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Abstract

A sequence {an} in a group G is a T -sequence if there is a Hausdorff group topology τ on G such that an
τ−→ 0. In this paper,

we provide several sufficient conditions for a sequence in an abelian group to be a T -sequence, and investigate special sequences
in the Prüfer groups Z(p∞). We show that for p �= 2, there is a Hausdorff group topology τ on Z(p∞) that is determined by
a T -sequence, which is close to being maximally almost-periodic—in other words, the von Neumann radical n(Z(p∞), τ ) is a
non-trivial finite subgroup. In particular, n(n(Z(p∞), τ )) � n(Z(p∞), τ ). We also prove that the direct sum of any infinite family
of finite abelian groups admits a group topology determined by a T -sequence with non-trivial finite von Neumann radical.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Given a set X, a point x0 ∈ X, and a sequence {xn} of distinct elements in X, one can easily construct a Hausdorff
topology τ on X such that xn

τ−→ x0. This is, however, not the case for groups and group topologies, as Example 1.2
below demonstrates.

Following Zelenyuk and Protasov [7,11], who were the first to investigate this type of question, we say that a
sequence {an} in a group G is a T -sequence if there is a Hausdorff group topology τ on G such that an

τ−→ 0. In
this case, the group G equipped with the finest group topology with this property is denoted by G{an}. A similar
notion exists for filters, in which case one speaks of a T -filter. Zelenyuk and Protasov characterized T -sequences and
T -filters in abelian groups [7, 2.1.3, 2.1.4] and [11, Theorems 1, 2], and studied the topological properties of G{an},
where {an} is a T -sequence. (They also present a characterization of T -filters in non-abelian groups in [7, 3.1.4].)
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Example 1.1. For a prime number p, let A = Z(p∞) be the Prüfer group. It can be seen as the subgroup of Q/Z
generated by the elements of p-power order, or the group formed by all pnth roots of unity in C. For en = 1

pn , {en} is
clearly a T -sequence in A, because en −→ 0 in the subgroup topology that A inherits from Q/Z.

Example 1.2. Keeping the notations of Example 1.1, set an = − 1
p

+ 1
pn = −e1 + en. If an

τ−→ 0 for some group

topology τ , then also en−1 = pan
τ−→ 0, and therefore, e1 = pan+1 − an

τ−→ 0. Hence, τ cannot be Hausdorff, and
so {an} is not a T -sequence in A.

Every topological group G admits a “largest” compact Hausdorff group bG and a continuous homomorphism
ρG :G → bG such that every continuous homomorphism ϕ :G → K into a compact Hausdorff group K factors
uniquely through ρG:

G
ϕ

ρG

K

bG

∃!ϕ̃ (1)

The group bG is called the Bohr-compactification of G. The image ρG(G) is dense in bG. The kernel of ρG is called
the von Neumann radical of G, and denoted by n(G). One says that G is maximally almost-periodic if n(G) = 1,
and minimally almost-periodic if n(G) = G (cf. [4]). For an abelian topological group A, let Â = H(A,T) be the
Pontryagin dual of A—in other words, the group of continuous characters of A (i.e., continuous homomorphisms
χ :A → T, where T = R/Z), equipped with the compact-open topology. It follows from the famous Peter–Weyl

Theorem [6, Theorem 33] that the Bohr-compactification of A can be quite easily computed: bA = ̂̂
Ad , where Âd

stands for the group Â with the discrete topology. Thus, n(A) = ⋂
χ∈Â

kerχ .

T -sequences turn out to be a very useful tool for constructing “pathological” examples. For example, Zelenyuk
and Protasov used T -sequences to show (independently of Ajtai et al. [1]) that every infinite abelian group admits
a non-maximally almost-periodic Hausdorff group topology (cf. [7, 2.6.4], [11, Theorem 16]). There are plenty of
examples of minimally (or maximally) almost-periodic groups (cf. [4,5]). Nevertheless, it appears that no example is
known for a Hausdorff topological group G whose von Neumann radical n(G) is non-trivial and finite. We call such
groups almost maximally almost-periodic. This raises the following question:

Problem I. Which abelian groups A admit a T -sequence {an} such that A{an} is almost maximally almost-periodic?

If n(G) is non-trivial and finite, then n(n(G)) = 1, and thus n(n(G)) �= n(G), which leads to a second problem:

Problem II. Which abelian groups A admit a T -sequence {an} such that n(n(A{an})) is strictly contained in
n(A{an})?

Note that since n is productive, one may wish to focus on algebraically (respectively, topologically) directly inde-
composable groups, that is, groups that cannot be expressed as an algebraic (respectively, topological) direct product
of two of its proper subgroups.

Our ultimate goal in this paper is to present ample non-isomorphic algebraically directly indecomposable almost
maximally almost-periodic Hausdorff abelian groups (i.e., having non-trivial finite von Neumann radical), whose
topology is determined by a T -sequence. It will also show that Problems I and II are meaningful.

This aim is carried out according to the following structure: In Section 2, several results that provide sufficient
conditions for a sequence in an abelian group to be a T -sequence are presented (Theorem 2.2). In Section 3, a par-
tial answer to Problem I is provided, namely, we prove that the direct sum of any infinite family of finite abelian
groups admits an almost maximally almost-periodic group topology determined by a T -sequence (Theorem 3.1).
Groups of this form certainly fail to be algebraically directly indecomposable, and they need not be topologi-
cally directly indecomposable either. Thus, they fall short of our ultimate goal. In Section 4, special sequences
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of Prüfer groups are investigated (Theorem 4.2), and we prove that for p �= 2, Z(p∞) admits a neither maxi-
mally nor minimally almost-periodic Hausdorff group topology τ (Theorem 4.4). Thus, n(Z(p∞), τ ) is finite, and
n(n(Z(p∞), τ )) � n(Z(p∞), τ ). In particular, Problem II is meaningful.

2. T -sequences in abelian groups

In this section, A is an abelian group and a = {ak} ⊆ A is a sequence in A. In what follows, we provide several
sufficient conditions for {ak} to be a T -sequence in A. For l,m ∈ N, one puts

A(l,m)a =
{
m1ak1 + · · · + mhakh

| m � k1 < · · · < kh, mi ∈ Z\{0},
∑

|mi | � l
}
. (2)

The Zelenyuk–Protasov criterion for T -sequences states:

Theorem 2.1. ([7, 2.1.4], [11, Theorem 2].) A sequence {ak} in an abelian group A is a T -sequence if and only if for
every l ∈ N and g �= 0, there exists m ∈ N such that g /∈ A(l,m)a .

Put A[n] = {a ∈ A: na = 0} for every n ∈ N. One says that A is almost torsion-free if A[n] is finite for every n ∈ N
(cf. [9]).

Theorem 2.2. Let A be an abelian group, and let {ak} ⊆ A be a sequence such that tk := o(ak) is finite for every
k ∈ N. Consider the following statements:

(i) lim
k→∞

tk

gcd(tk, lcm(t1, . . . , tk−1))
= ∞. (3)

(ii) For every l ∈ N,

lim
m→∞ inf

{
max

1�i�l

tki

gcd(tki
, lcm(tk1, . . . , tki−1 , tki+1, . . . , tkl

))

∣∣∣ k ∈ Nl
m<

}
= ∞, (4)

where Nl
m< = {k = (k1, . . . , kl) ∈ Nl | m � k1 < · · · < kl}.

(iii) For every l ∈ N,

lim
m→∞ inf

{
max

1�i�l
o(aki

+ Aki ) | k ∈ Nl
m<

}
= ∞, (5)

where Aki = 〈ak1 , . . . , aki−1, aki+1 , . . . , akl
〉.

(iv) For every l, n ∈ N, there exists m0 ∈ N such that A[n] ∩ A(l,m)a = {0} for every m � m0.
(v) {ak} is a T -sequence.

One has (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v), and if A is almost torsion-free, then (v) ⇒ (iv).

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii): Clearly, the order of aki

in (〈aki
〉 + Aki )/Aki is equal to its order modulo 〈aki

〉 ∩ Aki , and |〈aki
〉 ∩ Aki |

divides both tki
and exp(Aki ). The exponent exp(Aki ), in turn, divides d = lcm(tk1 , . . . , tki−1 , tki+1 , . . . , tkl

), because
Aki is generated by elements of orders tk1, . . . , tki−1 , tki+1 , . . . , tkl

. Therefore, |〈aki
〉 ∩ Aki | divides their greatest com-

mon divisor of tk and d . Hence,

tki

gcd(tki
, lcm(tk1 , . . . , tki−1, tki+1 , . . . , tkl

))

∣∣∣∣ |〈aki
〉|

|〈aki
〉 ∩ Aki | = o(aki

+ Aki ). (6)

(iii) ⇒ (iv): Given l, n ∈ N, let m0 ∈ N be such that nl < max
1�i�h

o(aki
+ Aki ) for every 1 � h � l and every

k ∈ Nh
m0<

. (By (5), such m0 exists.) Let g = m1ak1 + · · · + mhakh
∈ A(l,m)a be a non-zero element, where

m0 � m � k1 < · · · < kh, mi ∈ Z\{0}, and
∑ |mi | � l. It follows from the last two conditions that h � l. So,

there exists 1 � i � h such that nl < o(aki
+ Aki ), and thus n < o(miaki

+ Aki ). To complete the proof, note that

g ∈ miaki
+ A i , and therefore o(miaki

+ A i ) | o(g). Hence, n < o(g), and so g /∈ A[n], as desired.
k k
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(iv) ⇒ (v): Let g ∈ A be a non-zero element. If the order of g is infinite, then g /∈ A(l,1)a for every l ∈ N, and
so suppose that n := o(g) is finite. By (iv), for every l ∈ N there exists m0(l) such that A[n] ∩ A(l,m0(l))a = {0}. In
particular, g /∈ A(l,m0(l))a for every l.

(v) ⇒ (iv): Given l, n ∈ N, and suppose that A[n] = {0, g1, . . . , gj } is finite. For each gi , pick mi(l) ∈ N such
that gi /∈ A(l,mi(l))a , and put m0(l) = maxmi(l). Clearly, one has A[n] ∩ A(l,m)a = {0} for every m � m0(l), as
desired. �
Remark 2.3. In Theorem 2.2, (iv) does not imply (iii). Indeed, although (iii) fails for the sequence {en} from Exam-
ple 1.1, it is a T -sequence in Z(p∞).

Corollary 2.4. Let A be an abelian group, and let {ak} ⊆ A be a sequence such that tk := o(ak) is finite for every
k ∈ N.

(a) If the tk are pairwise coprime, then {ak} is a T -sequence.
(b) If tk | tk+1 and lim

k→∞
tk+1
tk

= ∞, then {ak} is a T -sequence.

Proof. If the tk are pairwise coprime, then the expression in (3) is equal to tk and tk −→ ∞. If tk | tk+1, then the
expression in (3) is precisely tk+1

tk
. In both cases, the statement follows from Theorem 2.2(i). �

3. Direct sums of finite abelian groups

In this section, we provide a partial answer to Problem I:

Theorem 3.1. Let A = ⊕
α∈I

Fα be the direct sum of an infinite family {Fα} of non-trivial finite abelian groups. There

exists a T -sequence {dk} in A such that A{dk} is almost maximally-almost periodic.

Remark 3.2. In the setting of Theorem 3.1, A is obviously not algebraically directly indecomposable. Furthermore,

A{dk} need not be topologically directly indecomposable either: Consider the group B = Z/2Z ⊕
∞⊕

n=1
Z/3Z, and let

τ be a Hausdorff group topology on B . The subgroup B2 =
∞⊕

n=1
Z/3Z is closed in τ , because it is the kernel of the

continuous group homomorphism x 
→ 3x. Thus, (B, τ) decomposes into a topological direct product of B1 = Z/2Z
and B2 (where B1 and B2 are equipped with the subgroup topology). This also shows that B1 ∩n(B, τ) = {0}, because
(B, τ) → B/B2 ∼= Z/2Z is continuous. In particular, not every finite subgroup of an abelian group A is of the form
n(A, τ), where τ is a Hausdorff group topology on A.

In order to prove Theorem 3.1, we need the following result:

Proposition 3.3. Let A =
∞⊕
i=1

Ci be a direct sum of cyclic groups of order ni = |Ci | > 1, and suppose that

(a) ni = ni+1 for every i, or
(b) ni < ni+1 for every i.

Then, for every x ∈ A, there is a T -sequence {dk} such that n(A{dk}) is finite and contains x.

Proof. The construction below is a modification of [11, Example 5] and [7, 2.6.2]. The sequence dk is constructed
identically in both (a) and (b), and the two are distinguished only in the proof of {dk} being a T -sequence.

For each i, pick a generator gi in Ci . Each y ∈ A can be written as y = ∑
αigi ∈ A, and the αi are unique modulo

ni . We set Λ(y) = {i ∈ N | αi �≡ 0 mod ni} and λ(y) = |Λ(y)|. Put i0 = maxΛ(x). We define two sequences:
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ak: gi0+1,2gi0+1, . . . , (ni0+1 − 1)gi0+1, gi0+2,2gi0+2, . . . , (ni0+2 − 1)gi0+2, . . . , (7)

bk: −x + gi0+1,−x + gi0+2 + gi0+3,−x + gi0+4 + gi0+5 + gi0+6, . . . . (8)

Let χ :A → T be a character of A. If χ is zero on all but finitely many of the Ci and χ(x) = 0, then χ(ak) = 0
and χ(bk) = 0 for k large enough, and so χ(ak) −→ 0 and χ(bk) −→ 0. Conversely, suppose that χ(ak) −→ 0
and χ(bk) −→ 0. Then there is k0 ∈ N such that χ(ak) ⊆ (− 1

3 , 1
3 ) for every k > k0. Thus, there is j0 ∈ N such that

χ(Cj ) ⊆ (− 1
3 , 1

3 ) for every j > j0. Since the only subgroup contained in (− 1
3 , 1

3 ) is {0}, this means that χ is zero on
all but finitely many of the Ci . Therefore, χ(bk) = −χ(x) for k large enough, and hence χ(x) = 0.

The foregoing argument shows that if {dk} is any combination of the sequences {ak} and {bk} without repetitions
(such as a1, b1, a2, b2, . . .) and if {dk} is a T -sequence, then χ is a continuous character of A{dk} if and only if χ

is zero on all but finitely many of the Ci and χ(x) = 0. Thus, x ∈ n(A{dk}), and the character χj :A → T defined
by χj (

∑
αigi) = 1

nj
αj is continuous on A{dk} for every j > i0. Therefore, n(A{dk}) ⊆ C1 ⊕ · · · ⊕ Ci0 , and hence

n(A{dk}) is finite, as desired.
We show that dk is a T -sequence. First, observe that for every l ∈ N and every j > i0 there exists m ∈ N such that

A(l,m)d ⊆ 〈x〉 ⊕
∞⊕
i=j

Ci. (9)

Thus, for every l ∈ N,

∞⋂
m=1

A(l,m)d ⊆
⋂
j>i0

(
〈x〉 ⊕

∞⊕
i=j

Ci

)
= 〈x〉. (10)

Therefore, the condition of the Zelenyuk–Protasov criterion (Theorem 2.1) holds for every y /∈ 〈x〉, and it remains to
show it for non-zero elements of 〈x〉. Let l ∈ N, and for the time being assume only that m > i0. If αx ∈ A(l,m)d ,
then

αx = (m1dk1 + · · · + mh1dkh1
) + (mh1+1dkh1+1 + · · · + mhdkh

), (11)

where
∑ |mi | � l, mi �= 0, ki � m, dki

is a member of {ak} for 1 � i � h1, and of {bk} for h1 + 1 � i � h. (Here, we
only assume that the ki are distinct, but they need not be increasing.) Thus,

αx = (m1dk1 + · · · + mh1dkh1
) + (

mh1+1(dkh1+1 + x) + · · · + mh(dkh
+ x)

) −
h∑

i=h1+1

mix. (12)

Since ki � m > i0, the first and the second expression on the right side belong to
∞⊕

j=i0+1
Cj , while the left side and the

third summand on the right belong to 〈x〉. Therefore,

(m1dk1 + · · · + mh1dkh1
) + (

mh1+1(dkh1+1 + x) + · · · + mh(dkh
+ x)

) = 0. (13)

The sets Λ(mh1+j (dkh1+j
+ x)) are disjoint, because the ki are distinct, and so

λ
(
mh1+1(dkh1+1 + x) + · · · + mh(dkh

+ x)
) =

h−h1∑
j=1

λ
(
mh1+j (dkh1+j

+ x)
)
. (14)

Since λ(ak) = 1 for every k, one has λ(m1dk1 + · · · + mh1dkh1
) � h1 � l, and hence, by (13) and (14),

λ
(
mh1+j (dkh1+j

+ x)
)
� l (15)

for every 1 � j � h − h1.
(a) Pick m > i0 such that λ(dk + x) � l + 1 for every k � m such that dk is a member of {bk}. Then each

dkh +j
+ x is a sum of at least l + 1 distinct base elements gi of order n = ni , and so λ(mh +j (dkh +j

+ x)) � l

1 1 1
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implies mh1+j (dkh1+j
+ x) = 0. Therefore, n | mh1+j , and in particular, n |

h∑
i=h1+1

mi . Hence, by (12), αx = 0, as

desired.
(b) Pick m as in (a), but with the additional condition that ni > l for every i ∈ Λ(dk + x) and for every k � m such

that dk is a member of {bk}. This is possible because the Λ(bk + x) are disjoint and {ni} is increasing. Each dkh1+j
+ x

is a sum of at least l + 1 distinct base elements, but of different orders. Thus, mh1+j gi �= 0 for every i ∈ Λ(dkh1+j
+ x)

and 1 � j � h − h1, because |mh1+j | � l < ni (by our assumption), and mh1+j �= 0. Therefore,

λ
(
mh1+j (dkh1+j

+ x)
) =

∑
i∈Λ(dkh1+j

+x)

λ(mh1+j gi) � l + 1, (16)

contrary to (15). Hence, h = h1, and αx = 0, as desired. �
Proof of Theorem 3.1. Since each Fα decomposes into a direct sum of cyclic subgroups, we may assume that the
Fα are cyclic from the outset. The set {|Fα| | α ∈ I } is either bounded or contains an increasing sequence. Thus, there
is a countable subset J ⊆ I such that A1 = ⊕

α∈J

Fα satisfies one of the conditions of Proposition 3.3. Pick γ ∈ J , and

let g be a generator of Fγ . Then, by Proposition 3.3, there is a T -sequence {dk} in A1 such that n(A1{dk}) is finite
and contains g. For A2 = ⊕

α∈I\J
Fα , one has A{dk} = A1{dk} × A2, where A2 is equipped with the discrete topology.

Therefore, n(A{dk}) = n(A1{dk}) × n(A2) = n(A1{dk}) is non-trivial and finite, as desired. �
4. Special sequences in the Prüfer groups

In this section, we present method for constructing an algebraically directly indecomposable Hausdorff abelian
topological groups A such that n(A) is non-trivial and finite. An implicit yet rather thick hint for the construction
of a group with these properties appears in [3], in the proof of Corollary 4.9 and the paragraph following it. It was
Dikranjan who pointed out to the author that considering a suitable T -sequence in a Prüfer group (and the maximal
Hausdorff group topology thus obtained) would lead to the desired example. Prüfer groups are distinguished by the
property of having only finite proper subgroups, which implies that these subgroups are closed in any Hausdorff group
topology. This property makes Prüfer groups particularly suitable candidates for the aforesaid construction, because
if n(Z(p∞){dn}) is a non-trivial proper subgroup, then it must be finite. Therefore, in this section, we study certain
sequences in the Prüfer groups Z(p∞), and construct a T -sequence {dn} such that Z(p∞){dn} is neither maximally
nor minimally almost-periodic. A second important property that Prüfer groups, being p-groups, have is that for every
a, b ∈ Z(p∞),

o(a) �= o(b) �⇒ o(a + b) = max
{
o(a), o(b)

}
. (17)

One says that a group G is potentially compact if for every ultrafilter U on G there is x ∈ G such that U − x is a
T -filter, that is, U τ−→ x in some group topology τ (cf. [8,10]). A third noteworthy property is that Prüfer groups are
not potentially compact, because they are divisible torsion groups (cf. [10, Theorem 6]).

Recall that if A is a subgroup of an abelian Hausdorff topological group S, and {ak} ⊆ A is so that ak −→ b in S,
where 〈b〉 ∩ A = {0}, then {ak} is a T -sequence in A (cf. [7, 2.1.5], [11, Theorem 3]). The setting of this result is so
that the sequence an converges to an external element (namely, b /∈ A) in some group topology. In contrast, in this
section, we investigate sequences in Z(p∞) that converge to a non-zero (internal) element of Z(p∞) in the “usual”
topology, that is, the one inherited from Q/Z.

We start off with an immediate consequence of Corollary 2.4.

Lemma 4.1. Let {ak} be a sequence in Z(p∞), and suppose that o(ak) = pnk . If nk+1 − nk −→ ∞, then {ak} is a
T -sequence.

Proof. One has o(ak+1) = pnk+1
nk

= pnk+1−nk . Therefore, the statement follows from Corollary 2.4(b). �

o(ak) p
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Example 1.1 shows that the converse of Lemma 4.1 does not hold in general. Nevertheless, for some special
sequences, the condition of nk+1 − nk −→ ∞ turns out to be necessary for being a T -sequence, as Theorem 4.2
below reveals.

We proceed by introducing some terminology. A topological group A is precompact if for every neighborhood U

of zero there is a finite subset F ⊆ A such that A = F + U . Following [2], we say that a sequence {an} on a group G

is a T B-sequence if there is a precompact Hausdorff group topology τ on G such that an
τ−→ 0.

It is easy to see that A is precompact if and only if it carries the initial topology induced by its group of continuous
characters. Thus, if {ak} is a sequence in an abelian group A, then by the universal property of A{ak}, a character
χ :A → T is continuous on A{ak} if and only if χ(ak) −→ 0. Therefore, for H = {χ ∈ homZ(A,T) | χ(ak) −→ 0},
the closure of {0} in the initial topology induced by H is n(A{ak}) = ⋂

χ∈H

kerχ . Hence, {ak} is a T B-sequence if and

only if H separates the points of A. (Observe that H = Â{ak}d .)

Theorem 4.2. Let x ∈ Z(p∞) be a non-zero element, {nk} ⊆ N an increasing sequence of positive integers, and set

ak = −x + enk
= −x + 1

pnk
∈ Z

(
p∞)

. (18)

(a) {ak} is a T -sequence if and only if nk+1 − nk −→ ∞.
(b) {ak} is a T -sequence if and only if it is a T B-sequence. In this case, Z(p∞){ak} is maximally almost-periodic,

and it has c many faithful characters (in particular, | ̂Z(p∞){ak}| = c).

Since every T B-sequence is a T -sequence, but the converse is not true in general, (b) of Theorem 4.2 is a non-trivial
result. Its proof, however, requires a technical lemma. Note that the group of all characters of Z(p∞) is isomorphic to
the group Zp of the p-adic integers. In other words, Zp = homZ(Z(p∞),T).

Lemma 4.3. Suppose that nk+1 − nk −→ ∞. For χ =
∞∑

n=0
αnp

n ∈ Zp (0 � αn � p − 1) and γ ∈ (0,1), χ(enk
) −→ γ

if and only if

rk :=

nk+1−1∑
l=nk

αlp
l−nk

pnk+1−nk
−→ γ. (19)

Proof. One has

χ(enk+1) =

nk+1−1∑
l=0

αlp
l

pnk+1
=

nk−1∑
l=0

αlp
l

pnk+1
+

nk+1−1∑
l=nk

αlp
l

pnk+1
= χ(enk

)

pnk+1−nk
+ rk, (20)

and thus lim
k→∞χ(enk

) = lim
k→∞ rk in T (by the equality of limits we mean that one exists if and only if the other does,

and in that case they are equal), because nk+1 − nk −→ ∞. Since γ �= 0, small enough neighborhoods of γ in T and
(0,1) are the same, and therefore lim

k→∞χ(enk
) = lim

k→∞ rk in (0,1). �
Proof of Theorem 4.2. (a) Since {nk} is increasing, one has nk −→ ∞. Thus, pnk > o(x) for k large enough, and so
o(ak) = pnk except for maybe a finite number of k (by (17)). Hence, ak is a T -sequence by Lemma 4.1.

Conversely, let pn0 = o(x), and assume that nk+1 − nk �−→ ∞. Then o(pn0−1x) = p,

pn0−1ak = −pn0−1x + enk−n0+1, (21)

and the differences (nk+1 − n0 + 1) − (nk − n0 + 1) = nk+1 − nk �−→ ∞. Thus, it suffices to show that pn0−1ak

is not a T -sequence. Therefore, without loss of generality, we may assume that o(x) = p from the outset. Since
nk+1 − nk �−→ ∞, there exists a number d and a subsequence kr of k such that nkr+1 − nkr � d for every r . If
ak −→ 0 in a group topology τ on Z(p∞), then in particular, pankr+1 = enkr+1−1 −→ 0, and so for every 1 � i � d ,
en −i −→ 0. Thus, the sequence bn defined as
kr+1
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enk1+1−d , enk1+1−d+1, . . . , enk1+1−1, enk2+1−d , enk2+1−d+1, . . . , enk2+1−1, . . .

also converges to 0 in τ . One has nkr+1 − d � nkr � nkr+1 − 1, and therefore enkr
is a subsequence of bn, and hence

enkr
−→ 0 in τ . Since akr = −x + enkr

, this shows that τ is not Hausdorff.
(b) If {ak} is a T B-sequence, then clearly it is a T -sequence. Conversely, suppose that {ak} is a T -sequence. In

order to show that {an} is a T B-sequence, we find a faithful continuous character of Z(p∞){ak}, in other words,

χ ∈ Zp such that χ(ak) −→ 0 and kerχ = {0}. Let pn0 = o(x). For χ =
∞∑

n=0
αnp

n ∈ Zp , a character of Z(p∞), if

α0 = 1, α1 = · · · = αn0−1 = 0, (22)

then χ acts on the subgroup 〈x〉 as the identity, where Z(p∞) is viewed as a subgroup of T. Thus, χ(e1) = e1 �= 0
and χ(x) = x �= 0, and in particular, χ is faithful. By Lemma 4.3, χ(ak) −→ 0 (i.e., χ is continuous on Z(p∞){ak})
if and only if

rk =

nk+1−1∑
l=nk

αlp
l−nk

pnk+1−nk
−→ x. (23)

Conditions (22) and (23) are satisfied (simultaneously) by continuum many elements in Zp , which completes the
proof. �

We proceed by presenting the construction of a non-minimally almost-periodic non-maximally almost-periodic
Hausdorff group topology on the group Z(p∞) for p �= 2. Our technique makes substantial use of the assumption that
p �= 2; nevertheless, we conjecture that a similar construction is available for p = 2.

Theorem 4.4. Let p be a prime number such that p �= 2, x ∈ Z(p∞) be a non-zero element with pn0 = o(x), and put

bn = −x + en3−n2 + · · · + en3−2n + en3−n + en3 = −x + 1

pn3−n2 + · · · + 1

pn3−2n
+ 1

pn3−n
+ 1

pn3 . (24)

Consider the sequence dn defined as b1, e1, b2, e2, b3, e3, . . . . Then:

(a) {dn} is a T -sequence in Z(p∞);
(b) the underlying group of ̂Z(p∞){dn} is pn0Z ⊆ Zp = homZ(Z(p∞),T);
(c) n(Z(p∞){dn}) = 〈x〉.

In particular, Z(p∞){dn} is neither maximally almost-periodic nor minimally almost-periodic, and n(Z(p∞){dn}) is
finite.

Corollary 4.5. Let p be a prime number such that p �= 2, and put

bn = −e1 + en3−n2 + · · · + en3−2n + en3−n + en3 = − 1

p
+ 1

pn3−n2 + · · · + 1

pn3−2n
+ 1

pn3−n
+ 1

pn3 . (25)

Consider the sequence dn defined as b1, e1, b2, e2, b3, e3, . . . . Then:

(a) {dn} is a T -sequence in Z(p∞);
(b) the underlying group of ̂Z(p∞){dn} is pZ ⊆ Zp = homZ(Z(p∞),T);
(c) n(Z(p∞){dn}) = 〈 1

p
〉.

In particular, Z(p∞){dn} is neither maximally almost-periodic nor minimally almost-periodic, and n(Z(p∞){dn}) is
finite.

In order to prove Theorem 4.4, several auxiliary results of a technical nature are required. Until the end of this
section, we assume that p �= 2. Each element y ∈ Z(p∞) admits many representations of the form y = ∑

σnen, where
σn ∈ Z (only finitely many of the σn are non-zero), and so we say that it is the canonical form of y if |σn| � p−1

2 for
every n ∈ N; in this case, we put Λ(y) = {n ∈ N | σn �= 0} and λ(y) = |Λ(y)|.
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Lemma 4.6. Let y = ∑
σnen ∈ Z(p∞). Then:

(a) y admits a canonical form y = ∑
σ ′

nen, and
∑ |σ ′

n| �
∑ |σn|;

(b) the canonical form is unique, and so Λ is well-defined.

Furthermore,

(c) λ(z) � l for every z ∈ Z(p∞)(l,1)e and l ∈ N.

Proof. (a) Let N be the largest index such that σN �= 0. We proceed by induction on N . If N = 1, then y = σ1c1.
Thus, if σ1 = σ ′

1 + mp is a division with residue in Z, and σ ′
1 is chosen to have the smallest possible absolute value,

then |σ ′
1| � p−1

2 , and

y = (σ ′
1 + pm)e1 = σ ′

1e1 + mpe1 = σ ′
1e1. (26)

In particular, |σ ′
1| � |σ1|. Suppose now that the statement holds for all elements with representation with maximal

non-zero index less than N . If σN = σ ′
N + kp is a division with residue in Z, and σ ′

N is chosen to have the smallest

possible absolute value, then |σ ′
N | � p−1

2 , and

y −
N−2∑
n=1

σnen − (σN−1 + k)eN−1 = −keN−1 + σNeN = −keN−1 + (σ ′
N + kp)eN = σ ′

NeN . (27)

The element z =
N−2∑
n=1

σnen + (σN−1 + k)eN−1 satisfies the inductive hypothesis, so z =
N−1∑
n=1

σ ′
nen, where |σ ′

n| � p−1
2

and
N−1∑
n=1

|σ ′
n| �

N−1∑
n=1

|σn| + |k|. Therefore, y = ∑
σ ′

ncn, |σ ′
n| � p−1

2 , and
∑ |σ ′

n| �
∑ |σn|, because |σ ′

N | + |k| � |σN |.
(b) Suppose that

∑
σnen = ∑

υnen are two distinct canonical representations of the same element. Then∑
(σn − υn)en = 0, and |σn − υn| � p − 1. Let N be the largest index such that σN �= υN . (Since all coefficients

are zero, except for a finite number of indices, such N exists.) This means that 0 < |σN − υN | � p − 1, and
o((σN − υN)eN) = pN . Therefore, by (17), one has o(

∑
(σn − υn)en) = pN , because o(

∑
n<N

(σn − υn)en) � pN−1.

This is a contradiction, and therefore σn = υn for every n ∈ N.
(c) Let z = μ1en1 + · · · + μhenh

, where
∑ |μi | � l and n1 < n2 < · · · < nh. By (a), z admits a canonical form

z = ∑
μ′

nen, and
∑ |μ′

n| �
∑ |μi | � l. Therefore, μ′

n �= 0 only for at most l many indices. �
Lemma 4.7. Let m ∈ Z\{0}, and put l = �logp |m|�. If n > l, then Λ(men) ⊆ {n − l, . . . , n − 1, n} and 1 � λ(men).

Proof. It follows from n > l that pn > |m|, and so men �= 0. Thus, 1 � λ(men). To show the first statement, expand
m = μ0 + μ1p + · · · + μlp

l , where μi ∈ Z and |μi | � p−1
2 . Then

men = μ0en + μ1en−1 + · · · + μlen−l (28)

is in canonical form, and therefore Λ(men) ⊆ {n − l, . . . , n − 1, n}, as desired. �
Lemma 4.8. Let y, z ∈ Z(p∞) such that λ(y) > λ(z), and suppose that Λ(y) = {k1, . . . , kg} where k1 < · · · < kg and
g = λ(y). Then o(y + z) � pkg−λ(z) .

Proof. Let y = ∑
νnen and z = ∑

μnen in canonical form. Then y + z = ∑
(νn + μn)en, and |νn + μn| � p − 1.

Clearly, o(y + z) = pN for N the largest index such that νN + μN �= 0. By the definition of N , μn = −νn for every
n > N . In particular, μki

�= 0 for every i such that ki > N . Thus, there are at most λ(z) many i such that ki > N , and
therefore N � kg−λ(z). �
Remark 4.9. If y1, y2 ∈ Z(p∞) and Λ(y1) ∩ Λ(y2) = ∅, then Λ(y1 + y2) = Λ(y1) ∪ Λ(y2) and
λ(y1 + y2) = λ(y1) + λ(y2).
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Proposition 4.10. Let y = ν1en1 + · · · + νf enf
, where n1 < · · · < nf and νi �= 0. Put li = �logp |νi |�, and suppose

that ni < ni+1 − li+1 for each 1 � i � f . Then:

(a) f � λ(y);
(b) if z ∈ Z(p∞) is such that λ(z) < λ(y), then o(y + z) � pnf −λ(z)−lf −λ(z) .

Proof. (a) By Lemma 4.7, Λ(νieni
) ⊆ {ni − li , . . . , ni}, and since ni−1 < ni − li , the sets Λ(νieni

) are pairwise
disjoint. Therefore, by Remark 4.9, λ(y) = λ(ν1en1) + · · · + λ(νf enf

) � f , and

Λ(y) ⊆
f⋃

i=1

{ni − li , . . . , ni} = {n1 − l1, . . . , n1, . . . , ni − li , . . . , ni, . . . , nf − lf , . . . , nf }. (29)

(b) By Lemma 4.8, o(y + z) � pkλ(y)−λ(z) , where Λ(y) = {k1, . . . , kg} (increasingly ordered). Since Λ(νieni
) is

non-empty for each i, it follows from (29) that kλ(y)−λ(z) � nf −λ(z) − lf −λ(z). �
Corollary 4.11. Let l ∈ N, z ∈ Z(p∞)(l,1)e , and y = en1 + · · · + enf

such that n1 < · · · < nf , l < f , and
ni < ni+1 − l. Then o(μy + z) � pnf −l−l � pn1−l for every μ ∈ Z such that 0 < |μ| � l.

Proof. Since |μ| � l, μy = μen1 + · · · + μenf
satisfies the conditions of Proposition 4.10 (because logp |μ| � l), and

thus, l < f � λ(νy). On the other hand, by Lemma 4.6(c), λ(z) � l, and therefore o(νy + z) � pnf −λ(z)−l � pnf −l−l

pursuant to Proposition 4.10(b). �
Proof of Theorem 4.4. To shorten notations, put A = Z(p∞).

(a) In order to prove that {dn} is a T -sequence, we show that (iv) of Theorem 2.2 holds. For n large enough,
o(bn) = pn3

, and so by Lemma 4.1, {bn} is a T -sequence; {en} is evidently a T -sequence (cf. Example 1.1). Thus, by
Theorem 2.2, there exists m0 such that

A[n] ∩ A(l,m)b = A[n] ∩ A(l,m)e = {0} (30)

for every m � m0 (because A is almost torsion-free). Without loss of generality, we may assume that m0 > l +n+n0.
Observe that

A(l,2m)d ⊆ A(l,m)b ∪ A(l,m)e ∪ (
A(l,m)b\{0} + A(l,m)e\{0}), (31)

and therefore it suffices to show that A(l,m)b\{0} + A(l,m)e\{0} contains no element of A[n] for every m � m0.
Let z ∈ A(l,m)e\{0} and w = m1bn1 + · · · + mhbnh

∈ A(l,m)b\{0} where m � n1 < · · · < nh and 0 <
∑ |mi | � l.

Put y = en3
h−n2

h
+ · · · + en3

h−nh
+ en3

h
. The number of summands in y is nh + 1, and the differences between the

indices of the terms is nh. By the construction, nh � m � m0 > l. Thus, the conditions of Corollary 4.11 are satis-

fied, and since |mh| � l, we get o(mhy + z) � pn3
h−n2

h−l > p(nh−1)3
. Therefore, o(−mhx) �= o(mhy + z) (because

o(−mhx) � pn0 � pm0−1 � p(nh−1)3
), and

o(mhbnh
+ z) = o(−mhx + mhy + z)

(17)= max
{
o(−mhx), o(mhy + z)

}
> p(nh−1)3

. (32)

One has

o(w − mhbnh
) � o(bnh−1) = pn3

h−1 � p(nh−1)3 (32)
< o(mhbnh

+ z), (33)

and hence

o(w + z) = o
(
(w − mhbnh

) + (z + mhbnh
)
)

(34)

(17)= max
{
o(w − mhbnh

), o(z + mhbnh
)
}

> p(nh−1)3
> p(m0−1)3

> n. (35)
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(b) As noted earlier, a character χ ∈ homZ(Z(p∞),T) is continuous on Z(p∞){dn} if and only if χ(dn) −→ 0 (by
the universal property)—in other words, χ(bn) −→ 0 and χ(en) −→ 0. The latter is equivalent to χ having the form
of mχ1, where χ1 is the natural embedding of Z(p∞) into T and m ∈ Z (cf. [11, Example 6], [3, 3.3]). Since

0 � 1

pn3−n2 + · · · + 1

pn3−2n
+ 1

pn3−n
+ 1

pn3 � n + 1

pn3−n2 −→ 0, (36)

one has χ1(bn) −→ −x, and consequently χ(bn) = mχ1(bn) −→ 0 if and only if −mx = 0 (i.e., x ∈ kerχ ). This
means that χ = mχ1 if and only if o(x) = pn0 | m, as desired.

(c) We have already seen that x ∈ kerχ for every continuous character of Z(p∞){dk}. On the other hand,
n(Z(p∞){dk}) ⊆ kerpn0χ1 = 〈x〉. �
Remark 4.12. A careful examination of the construction in Theorem 4.4 reveals that the only following properties of
the sequence {bn} are essential:

(1) Growing number of summands in bn—in other words, λ(bn) −→ ∞;
(2) Growing gaps between the orders of summands in bn (in its canonical form);
(3) bn −→ −x in the topology of inherited from T, where x ∈ Z(p∞) and x �= 0.

Condition (1) and (2) are needed in order to apply Corollary 4.11, while (3) guarantees that mχ1 is continuous if and
only if o(x) | m (where χ1 is the natural embedding of Z(p∞) into T).

We conclude with a problem motivated by Theorem 4.2 and Remark 4.12:

Problem III. Is there a T -sequence {ak} in Z(p∞) with bounded λ(ak) that is not a T B-sequence?
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