p}(\Omega) \), \(p \geq 1 \), we have

\[
\| u \|_q \leq C \| u \|_p^{\theta} \| \nabla u \|_p^\theta
\]

with a constant \(C \) independent of \(\Omega \) and \(\theta = (r^{-1} - q^{-1})(n^{-1} - p^{-1} + r^{-1})^{-1} \), where we assume

(i) \(1 \leq r < \infty, r \leq q \leq \infty \) if \(n < p \),

(ii) \(1 \leq r \leq q < \infty \) if \(n = p > 1 \),

(iii) \(1 \leq r \leq q \leq \frac{pn}{n-p} \) if \(n > p \).

We shall use the above lemmas with \(p = 2 \). Following Sattinger [11] and Tsutsumi [12] we define the “potential well” of a functional on \(H_1 = W^{1,2}_0 \) and state some lemmas.

Let \(f(u) \) be a continuous function on \(\mathbb{R} \) such that

\[
| f(u) | \leq k | u |^{\gamma+1}, \quad k > 0
\]

with \(0 < \gamma \leq 4/(n-2) \) if \(n > 2 \), \(0 < \gamma < \infty \) if \(n = 1, 2 \), and consider the functional \(J_i(u) \) \((i = 0, 1)\) on \(\hat{H}_1 \):

\[
J_0(u) = \frac{1}{2} \| \nabla u \|^2 + \int_\Omega \int_0^u f(s) \, ds \, dx
\]

and

\[
J_1(u) = \| \nabla u \|^2 + \int_\Omega uf(u) \, dx.
\]

Define

\[
d = \inf_{\| \lambda \|_0 > 0} \sup_{u \in \hat{H}_1} J_0(\lambda u),
\]

which is often called the “depth of the potential well.”

Using the assumption (5) and Sobolev’s lemma we see easily \(d > 0 \). Then the potential well \(\mathcal{W} \) associated with \(J_0(u) \) is defined by

\[
\mathcal{W} = \{ u \in \hat{H}_1 | 0 \leq J_0(\lambda u) < d \text{ for } \forall \lambda \in [0, 1] \}.
\]

When \(f(u) = -k | u |^{\gamma} u \) we denote \(J_0, J_1 \) and \(\mathcal{W} \) by \(\bar{J}_0, \bar{J}_1 \), and \(\bar{W} \), respectively. The following lemmas are known:

Lemma 3 ([12]). \(0 < \bar{d} < \infty \) and \(\bar{W} = \bar{W}^* \cup \{0\} \),

where

\[
\bar{W}^* = \{ u \in \hat{H}_1 | 0 \leq \bar{J}_0(u) < d \text{ and } \bar{J}_1(u) > 0 \}.
\]
Lemma 4 ([7]). Let \(u \in \mathcal{W}^\gamma \) and \(\partial - J_0(u) \equiv \varepsilon_0 > 0 \). Then we have

\[
J_1(u) \geq C(\varepsilon_0) \| \nabla u \|^2
\]

where \(C(\varepsilon_0) \) is a positive constant such that \(\lim_{\varepsilon_0 \to 0} C(\varepsilon_0) = 0 \).

In what follows we set \(f(u) = h(|u|^{-(m+1)/(m+1)} u) \) or \(f(u) = -k_1 |u|^{|x-m|/(m+1)} u \), and we consider the functionals and potential wells associated with these functions. Then our results read as follows:

Theorem 1 (Existence). Let \(\alpha \) satisfy the condition; \(m < \alpha < (m(n+2)+4)/(n-2) \) if \(n > 2 \) or \(m < \alpha < \infty \) if \(n = 1, 2 \). Assume that \(U_0 \equiv |u_0|^{\alpha} u_0 \in \mathcal{W}^\alpha \), \(J_0(u_0) < \bar{d} \), and \(u_0 \in L^{2r+2} \). Then there exists a positive constant \(d_1 \) independent of \(u_0 \) such that if \(u_0 \) satisfies the additional condition \(J_0(U_0) < d_1 \) the problem (1) admits a global solution \(u(t) \) which satisfies

\[
\beta(u(t)) \in L^{\infty}(R^+; \dot{H}_1), \quad u \in L^{\infty}(R^+; L^{2r+2})
\]

and

\[
\frac{\partial}{\partial t} \left(|u|^{m/2} u \right) \in L^2(R^+; L^2).
\]

The equation is fulfilled in the sense that

\[
\int_0^t \int_{\Omega} \{ -u(x, s) \phi_x + (\nabla \beta(u) - G(u)) \cdot \nabla \phi - f \phi \} \, dx \, ds
\]

\[
= \int_{\Omega} (u_0 \phi(x, 0)) \, dx - \int_{\Omega} u(x, t) \phi(x, t) \, dx \tag{7}
\]

for \(\forall t > 0 \) and \(\forall \phi \in C^0_0([0, \infty); \dot{H}_1) \).

Remark. It is easy to see that the solution \(u(t) \) in Theorem 1 is continuous in \(L^1 \) and that \(\lim_{t \to 0} u(t) = u_0 \).

Theorem 2 (Decay). The solutions in Theorem 1 satisfy the estimate

\[
\int_{\Omega} \left| \frac{\partial}{\partial t} \left(|u|^{m/2} u \right) \right|^2 \, ds + \| \nabla \beta(u(t)) \|^2 + \| u(t) \|_{2r+2}^2
\]

\[
\leq C(\varepsilon_0) (1 + t)^{-2(\min(m,r)+1)/m} \quad (\text{if } m > 0) \tag{8}
\]

or

\[
\leq C(\varepsilon_0) e^{-\lambda t} \quad \text{for some } \lambda > 0 \quad (\text{if } m = 0)
\]

where \(C(\varepsilon_0) \) is a constant depending on \(\varepsilon_0 = \bar{d} - J_0(U_0) > 0 \).
COROLLARY 1 (L^∞-estimate). In addition to the assumption of Theorem 1 let $U_0 \in L^\infty(\Omega)$. Then $u(t) \in L^\infty(\Omega)$ for all $t \geq 0$, and we have

$$
\|u(t)\|_\infty \leq C(\varepsilon_0)(1 + t)^{-1/m} \quad \text{if } m > 0
$$

or

$$
\leq C(\varepsilon_0) e^{-\lambda t}, \quad \lambda > 0, \text{ if } m = 0.
$$

COROLLARY 2. Under the same assumption as in Corollary 1 the solution is unique if $m = 0$.

2. PROOF OF THEOREM 1

Assume that $u_0 \in C_0^\infty(\Omega)$. This assumption will be removed easily at the last stage. Consider the modified problem:

$$
u_t - \Delta \beta_\varepsilon(u) + \nabla \cdot G(u) + h(u) + \varepsilon |u|^{\alpha'} u = 0, \quad \varepsilon > 0 \tag{10}
$$

$$
u(x, 0) = u_0 \quad \text{and} \quad |u|_{\partial \Omega} = 0
$$

where $\beta_\varepsilon(u) = (u^2 + \varepsilon)^{m/2} u$ and $\alpha' (> \alpha)$ satisfies the same condition as α. Since the problem (10) has no singularity and by (3)

$$(h(u) + \varepsilon |u|^{\alpha'} u) u \geq -\text{const.} \quad \text{for } u \in R,$$

there exists a unique classical solution $u_\varepsilon(x, t)$ for all time $t \geq 0$ (cf. [13]). Thus our task is to derive appropriate estimates of u_ε. Meanwhile we write u for u_ε.

Multiplying the equation (10) by $(\partial/\partial t) \beta_\varepsilon(u)$,

$$
\left\{ \int_\Omega \beta'_\varepsilon(u) u_t^2 \, dx + \frac{d}{dt} \left\{ \frac{1}{2} \| \nabla \beta_\varepsilon(u) \|^2 + \varepsilon H^{(1)}_\varepsilon(u) - H_\varepsilon(u) \right\} \right.
$$

$$\left. \leq \int_\Omega |G'(u)| |\nabla u| |\beta_\varepsilon'(u)| |u_t| \, dx \tag{11}
$$

where we set

$$H^{(1)}_\varepsilon(u) = \int_\Omega \int_0^u |s|^{\alpha'} s \beta'_\varepsilon(s) \, ds$$

and

$$H_\varepsilon(u) = -\int_\Omega \int_0^u h(s) \beta'_\varepsilon(s) \, ds \, dx.$$
We may assume \(\alpha' \) is very close to \(\alpha \), and for \(|u|^m u \in \mathcal{H}_1 \) it is easy to see that
\[
\lim_{\epsilon \to 0} H_\epsilon(u) = \int_{\Omega} \int_0^u h(s) \, ds \, dx \equiv H(u) \quad (12)
\]
and
\[
\lim_{\epsilon \to 0} H^{(1)}_\epsilon(u) = \frac{m + 1}{m + \alpha' + 2} \int_\Omega |u|^{m + \alpha' + 2} \, dx \quad (13)
\]
Now, by virtue of (2),
\[
\int_\Omega |G'(u)||\nabla u||\beta'_\epsilon(u)||u_i| \, dx \\
\leq \frac{1}{2} \int |\beta'_\epsilon(u)||u_i|^2 + C_0 \int |u|^{2r} |\nabla u|^2 |\beta'_\epsilon(u)| \, dx
\]
and by (11) we have
\[
\frac{1}{2} \int \beta'_\epsilon(u) u_i^2 \, dx + \frac{d}{dt} \{I_{0,\epsilon}(u(t)) + \epsilon H^{(1)}_\epsilon(u)\} \\
\leq C_0 \int |u|^{2r} |\nabla u|^2 |\beta'_\epsilon(u)| \, dx
\]
where \(C_i \), \(i = 0, 1, 2, \ldots \) denotes positive constants independent of \(u_0 \) and \(\epsilon \), and where
\[
I_{0,\epsilon}(u) = \frac{1}{2} ||\nabla \beta(u)||^2 - H_\epsilon(u).
\]
in order to treat the right-hand side of (14) we multiply the equation (10) by \(|u|^{2r} u \) to get
\[
\frac{1}{2(r + 1)} \frac{d}{dt} \int |u|^{2r + 2} \, dx + (2r + 1) \int \beta'_\epsilon(u)|\nabla u|^2 |u|^{2r} \, dx \\
+ \epsilon \int |u|^{2r + \alpha' + 2} \, dx + \int h(u)|u|^{2r} u \, dx = 0
\]
and hence, by (3),
\[
\frac{d}{dt} \|u(t)\|_{2r + 2}^{2r + 2} + 2(r + 1)(2r + 1) \int \beta'_\epsilon(u)|\nabla u|^2 |u|^{2r} \, dx \\
\leq 2k_1(r + 1) \int |u|^{2r + \alpha' + 2} \, dx. \quad (15)
\]
From (14) and (15) we obtain
\[
\frac{d}{dt} \{ \mathcal{I}_{0,c}(u(t)) + \varepsilon H_r^{(1)}(u) + C_1 \| u(t) \|_{2r+2}^2 \} + \frac{1}{2} \int \beta'_e(u) u_t^2 \, dx \\
+ \int \beta'_e(u) |\nabla u|^2 |u|^{2r} \, dx \leq C_2 \int |u|^{2r+\alpha+2} \, dx.
\] (16)

We shall prove
\[
\int |u|^{2r+\alpha+2} \, dx \leq C_3 \| \nabla (|u|^{r+m/2} u) \|_2^2 \| u \|_{(2r+m)/(2r+m+2)}^{m/2}.
\] (17)

Indeed, if \(n(\alpha - m)/(2r + m + 2) \geq 1 \) we see that
\[
\| U \|_{2(2r+\alpha+2)/(2r+m+2)} \leq C \| \nabla U \|_{(2r+m+2)}^{2r+m+2} \| U \|_{(2r+m+2)/(2r+m+2)}^{2r + \alpha + 2} \| U \|_{n(\alpha - m)/(2r+m+2)}^{n(\alpha - m)/(2r+m+2)}
\]
by Lemma 2. Taking \(U = |u|^{r+m/2} u \), (16) is derived immediately.

When \(n(\alpha - m)/(2r + m + 2) < 1 \) (16) does not follow directly from Lemma 2. First for \(U \)
\[
\| U \|_{2(2r+\alpha+2)/(2r+m+2)} \leq C \| \nabla U \|_{\theta_0}\| U \|_{\theta_1}^{\theta_0}
\] (18)
with
\[
\theta_0 = \{2(2r+\alpha+2)/(2r+m+2) - 1\} \cdot \frac{2n}{n+2}
\]
and
\[
\theta_1 = 2\{2(2r+\alpha+2) - (\alpha - m) n\}/(2r+m+2)(n+2).
\]

Hölder's inequality and Lemma 2 imply
\[
\| U \|_1 \leq \| u \|_{n(\alpha - m)/2}^{n(\alpha - m)/4} \| U \|_{1 - n(\alpha - m)/(2r+m+2)}^{1 - n(\alpha - m)/(2r+m+2)}
\leq C \| u \|_{n(\alpha - m)/2}^{n(\alpha - m)/4} \| \nabla U \|_1^{\theta_2(1 - n(\alpha - m)/(2r+m+2))}
\]
with
\[
\theta_2 = \frac{2r + m + 2 - n(\alpha - m)}{2(2r+m+2) - n(\alpha - m)} \cdot \frac{2n}{n+2},
\]
and hence that
\[
\| U \|_1 \leq C \{ \| u \|_{n(\alpha - m)/2}^{n(\alpha - m)/4} \| \nabla U \|_{\theta_2[1 - n(\alpha - m)/(2r+m+2)]}^{\theta_2} \}^{1/\theta_2}.
\] (19)
with
\[\theta_3 = 1 - \left(1 - \theta_2 \right) \left[1 - \frac{n(a-m)}{2(2r + m + 2)} \right] = \frac{2(2r + m + 2) - (n - 2)(a-m)}{2(2r + m + 2)} \cdot \frac{n}{n+2}. \]

From (18) and (19) we obtain (17).

Moreover we use the inequalities
\[\int \beta'_e(u) |\nabla u|^2 |u|^{2r} \, dx \geq C \| \nabla (|u|^{r+m/2} u) \|^2 \]
and
\[\| u \|^2_{m^2 m/2} \leq C \| \nabla (\beta(u)) \|^2_{(a-m)/(m+1)}. \]

With (16), (17), (20) and (21) we imply the inequality
\[\frac{d}{dt} \{ I_{0,\epsilon}(u(t)) + \epsilon H^{(1)}_e(u(t)) \} + \frac{1}{2} \int \beta'_e(u) u^2 dx + C \| \nabla (|u|^{r+m/2} u) \|^2 \{ d'_1 - \| \nabla (\beta(u)) \|^2_{(a-m)/(m+1)} \} \leq 0 \]
for a certain constant \(d'_1 > 0 \). This is the basic inequality for our argument.

Now, we recall the definition of \(\tilde{W}^c \):
\[\tilde{W}^c = \{ U \in \dot{H}_1 \mid J_0(U) < \tilde{d}_0 \text{ and } \tilde{J}_1(U) > 0 \} \]
where we set, for \(U = |u|^m u = \beta(u) \),
\[J_0(U) \equiv I_0(u) = \frac{1}{2} \| \nabla \beta(u) \|^2 - \frac{m+1}{m+\alpha+2} \| u \|_{m+\alpha+2} \]
and
\[\tilde{J}_1(U) \equiv \tilde{I}_1(u) = \| \nabla \beta(u) \|^2 - \| u \|_{m+\alpha+2} \]
Also recall that \(\tilde{d}_0 = \inf_{U \in \dot{H}_1, U \neq 0} \sup_{\lambda > 0} J_0(\lambda U) \) and
\[J_0(U) \equiv I_0(u) = \frac{1}{2} \| \nabla \beta(u) \|^2 + H(u). \]

Assume that
\[U_0 \equiv |u_0|^m u_0 \in \tilde{W}, \quad J_0(U_0) < \tilde{d}_0 \quad \text{and} \quad \| \nabla U_0 \| < d'_1. \]
Then, taking a sufficiently small \(\epsilon \), we may assume \(I_{0,\epsilon}(u_0) + \epsilon H^{(1)}_e(u_0) < \tilde{d}_0 \) and
\[\| \nabla \beta(u_0(t)) \| < d'_1 \]
on some interval, say \([0, T_c]\).
From (22) we have
\[
\frac{d}{dt} \{ I_{0, \varepsilon}(u(t)) + \varepsilon H^{(1)}_\varepsilon(u(t)) \} + \frac{1}{2} \int \beta'_\varepsilon(u) u^2_i \, dx \leq 0
\] \
(25)
as long as (24) holds, and, in particular,
\[
\bar{J}_0(U(t)) \leq I_{0, \varepsilon}(u(t)) + \varepsilon H^{(1)}_\varepsilon(u(t))
\leq I_{0, \varepsilon}(u_0) + \varepsilon H^{(1)}_\varepsilon(u_0) < \bar{a}_0.
\] \
(26)
This inequality when combined with standard argument concerning the potential well (cf. [11, 12]) implies that \(\beta(u(t)) \equiv |u|^m u = U(t) \in \mathcal{W} \) for all time as long as (24) holds. Since, by Lemma 3,
\[
\bar{a}_0 > J_0(U_0) \geq J_0(U(t)) \geq \left(\frac{1}{2} - \frac{m+1}{m+\alpha+2} \right) \| \nabla U(t) \|^2
= \frac{\alpha-m}{2(m+\alpha+2)} \| \nabla U(t) \|^2
\]
we have
\[
\| \nabla U(t) \|^2 \leq \frac{2(m+\alpha+2)}{\alpha-m} J_0(U_0).
\] \
(27)
Here we set \(d_i = (\alpha-m) d'_i / 2(m+\alpha+2) \) and assume that \(J_0(U_0) < d_i \). Then (27) implies that
\[
\| \nabla U(t) \|^2 \leq d'_i - \delta_0
\] \
(28)
with \(\delta_0 = 2(m+\alpha+2)(d_i - J_0(U_0)) / (\alpha-m) > 0. \)
Thus we can conclude that (24) holds for all time \(t \) and consequently \(U(t) \in \mathcal{W} \) for all time \(t \).
Thus it has been proved that the approximate solutions \(u_\varepsilon(t) \) of the modified problem (9) exist globally and that the desired estimates
\[
\| \nabla \beta(u_\varepsilon(t)) \|^2 < \bar{a}_0 \quad \text{and} \quad \int_0^\infty \int_\Omega \beta'_\varepsilon(u) u^2_i \, dx \, dt < \bar{a}_0
\] \
(29)
hold for \(\forall t. \)
Based on the estimates (29) standard compactness argument (cf. [5, 6]) shows that \(u_\varepsilon \) converges to a function \(u \) as \(\varepsilon \to 0 \) in such a way that
\[
u_\varepsilon(t) \rightarrow u(t) \text{ in } L^1_{loc}([0, \infty); L^1),
\]
\[
\beta_\varepsilon(u_\varepsilon(t)) \rightarrow \beta(u(t)) \text{ weakly* in } L^\infty_{loc}([0, \infty); \mathcal{H}_1),
\]
\[
\frac{\partial}{\partial t} (|u|^m u) \rightarrow \frac{\partial}{\partial t} (|u|^m u) \text{ weakly in } L^2_{loc}([0, \infty); L^2)
\]
and
\[h(u_0(t)) \rightarrow h(u(t)) \text{ in } L^1_{\text{loc}}([0, \infty); L^1). \]

Thus the proof of Theorem 1 is completed if \(u_0 \in C^2_0(\Omega) \). For general \(u_0 \) satisfying the assumptions we have only to take a sequence \(u_{0,p} \in C^2_0(\Omega) \) such that \(\beta(u_{0,p}) \rightarrow \beta(u_0) \) in \(H_1 \) as \(p \rightarrow \infty \) and to take the limit of \(u_p \), corresponding solutions to \(u_{0,p} \), as in the above.

3. PROOF OF THEOREM 2

In this section we shall prove Theorem 2, which asserts that the solutions of Theorem 1 decay to 0 at a certain rate as \(t \rightarrow \infty \). We give a somewhat formal proof, which is justified through the approximate solutions \(u_\epsilon \) in the previous section.

By (22) and (28) we have
\[\frac{d}{dt} \left\{ I_0(u(t)) + C \| u(t) \|_{L_{\text{loc}}^1}^{2r + \frac{3}{2}} \right\} + \frac{1}{2} \int |u|^m |u_t|^2 \, dx \]
\[+ \delta_0 \| \nabla(|u|^{m+2} u) \|_2^2 \leq 0 \]
(30)

with \(\delta_0 = 2(m + \alpha + 2)(\alpha - m)^{-1} \left(d_1 - I_0(U_0) \right) > 0 \).

On the other hand, multiplying the equation by \(|u|^m u = U - \beta(u) \)
\[\int u_t \beta(u) \, dx \leq C \left(\int |u_t|^2 |u|^m \right)^{1/2} \| \nabla \beta(u) \|^{(m+2)/2(m+1)}. \]

By Lemma 4 we know \(2J_0(U) \geq J_1(U) \geq C(\epsilon_0) \| \nabla U \|^2 \) with \(\epsilon_0 \equiv d_0 - J_0(U_0) \geq d_0 - J_0(U_0) \). Hence we have from above
\[[J_0(U(t))]^{(3m+2)/2(m+1)} \leq C \int |u_t|^2 |u|^m \, dx. \]
(31)

Also we note that
\[\| \nabla(|u|^{m+2} u) \|^2 \geq C \| u \|_{L_{\text{loc}}^1}^{2r + m + 2}. \]
(32)

From (30)--(32) we obtain
\[\frac{d}{dt} \left\{ J_0(U(t)) + C \| u(t) \|_{L_{\text{loc}}^1}^{2r + \frac{3}{2}} \right\} + C J_0(U(t))^{(3m+2)/2(m+1)} \]
\[+ C \delta_0 \| u(t) \|_{L_{\text{loc}}^1}^{2r + m + 2} \leq 0. \]
(33)
Using the boundedness of $\|u(t)\|_{2r+2}$ and $\|\nabla \beta(u(t))\|$ we can show from (32) that

$$\frac{d}{dt} \left\{ J_0(U(t)) + C \| u(t) \|_{2r+2}^2 \right\} + C(u_0) \left\{ J_0(U(t)) + C \| U(t) \|_{2r+2}^2 + \lambda_0 \right\} \leq 0$$

(34)

with $\lambda_0 = 1 + m/2 \left(\min(m, r) + 1 \right)$. This inequality implies

$$J_0(U(t)) + C \| u(t) \|_{2r+2}^2 \leq C(u_0)(1 + t)^{-2(\min(m, r) + 1)/m} \quad \text{if } m > 0$$

$$\leq C(u_0) e^{-\lambda t}, \quad \lambda > 0, \text{ if } m = 0.$$ Integrating (31) from t to ∞ we can obtain the estimate for

$$\int_0^\infty \| (\partial/\partial t)(|u|^{m/2} u) \|^2 \, ds.$$

4. PROOFS OF COROLLARIES 1, 2

Multiplying the equation by $|u|^p u$ ($p \geq 0$) we have

$$\frac{1}{p + 2} \frac{d}{dt} \| u(t) \|_{p+2}^2 + \frac{4(p+1)(m+1)}{(p+m+2)^2} \int \| \nabla(|u|^{p+m/2} u) \|^2 \, dx$$

$$\leq k_1 \int |u|^{p+x+2} \, dx.$$ (35)

This is the same inequality as (2.1) with $\varepsilon = 0$ in [9], and using the fact that $\| \nabla \beta(u(t))\|$ tends to 0 as $t \to \infty$ the same argument in [9] implies

$$\| u(t) \|_q \leq C_q(\varepsilon_0, \| u_0 \|_q)(1 + t)^{-1/m}$$

for any $q \geq 2$. Combining this with the Moser's technique (cf. Alikakos [1], Nakao [(3.4), 9]) we can obtain the estimate for $u(t)$ in Corollary 1.

Next, we shall prove Corollary 2. Letting $u(t)$ and $v(t)$ be two solutions we have

$$\frac{1}{2} \frac{d}{dt} \| u(t) - v(t) \|^2 + \| \nabla(u(t) - v(t)) \|^2$$

$$\leq C \int |G(u) - G(v)| |\nabla(u - v)| \, dx$$

$$+ C \int |f(u) - f(v)| |u - v| \, dx$$

$$\leq C(\| u(t) \|_\infty, \| v(t) \|_\infty) \int (|u - v| |\nabla(u - v)| + |u - v|^2) \, dx.$$
and hence
\[
\frac{d}{dt} \| u(t) - v(t) \|^2 \leq \text{Const.} \| u(t) - v(t) \|^2
\]
which implies \(u \equiv v \).

Remark. The above argument for the proof of Corollary 2 is valid only for the case \(m = 0 \), and the uniqueness problem for \(m > 0 \) remains open.

REFERENCES

3. V. A. Galaktionov, A boundary value problem for the nonlinear parabolic equation
\[u_t = \Delta u^{a+1} + u^p, \text{Differentsial'nye Uravneniya} 17 (1981), 836–842 \text{ (Russian)} \]