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Limitation of Infarct Size and No-Reflow
by Intracoronary Adenosine Depends
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OBJECTIVES In the absence of effective clinical pharmacotherapy for prevention of reperfusion-mediated injury, this

study re-evaluated the effects of intracoronary adenosine on infarct size and no-reflow in a porcine model of acute

myocardial infarction using clinical bolus and experimental high-dose infusion regimens.

BACKGROUND Despite the clear cardioprotective effects of adenosine, when administered prior to ischemia, studies

on cardioprotection by adenosine when administered at reperfusion have yielded contradictory results in both pre-clinical

and clinical settings.

METHODS Swine (54 � 1 kg) were subjected to a 45-min mid–left anterior descending artery occlusion followed by 2 h

of reperfusion. In protocol A, an intracoronary bolus of 3 mg adenosine injected over 1 min (n ¼ 5) or saline (n ¼ 10) was

administered at reperfusion. In protocol B, an intracoronary infusion of 50 mg/kg/min adenosine (n ¼ 15) or saline (n ¼ 21)

was administered starting 5 min prior to reperfusion and continued throughout the 2-h reperfusion period.

RESULTS In protocol A, area-at-risk, infarct size, and no-reflow were similar between groups. In protocol B, risk zones

were similar, but administration of adenosine resulted in significant reductions in infarct size from 59 � 3% of the area-

at-risk in control swine to 46 � 4% (p ¼ 0.02), and no-reflow from 49 � 6% of the infarct area to 26 � 6% (p ¼ 0.03).

CONCLUSIONS During reperfusion, intracoronary adenosine can limit infarct size and no-reflow in a porcine model of

acute myocardial infarction. However, protection was only observed when adenosine was administered via prolonged

high-dose infusion, and not via short-acting bolus injection. These findings warrant reconsideration of adenosine as an

adjuvant therapy during early reperfusion. (J Am Coll Cardiol Intv 2015;8:1990–9) © 2015 by the American College of

Cardiology Foundation.
T imely reperfusion remains the single most
effective treatment of acute myocardial
infarction (AMI) for salvaging ischemic myo-

cardium, leading to improved residual ventricular
function and clinical outcome (1). However, reperfu-
sion itself initiates a cascade of harmful events,
termed “lethal reperfusion injury,” which is charac-
terized by mitochondrial damage and cardiomyocyte
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death (2,3), and by ultrastructural damage to
capillary endothelium, leading to microvascular
obstruction, termed “no-reflow” (4). Since lethal
reperfusion injury may account for up to 50% of the
final myocardial infarct size (3), and because
no-reflow is associated with poor clinical prognosis
(5), it is clear that reperfusion injury constitutes a
key therapeutic target.
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AB BR E V I A T I O N S

AND ACRONYM S

AMI = acute myocardial

infarction

CBF = coronary blood flow

dP/dt = first derivative of

pressure measured over time

LAD = left anterior descending

coronary artery

LV = left ventricle

PCI = percutaneous coronary

intervention

SEM = standard error of the

mean

TIMI = Thrombolysis In

Myocardial Infarction
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Adenosine exerts a variety of actions that may
attenuate many of the proposed mechanisms of
reperfusion-mediated injury, including inhibition of
neutrophil-mediated vascular damage and preserva-
tion of microvascular flow; restoration of calcium ho-
meostasis; inhibition of oxidative stress; and
mediation of pre-, post- and remote conditioning (6–9).
Yet, attempts to achieve cardioprotection with
administration of adenosine at reperfusion have yiel-
ded mixed results in both pre-clinical and clinical
studies (Tables 1 and 2). For example, recent clinical
studies using intracoronary adenosine bolus injections
in AMI were unable to demonstrate significant re-
ductions in infarct size (10,11). Inconsistent results
may be related to several factors, including the avail-
ability of adenosine at an optimal concentration at
reperfusion and a brief window for therapeutic appli-
cation. In addition, the optimal dosage for efficacious
adenosine treatment in AMI has remained undefined
in both experimental (using canine and rabbit models)
and clinical settings. Given the present lack of clini-
cally effective adjuvant pharmacotherapy to prevent
reperfusion-mediated injury, re-evaluation of adeno-
sine in the setting of AMI would be of great interest,
taking aforementioned considerations into account.
SEE PAGE 2000
Accordingly, we hypothesized that prolonged local
intracoronary delivery of adenosine using an optimal
concentration is able to reduce infarct size and no-
reflow. To test this hypothesis, we employed a large
animal (porcine) model of ischemia-reperfusion to re-
evaluate the effects of intracoronary bolus injections
of adenosine at reperfusion with doses equivalent to
clinical trials. Subsequently, we investigated the
cardioprotective effects of a high-dose, prolonged
intracoronary infusion of adenosine.
METHODS

We followed the ARRIVE (Animals in Research:
Reporting In Vivo Experiments) guidelines for
reporting animal research (12). Experiments were
performed in Yorkshire � Landrace swine of either
sex weighing 54 � 1 kg. All procedures were per-
formed in compliance with the “Guiding Principles in
the Care and Use of Animals” as approved by the
Council of the American Physiological Society and
under the regulations of the Animal Care Committee
of the Erasmus University Rotterdam.

EXPERIMENTAL PROTOCOL. Animals were subjected
to regional ischemia by occluding the mid–left ante-
rior descending coronary artery (LAD) for 45 min
followed by 2 h of reperfusion. In protocol A,
animals received an intracoronary adenosine
bolus injection at reperfusion (3 mg in 1 ml
injected over 1 min) or an equivalent intra-
coronary bolus of saline. The dose per kilo-
gram of bodyweight and timing of injection
approximated or was similar to that
employed in clinical studies (Table 2). In
protocol B, animals received an intracoronary
adenosine infusion of 50 mg/kg/min starting
at 40 min of occlusion (5 min prior to reper-
fusion) and continuing until the end of
reperfusion (infusion rate: 0.67 ml/min) or an
equivalent intracoronary infusion of saline.
The dose of 50 mg/kg/min adenosine was
determined in dose-finding studies available

in the Online Appendix. Protocols A and B were per-
formed consecutively and animals were allocated to
either control or adenosine treatment by weighted
randomization.

SURGICAL PREPARATION AND PROCEDURES. Swine
were sedated with ketamine (20 mg/kg, intramuscu-
larly) and midazolam (1 mg/kg, intramuscularly),
anesthetized with sodium pentobarbital (15 mg/kg,
intravenously), intubated, and placed on a positive-
pressure ventilator (O2:N2 ¼ 1:3 volume:volume).
Electrocardiographic electrodes for the limb leads
were placed subcutaneously. Catheters were inserted
into the right external jugular vein for infusion of
saline, drugs, and sodium pentobarbital (10 to 15 mg/
kg/h) to maintain anesthesia. A micromanometer-
tipped catheter (Millar Instruments, Houston, Texas)
was advanced into the left ventricle (LV) via the right
external carotid artery to measure LV pressure and its
first derivative over time (dP/dt). A fluid-filled cath-
eter was inserted via the left femoral artery into the
aorta to measure arterial pressure and to obtain blood
samples for measurement of arterial blood gases. A
Swan-Ganz catheter was advanced into the pulmo-
nary artery via the left femoral vein to measure pul-
monary artery pressure and to monitor body core
temperature. Arterial blood gases were checked
periodically, and ventilation settings were adjusted
as necessary to maintain blood gases within the
physiological range.

A median sternotomy was performed and the
pericardium was opened. An electromagnetic flow
probe was placed around the ascending aorta for
measurement of cardiac output. A segment (2 to 3 cm)
of the LAD was isolated just distal to the first diagonal
branch. Following isolation, the LAD was instru-
mented from proximal to distal with a surgical
monofilament ligature around the vessel for later
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occlusion; a transit-time flow probe (Transonic Sys-
tems, Ithaca, New York) for coronary blood flow (CBF)
measurements; and a 22-gauge, nonobstructing,
intracoronary catheter for administration of adeno-
sine or saline. The anterior interventricular vein was
cannulated with a 20-gauge catheter for coronary
venous blood sampling. For measurement of atrial
pressure, a catheter was inserted into the left atrial
appendage. For measurement of regional contractile
function, 2 pairs of ultrasonic crystals (Triton Tech-
nology Inc., San Diego, California) were implanted in
the mid-myocardium of the area-at-risk and the
remote myocardium (13).

After completion of surgical instrumentation, a
stabilization period of 30 min was permitted to ensure
hemodynamic stability before the onset of coronary
occlusion. Systemic and coronary hemodynamics,
regional contractile function, electrocardiographic
changes, and body core temperature were monitored
and recorded throughout the experiment. Arterial and
coronary venous blood samples were obtained serially
at several time points. Anticoagulation was ensured
using heparin (5,000 IU/h, intravenously). Animals
that developed ventricular fibrillation during the
protocol were defibrillated using internal paddles
(30 to 50 J, direct current).

MYOCARDIAL OXYGEN BALANCE. Measurements of
partial pressure of oxygen (mm Hg), partial pressure
of carbon dioxide (mm Hg), pH, oxygen saturation,
and hemoglobin concentration (g/100 ml) were
performed with a blood gas analyzer (ABL 800,
Radiometer, Copenhagen, Denmark). Blood oxygen
content, myocardial oxygen delivery, myocardial ox-
ygen consumption in the LAD region, and myocardial
oxygen extraction were computed as previously
described (14).

AREA-AT-RISK, INFARCT SIZE, AND NO-REFLOW.

At the end of the 2-h reperfusion period, the LAD was
perfused with 5 ml of 4% thioflavin-S (Sigma, Zwijn-
drecht, the Netherlands) for determination of the no-
reflow-area (15). Hereafter, the LAD was reoccluded
and 40 ml of 16% Evans Blue (Sigma) was infused
intra-atrially for area-at-risk determination (13). The
heart was then excised and the LV was isolated and
cut into 5 transversal slices of equal thickness parallel
to the atrioventricular groove from apex to base. The
area-at-risk and no-reflow-area (using ultraviolet
light) of each slice were demarcated on an acetate
sheet (15). The slices were incubated for 15 min in 3%
buffered triphenyltetrazolium chloride (Sigma) at
37�C for determination of the infarct area (13,15).
Myocardial infarct size was defined as the ratio of the
summed infarct areas and summed areas-at-risk and



TABLE 2 Randomized Clinical Studies Investigating the Effects of Intracoronary Adenosine in Patients With AMI Undergoing Primary PCI

First Author (Year) (Ref. #) n Eligibility
Ischemia

Time (min)*
Type of

Administration
Dose of

Administration
Administration
Time (min)

Start and Site of
Adenosine

Administration Infarct Size Reperfusion Markers

Marzilli et al. (2000) (24) 54 SO <3 h, pre-TIMI 0–2 106 Bolus 4 mg in 2 ml 1 After wire crossing and
balloon inflation distal
to PCI site

Y peak CK/CK-MB
(p ¼ NS)

Y No-reflow (Y $1 TIMI
grades final angio
relative to post-PCI
angio)

Hendler et al. (2006) (17) 20 SO <12 h, post-TIMI 3
with MBG 0/1

120 Bolus 60–120 mg NA Catheter site — 4 STR, TMPG

Stoel et al. (2008) (25) 49 STR <70% post-PCI 196 Infusion 6 mg/ml 5–10 >10 min after last balloon
inflation at catheter
site

Trend Y peak CK-MB
(p ¼ 0.08)

[ STR >70%, MBG,
YTFC

Fokkema et al. (2009) (11) 448 SO <12 h, pre-TIMI 0–3 180 Bolus (2�) 2 � 120 mg in 20 ml NA 1st bolus after TA, 2nd
after stenting in IRA

4 peak CK/CK-MB 4 ST-deviation, STR,
MBG, post-TIMI
flow

Desmet et al. (2011) (10) 110 SO <12 h, pre-TIMI 0–3 215 Bolus 4 mg in 5 ml 1 After wire crossing distal
to target lesion site

4 AUC CK/CK-MB/TnI,
MSI or IS MRI 4
months

4 STR, MBG, TFC,
post-TIMI flow or
MVO MRI 2–3 days

Grygier et al. (2011) (16) 70 SO <6 h, pre-TIMI 0–2 273 Bolus (2�) 2 � (1 mg for RCA
and 2 mg for
LCA) in 10 ml

NA 1st bolus after wire
crossing, 2nd after
balloon inflation at
occlusion site

4 peak CK/CK-MB/TnI [ STR >50%, corrected
TFC, MBG 3, post-
TIMI 3 flow

Niccoli et al. (2013) (26) 160 SO <12 h, pre-TIMI 0/1 277 Bolus þ (brief)
infusion

120 mg þ 2 mg
in 33 ml

1st bolus
fast þ 2

After wire crossing and
TA beyond occlusion
site

Y peak CK-MB/TnT [ STR >70%, Y MVO
(TFG #2 or
MBG <2)

Garcia-Dorado
et al. (2013) (46)

201 SO <6 h, persistent TIMI
0/1 after wire crossing

NA (Brief) infusion 4 mg 2 Immediately before
reperfusion mostly
with TA and direct
stenting distal to
culprit lesion

4 IS MRI 2–7 days or
6 months, Y IS in pts
with SO <200 min
(n ¼ 84)

4 MVO MRI 2–7 days
or 6 months

*Ischemia time in the adenosine groups.

Y ¼ reduced; [ ¼ improved; 4 ¼ unchanged; AMI ¼ acute myocardial infarction; angio ¼ angiogram; AUC ¼ area under the curve; CK ¼ creatine kinase; CK-MB ¼ creatine kinase-myocardial band; IRA ¼ infarct-related artery; IS ¼ infarct size; LCA ¼ left coronary
artery; MBG ¼ myocardial blush grade; MRI ¼ magnetic resonance imaging; MSI ¼ myocardial salvage index; MVO ¼ microvascular obstruction; NA ¼ not available; PCI ¼ percutaneous coronary intervention; pts ¼ patients; RCA ¼ right coronary artery; SO ¼ symptom
onset; STR ¼ ST-segment resolution; TA ¼ thrombus aspiration; TFC ¼ TIMI frame count; TFG ¼ TIMI flow grade; TIMI ¼ Thrombolysis In Myocardial Infarction; TMPG ¼ TIMI myocardial perfusion grade; TnI ¼ troponin I; TnT ¼ troponin T.
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TABLE 3 Enrollment Summary and Baseline Data

Bolus Injection Prolonged Infusion

Control Adenosine Control Adenosine

Enrollment summary

Animals entered 11 11 26 22

Exclusions

Technical failure* 0 3 1 1

Staining failure† 1 0 0 1

Death

Nonconvertible ventricular
fibrillation during occlusion‡

0 3 2 4

Acute pump failure 0 0 2 1

Final number entered in analysis 10 5 21 15

Baseline data

Animal weight, kg 56 � 1 58 � 2 53 � 1 51 � 1

Male/female 3/7 3/2 12/9 7/8

Myocardial masses, g

Left ventricle 118 � 5 130 � 4 125 � 3 119 � 3

Area-at-risk 30 � 1 38 � 4 33 � 1 28 � 2

Values are n or mean � SEM. *Technical difficulties resulting in failure to complete the experimental protocol.
†Staining difficulties compromising accurate measurement of infarct size and/or no-reflow. ‡Occurring during the
first 40 min of occlusion, that is, prior to adenosine treatment; none of the animals developed nonconvertible
ventricular fibrillation during reperfusion.
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expressed as a percentage. No-reflow was defined as
the ratio of the summed no-reflow areas and summed
infarct areas and expressed as a percentage.

NEUTROPHILS. Sections of infarct area, with either
reflow or no-reflow, and remote non–area-at-risk
(posterior wall) LV tissue were fixed in 4% buffered
formaldehyde for at least 24 h, dehydrated in graded
ethanol, cleared in xylene, and embedded in paraffin.
Then, 4-mm sections were stained to identify acute
influx of neutrophils (azurocidin, mouse antihuman,
1:100, Abnova, Heidelberg, Germany) following an-
tigen retrieval (10-min citrate buffer boil [pH 6]).
Rabbit antimouse secondary antibodies were used
(1:100, horseradish peroxidase label, DAKO, Heverlee,
Belgium) with diaminobenzidine as the chromogen.
Primary antibodies were omitted as a negative con-
trol. Three randomly selected high power fields
(90.000 mm2/field) per section were morphometri-
cally quantified by a blinded technician (Clemex
Vision PE, version 6.0.010A, Clemex Technologies
Inc., Longueuil, Canada).

STATISTICAL CONSIDERATIONS. In protocol A, the
sample size for the primary endpoint was based on an
expected infarct size (as percentage of area-at-risk) of
60% in the control group with an equal standard de-
viation of 11% (based on previous data from our lab-
oratory) and assuming a (clinically) relevant 25%
relative reduction in the experimental group. With a
2-sided 5% alpha level, 80% power, and 20% attrition
rate, w11 animals in each group were needed. In
protocol B, we expected an infarct size of 60% in the
control group and assumed a 25% relative reduction
in the experimental group, but, as the standard de-
viations in protocol A were higher than originally
expected, with an equal standard deviation of 17%.
With a 2-sided 5% alpha level, 80% power, and 20%
attrition rate, w26 animals in each group were
needed.

Data are presented as mean � standard error of
the mean (SEM). Hemodynamic variables, myocar-
dial metabolism, global and regional ventricular
function, and neutrophil infiltration were analyzed
with a repeated-measures 2-way analysis of vari-
ance (time � treatment or treatment � location)
followed by the Student-Newman-Keuls post-hoc
test. Infarct and no-reflow data were compared with
unpaired Student t test. Control swine were time-
matched to the adenosine swine within each pro-
tocol. Computations were performed with SigmaPlot
(version 12.5, Systat Software Inc., San Jose, Cali-
fornia), with statistical significance set at p < 0.05
(2-tailed).

RESULTS

Numbers of animals enrolled in each group and the
exclusions are summarized in Table 3. A total of 70
swine were enrolled, of which 51 swine were included
in the final analysis. An overview of arrhythmias
during the protocols is provided in Online Table 1.
Regional myocardial function and myocardial meta-
bolism of animals are available in Online Tables 2
and 3, respectively.

SYSTEMIC HEMODYNAMICS. Hemodynamic data for
heart rate, mean aortic pressure, cardiac output,
systemic vascular resistance, LVdP/dtP40 (rate of rise
of LV pressure at 40 mm Hg) and LV end-diastolic
pressure in protocols A and B are summarized in
Online Table 4. Coronary occlusion was associated
with similar increases in heart rate and LV end-
diastolic pressure, and similar decreases in mean
aortic pressure, cardiac output and LVdP/dtP40 in the
adenosine and control groups in both protocols.
Treatment with adenosine during reperfusion did not
affect any of the systemic hemodynamic variables
compared to the respective control group in either
protocol A or B.

CORONARY HEMODYNAMICS. Release of the coro-
nary ligature resulted in reactive hyperemia reflected
by increases in CBF and coronary vascular conduc-
tance in both groups (Table 4, Figure 1). In protocol A,
adenosine did not increase CBF beyond the reactive
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TABLE 4 Coronary Hemodynamics

Baseline

Reperfusion

1-Min 5-Min 15-Min 60-Min 120-Min

Bolus injection

CBF, ml/min Control 15 � 1 24 � 2* 31 � 3* 31 � 4* 25 � 3* 21 � 3

Adenosine 15 � 5 28 � 7* 25 � 7 33 � 9* 30 � 7* 24 � 8

CVC, ml/min/mm Hg Control 0.18 � 0.02 0.37 � 0.03* 0.46 � 0.05* 0.48 � 0.05* 0.42 � 0.05* 0.34 � 0.05*

Adenosine 0.16 � 0.05 0.44 � 0.09* 0.37 � 0.10* 0.46 � 0.10* 0.43 � 0.12* 0.34 � 0.10*

Prolonged infusion

CBF, ml/min Control 17 � 2 29 � 3* 31 � 3* 32 � 4 27 � 3* 21 � 2*

Adenosine 11 � 1 27 � 4* 32 � 3* 37 � 3* 38 � 4*† 35 � 3*†

CVC, ml/min/mm Hg Control 0.19 � 0.03 0.41 � 0.03* 0.43 � 0.04* 0.43 � 0.04* 0.39 � 0.04* 0.31 � 0.03*

Adenosine 0.13 � 0.01 0.38 � 0.05* 0.45 � 0.03* 0.51 � 0.04* 0.58 � 0.05*† 0.55 � 0.04*†

Values are mean � SEM. *p < 0.05 versus corresponding baseline. †p < 0.05 versus change from baseline in control group.

CBF ¼ coronary blood flow; CVC ¼ coronary vascular conductance.
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hyperemia produced by the ischemic period. In
protocol B, adenosine infusion enhanced reactive
hyperemia, reaching significance at 5 min of re-
perfusion, which was maintained throughout the
remainder of the 2-h reperfusion period, with a
maximum 4-fold increase relative to baseline at
30 min of reperfusion (Figure 1).

AREA-AT-RISK, INFARCT SIZE, NO-REFLOW. The
area-at-risk, infarct size, and extent of no-reflow are
FIGURE 1 CBF, CVC, Infarct Size, No-Reflow, and Neutrophils

Compared with control group results, intracoronary adenosine infusion

throughout the 2-h reperfusion period, whereas bolus injections did not

Compared with control group results, intracoronary adenosine infusion

area) and neutrophil influx in both infarct and no-reflow areas, whereas

baseline. †p < 0.05 versus corresponding control. ‡p < 0.05 versus remo

IA ¼ infarct area; NA ¼ no-reflow area.
shown in Figure 1. Area-at-risk was similar between
the adenosine and control groups in both protocols.
Bolus injection of adenosine did not reduce infarct
size (64 � 4% vs. 53 � 3% in control swine; p ¼ 0.07)
or no-reflow (14 � 4% vs. 12 � 3% in control swine;
p ¼ 0.74). In contrast, infusion of adenosine during
reperfusion significantly reduced infarct size (46 � 4%
vs. 59 � 3% in control swine; p ¼ 0.02) as well as no-
reflow (26� 6% vs. 49� 6% in control swine; p¼ 0.03).
significantly increased coronary blood flow (CBF) and coronary vascular conductance (CVC)

. Risk zone (area-at-risk/left ventricle [LV]) was similar between groups in both protocols.

significantly reduced infarct size (infarct area/area-at-risk), no-reflow (no-reflow area/infarct

bolus injections did not. Values are group means with SEM. *p < 0.05 versus corresponding

te. §p < 0.05 versus reflow infarct area. ||p < 0.05 versus total infarct area. AR ¼ area-at-risk;
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NEUTROPHILS. Neutrophil influx in remote and
infarct areas in both protocols are shown in Figure 1.
Adenosine bolus did not attenuate neutrophil influx
into the no-reflow area, whereas adenosine infusion
demonstrated a trend (p ¼ 0.06) of reduced neutro-
phil influx in the no-reflow area.

DISCUSSION

In the present study, an intracoronary infusion of
high-dose adenosine (50 mg/kg/min) initiated shortly
before the onset of reperfusion and maintained
throughout the 2-h reperfusion period resulted in a
significant decrease in both infarct size and no-reflow
in an open-chest porcine model subjected to 45 min
of coronary artery occlusion and 2 h of reperfusion. In
contrast, a single bolus of adenosine (3 mg over 1 min)
during the first minute of reperfusion was ineffective.
This is, to our knowledge, the first study to directly
compare the cardioprotective effect of adenosine us-
ing a clinical bolus regimen versus prolonged infu-
sion, against infarction and no-reflow in a large
animal model of regional ischemia-reperfusion.

The present study confirms recent clinical studies
that have failed to demonstrate any significant
advantage on either infarct size (10,11,16) or no-reflow
(10,11,17), using intracoronary adenosine bolus in-
jections. Considering the extremely short half-life of
adenosine (<15 s), the bolus injections probably were
inadequate to reach therapeutic concentrations, as
reflected by unaltered coronary hemodynamics in
protocol A. In this regard, prolonged intracoronary
delivery initiated just before reperfusion may in-
crease local drug concentration several-fold and
may achieve adequate concentrations in the target
microvascular bed, thereby improving therapeutic
efficacy. Consequently, in protocol B, intracoronary
infusion of adenosine was initiated 5 min before the
onset of reperfusion, enabling therapeutic drug levels
at reperfusion, and thereby attenuating lethal reper-
fusion injury by inhibiting detrimental events in the
early minutes of reperfusion as reflected by signifi-
cant infarct size reduction. The beneficial effects
observed in the current study with prolonged infu-
sion of adenosine also suggest that maintaining a
high therapeutic drug level in the coronary microcir-
culation is necessary to afford protection against
reperfusion-mediated injury. Indeed, compared with
control group results, intracoronary adenosine pro-
duced a 3- to 4-fold increase in CBF relative to base-
line and remained stably elevated throughout the 2 h
infusion period, affording adequate concentrations in
the target microvascular bed. Notably, although the
heterogeneity of CBF responses among animals in the
dose-response study might impact the selected dose
of 50 mg/kg/min in facilitating maximal hyperemia in
the ischemia-reperfusion study, it appeared that a
plateau was already reached with the dose of 20 mg/
kg/min. Thus, CBF increased in most animals by less
than an additional 10% upon increasing the dose to 50
mg/kg/min in most animals (Online Appendix). Inter-
estingly, there was much less heterogeneity in the
CBF responses to adenosine among animals in the
ischemia-reperfusion study compared with the ani-
mals in the dose-response study, which may have
been due to the larger sample size.

Prolonged infusion of adenosine resulted in a trend
towards reduced neutrophil influx into the infarct
area, particularly in the no-reflow area. These obser-
vations suggest that adenosine attenuated no-reflow,
at least in part, through vasodilation of coronary ar-
terioles and reduction of neutrophil activation. These
actions in turn likely contributed to decreased
neutrophil adherence to endothelial cells, thereby
leading to preserved capillary endothelial patency, as
evidenced by thioflavin-S staining. Interestingly, in
protocol A, compared with saline, bolus injections of
intracoronary adenosine increased neutrophil influx
into the no-reflow area. Although these observations
are not readily explained, the modulation of neutro-
phil movement by adenosine might play a role.
Adenosine can stimulate or inhibit neutrophil func-
tion depending on its concentration in the microen-
vironment. Lower local concentrations of adenosine
have been noted to promote neutrophil recruitment
(via the A1 and A3 adenosine receptor subtypes),
whereas high concentrations of adenosine limited
neutrophil recruitment (via A2A and A2B receptors)
(18).

The current results in swine are in agreement with
earlier studies in rabbits and dogs demonstrating
infarct size reduction with adenosine infusions
mostly with concomitant lidocaine at reperfusion
using somewhat similar adenosine doses (Table 1).
Unlike the current study, it is not clear whether the
cardioprotection observed in those studies is entirely
attributable to adenosine alone. In contrast, not all
pre-clinical studies have shown cardioprotective ef-
fects. Inspection of Table 1 does not readily reveal a
methodological explanation for these equivocal re-
sults. Thus, differences in species, duration of
ischemia and reperfusion, and varying routes and
timing and duration of administration of adenosine
do not appear to separate positive from negative
studies in rabbits and dogs. Interestingly, none of
the aforementioned negative (and positive) studies
specifically assessed the optimal dose for infusion of
adenosine. Thus, it cannot be excluded that in

http://dx.doi.org/10.1016/j.jcin.2015.08.033
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several studies, the dose employed may have been
insufficient to afford myocardial protection for a
given duration of ischemia and reperfusion. This is
particularly true in the case of intravenous adeno-
sine administration, as maximal doses are difficult to
achieve in view of the marked systemic hypotension
that is associated with higher adenosine doses. That
cardioprotection was still observed in some of the
intravenous studies may have been the result of
stimulation of remote pathways of cardioprotection
(19,20). Whether maximal adenosine dosages were
achieved in clinical studies using intravenous aden-
osine is also unclear. The AMISTAD (Acute Myocar-
dial Infarction Study of Adenosine) I tested a 3 h
intravenous adenosine infusion (10 to 70 mg/kg/min)
in patients receiving thrombolysis and demonstrated
adenosine to be effective in reducing infarct size
in the subgroup with anterior infarction only (21).
In AMISTAD II, adenosine infusions (50 or 70
mg/kg/min) were used for anterior infarction prior
to revascularization with infarct size reduction
observed only in the high-dose group (22) and a
reduction in major clinical endpoints observed only
in patients receiving early reperfusion (within 3.2 h
of symptom onset) (23).

In contrast, the intracoronary route allows admin-
istration of much higher adenosine doses without
direct systemic adverse effects. However, in the clin-
ical setting, the administration of adenosine via the
intracoronary route has been studied mainly using
bolus injections (Table 2). One could assume that the
very short biological half-life of adenosine (<15 s)
makes a bolus injection unlikely to be effective.
Indeed, in the present study, mimicking a typical
clinical protocol of intracoronary adenosine bolus
administration, we failed to observe any additional
increase in CBF or coronary vascular conductance
beyond the reactive hyperemia. This lack of effect on
the coronary microvasculature may explain that
intracoronary bolus injections of adenosine failed to
reduce either infarct size (10,11,16) or no-reflow
(10,11,17). Another important issue in the clinical
context is patient selection. Despite the failure to
significantly reduce infarct size, adenosine bolus
regimens have been found to improve various indices
of reperfusion in patients presenting with TIMI
(Thrombolysis In Myocardial Infarction) flow grade
#2 (16,24), whereas, trials also recruiting patients
with presenting TIMI flow grade 3 (i.e., patients
experiencing spontaneous reperfusion) were unable
to demonstrate any advantage of intracoronary bolus
injections of adenosine on infarct size or reperfusion
markers (10,11). These data suggest that adenosine
should be administered before or, at least, at the
very onset of reperfusion and highlight the brief
window of opportunity. The only clinical trial that
did use a continuous intracoronary infusion regimen
(albeit for only 5 to 10 min) showed accelerated
recovery of microvascular perfusion in cases of
persistent ST-segment elevation after percutaneous
coronary intervention (PCI) (25). This suggests that
adenosine can still be effective even after subopti-
mal myocardial reperfusion, provided that adequate
dosing and duration of administration is used, a
finding consistent with the present results. Inter-
estingly, recent data point to an increased beneficial
effect of a combined adenosine bolus (120 mg) and
infusion (2 mg in 2 min) regimen as evidenced by
a reduced infarct size and an improved microvas-
cular perfusion (26), which translated into an
improvement of LV remodeling at 1-year clinical
follow-up (27).

BARRIERS TO CLINICAL TRANSLATION. Rationale for
the use of adenosine as a cardioprotective agent
following reperfusion on the ischemic myocardium
arose from its ability to inhibit mechanisms involved
in reperfusion injury, as also evidenced by the current
14% absolute and 23% relative infarct size reduction
of percentage of area-at-risk (corresponding to a 7%
absolute and 30% relative infarct size reduction per-
centage of LV). Considering this potential amount of
infarct size reduction, adenosine holds promise as an
adjunct to primary PCI when compared with other
therapies for acute AMI, such as, for instance, stem
cell therapies demonstrating absolute infarct size re-
ductions of w3% (28). However, the obvious differ-
ences between the experimental setting and the
clinical reality constitute important barriers to effi-
cacious clinical translation. Patient comorbidities and
concurrent use of medication with cardioprotective
properties may be potential confounding factors
blunting the benefits reported in the pre-clinical
setting (9). Perhaps more importantly, therapeutic
optima for adenosine treatment at reperfusion in
animal models of ischemia reperfusion have not been
established. Therefore, it is not surprising that results
obtained from clinical studies are inconclusive, as
optimal conditions for efficacious adenosine admin-
istration remain undefined. Successful clinical appli-
cation of adenosine in AMI will depend on enhancing
our understanding of the optimal dose of adenosine
and the optimal onset and duration of adenosine
infusion. Thus, exploring the response curves to both
dose and duration of adenosine administration will
be essential when designing a clinical trial. Notwith-
standing these issues, pre-clinical and clinical data
suggest that only (sustained) high doses of adenosine,



PERSPECTIVES

WHAT IS KNOWN? Attempts to achieve cardio-

protection with administration of adenosine at reper-

fusion have yielded mixed results in both pre-clinical

and clinical studies.

WHAT IS NEW? Whereas a high-dose bolus injection

at reperfusion did not afford protection, a high-dose

prolonged intracoronary infusion of adenosine did limit

infarct size and no-reflow.

WHAT IS NEXT? Successful clinical application of

adenosine in ST-segment elevation myocardial

infarction will depend on enhancing our understand-

ing of the optimal dose of adenosine and the optimal

duration of adenosine infusion. Thus, exploring the

response curves to both dose and duration of adeno-

sine administration will be vital when designing a

clinical trial.
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reaching the coronary microcirculation immediately
before or at the onset of reflow, are able to afford
protection against reperfusion-mediated injury at a
time when the amount of potentially salvageable
myocardium is maximal.

STUDY LIMITATIONS. First, we employed healthy
juvenile animals in our experiments without comor-
bidities as encountered in patients. Second, the exact
mechanisms of adenosine-mediated protection were
not assessed. Nonetheless, there is abundant data
regarding the mechanisms through which adenosine
is effective in ameliorating reperfusion-mediated
injury (6). Third, likely as a result of seasonal varia-
tion (unpublished observations), the no-reflow area
was smaller in control swine in protocol A than in
control swine in protocol B. Indeed, there is evidence
of seasonal variation of myocardial infarct size (29)
and of circadian rhythms in sensitivity to ischemia-
reperfusion injury (30). After initial demonstration
in mice (30), this phenomenon has also been observed
in patients (31,32). Importantly, control swine were
time-matched to the adenosine swine within each
protocol.

CONCLUSIONS

Prolonged high-dose intracoronary infusion of aden-
osine starting just prior to reperfusion, but not a single
bolus of adenosine administered during early reper-
fusion, significantly reduced infarct size and no-reflow
in a porcine model of AMI. Considering that there
is currently no successful clinical pharmacological
treatment for prevention of reperfusion injury, the
findings in the present study warrant further clinical
studies in patients with AMI, using prolonged high-
dose intracoronary adenosine infusion.
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