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0. INTRODUCTION 

The “Piano Movers” problem (see [l-5]) is that of finding a continuous 
motion which will take a given body or bodies B from a given initial 
position to a desired final position, but which is subject to certain geometric 
constraints during the motion. These constraints forbid the bodies to come 
in contact with certain obstacles or “walls,” or to collide with each other. 
These walls can be curved, and the full collection of walls is not required to 
be connected (see Fig. 1). The problem that we set out to solve is: Given two 
configurations (i.e., positions and orientations of all subparts) of the bodies 
B in which none of these bodies touches any walls, and in which none of the 
bodies B collide, find a continuous wall- and collision-avoiding motion of 
all the B between these two configurations, or establish that no such motion 
exists. 

This paper will present a general, though not very efficient, method for 
deciding on the existence of such a path (and for constructing such a path if 
its exists). Specifically, we will show that this problem can be handled by a 
variant of Tarski’s famous algorithm [6] for deciding statements in the 
quantified elementary theory of real numbers. Our approach is related to 
that outlined in an interesting paper of Reif [l], and makes essential use of 
technical devices introduced by Collins [7] and reviewed by Amon [S]. As 
we shall see, these techniques also allow explicit, constructive calculation of 

FIG. 1. An instance of our case of the “piano movers” problem. The positions drawn in full 
are the initial and final positions of B; the intermediate dotted positions describe a possible 
motion of B between the initial and final positions. 
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the homology groups of an arbitrary real algebraic variety. In particular, the 
connectivity of such a variety can be calculated easily. 

The paper is organized as follows. In Section 1 we begin to formulate the 
general mover’s problem in which we are interested, as an abstract computa- 
tional problem in algebraic topology. The algebraic machinery required to 
handle this problem is then developed in Section 2. The results obtained in 
this section can be used to calculate topological properties of algebraic 
varieties more general than those required for the solution of the mover’s 
problem, and Section 2 also outlines some procedures for these calculations. 
Applications of the general theory of Section 2 to the mover’s problem are 
then given in Section 3, yielding an algorithm which solves this problem in 
time polynomial in the number of geometric constraints on the motion of 
the body B, provided that the set of forbidden configurations for the body B 
is closed. 

For the sake of completeness and clarity, we include a simple proof of the 
Collins construction on which our algorithms are based. This is given in 
Appendix A. Appendix B reviews various efficient techniques, some new, 
for exact calculations with algebraic numbers; such calculations appear 
repeatedly in our algorithms. Finally, Appendix C gives a technical details 
concerning the computations required to obtain the topological structure of 
the Collins decomposition. Note, however, that these, possibly very expen- 
sive, computations are not required for the simpler task of determining the 
connectivity of the space of free configurations of the body B. 

1. AN ALGEBRAIC FORMULATION OF THE GENERAL 
MOVER’S PROBLEM 

In this section we reformulate the general motion-planning problem in 
abstract algebraic terms, and reduce it to the problem of decomposing 
certain algebraic varieties into their connected components. A solution to 
this abstract problem is then developed in subsequent sections. 

Like Reif, whose work is to be presented more fully in a forthcoming 
paper, we study the space of all collision-free positions of one or more 
hinged bodies B. We assume each body B to consist of a finite number of 
rigid compact subparts B,, B,,. . . , each bounded by various algebraic 
surfaces. These subparts can be connected to each other by various types of 
attachments, including the following: 

(a) A point X on one part B, can be fastened to a point Y on another 
part B2, in a manner which requires X and Y to be coincident but does not 
otherwise constrain the relative orientations of B, and B,. 
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(b) The connection between X on B, and Y on B, can be a “hinge,” 
i.e., can constrain B, to revolve around an axis V fixed in the frame of B,. 

(c) The connection between B, and B, can permit B, to slide, or to 
slide and rotate, along an axis I/ fixed in the frame of B,. 

Various other forms of affixment might be envisaged and can be treated 
in much the same way that we will treat the more common fastenings (a-c). 
As noted above, we are willing to consider any number of disjoint hinged 
bodies of this kind, which are to move in a coordinated fashion throughout 
an empty space bounded by a finite collection of walls, which can them- 
selves be arbitrary algebraic surfaces. We can regard the walls as part of the 
given system of bodies, with the additional properties that (a) they need not 
be compact; and (b) they are constrained not to move at all. 

Since we intend to proceed algebraically in what follows, our first task is 
to set up an appropriate algebraic parametrization of a superspace of the set 
of all allowed positions of the hinged body B. It is convenient to proceed as 
follows. The rotation group is a smooth 3-dimensional algebraic submani- 
fold of the 9-dimensional Euclidean space of 3 by 3 real matrices. If B = B, 
is a single rigid body, we describe its position by giving a Euclidean motion 
T which takes B from some standard position to its given position. This 
transformation TX = Ru + X0 is defined by a pair [X0, R] consisting of a 
point X0 in 3-dimensional Euclidean space E3 and of a 3 by 3 rotation 
matrix R, and can therefore be regarded as a point in a smooth six-dimen- 
sional algebraic submanifold G of 12-dimensional Euclidean space E12. 

Next suppose that B is hinged, and that a second part B2 of B is attached 
to B,, say for the sake of definiteness in the manner (a). Then we can 
describe the overall position of the two parts B,, B, of B as follows. As 
above, the position of B, is described by a Euclidean motion T which takes 
B, from a standard position to its actual position. By applying the inverse 
T-’ of T to both B, and B,, we put B, into its standard position, and B, 
into a position which attaches a fixed one of its points X2 to a point fixed on 
B,. This position of B2 is therefore defined by giving a Euclidean transfor- 
mation T2 such that T2X2 = X2. It is plain that the set of these transforma- 
tions is in l- 1 correspondence with the set of rotation matrices R,. Hence 
the overall position of B, and B, can be represented by a pair [T, R2], which 
once again varies over a smooth algebraic submanifold G, of a higher- 
dimensional Euclidean space E. 

If instead B, is connected to B, in the manner (b), then much the same 
remarks apply, except that in this case the rotation matrix R, must satisfy 
R,V = V for a certain 3-dimensional vector V. If B, can slide along an axis 
U fixed in B, but not rotate, its position is defined by a single real 
parameter u which defines the position of B2 along this axis, etc. In all cases, 
the overall position of B, and B2 is described by a pair [T,, T2] of Euclidean 
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motions, the first unconstrained, the second confined to some subgroup of 
the full Euclidean group. In all cases the allowed pairs form a smooth 
algebraic submanifold G, of some Euclidean space. 

We can proceed similarly even if B consists of many parts hinged together 
in various ways. Suppose, for example, that B2 is connected to B, , and that 
a third part B, of B is connected to B,. Then as above the overall position of 
B, and B2 is defined by a pair [T,, T2] of Euclidean transformations. T, 
maps B, from its standard to its actual position, and T,T, maps B2 from its 
standard to its actual position. If we apply the inverse of T,T, to B,, we put 
it into a position in which it is attached to a fixed point or axis of B, in one 
of the manners (a-c). Hence the actual position of B3 is defined by a third 
Euclidean transformation T3, belonging to a group of motions of one of the 
types we have already considered, and the mapping T,T2T3 takes B, from its 
standard to its actual position. 

These considerations make it clear that, irrespective of the manner in 
which the parts of a hinged body are connected together, the overall 
position of all its parts can always be defined by a point belonging to a 
smooth algebraic manifold G lying in a Euclidean space of some ap- 
propriate dimension. 

Of course, the preceding considerations ignore all restrictions on the 
position of the parts of the bodies B imposed by the condition that none of 
these parts must collide. This point will be handled in Section 3 below, after 
the necessary algebraic machinery is introduced and developed in Section 2, 
which now follows. 

2. TARSKI SENTENCER AND SETS; THE COLLINS DECOMPOSITION 

By a Tut-ski sentence we mean a sentence, possibly containing free 
variables, which can be formulated in the decidable quantified language 
studied by Tarski [6]. In this language, variables designate real numbers and 
are quantified over the set of all reals. The operators allowed in the language 
are +, -, *, and /, designating the usual real arithmetic operators. The 
allowed comparators are = , * , > , < , 2 , < , all of which have their 
standard meanings. In addition quantifiers and Boolean connectives are 
allowed. 

A Tarski sentence Q(x,,..., x,) containing exactly n free variables 
defines a subset of n-dimensional Euclidean space E”, namely, 

Ep = ([x,,. . . , x,1: Q(x,,. . . , x,)}. (1) 

Sets of this form will be called Tarski sets (also known as semi-algebraic 
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sets); the Q occurring in (1) is called the defining formuh of C,. By a result 
given in the cited paper of Tat-ski, every Tarski set has a quantifier-free 
defining formula. A useful constructive proof of this result, involving a 
penetrating analysis of the geometric structure of Tarski sets, is given by 
Collins [7] (see also Arnon [S]), and we will base our analysis of the general 
mover’s problem on Collins’ results, which substantially improve Tarski’s 
earlier work. We will also prove certain topological properties of the “cells” 
appearing in Collins’ work, and will use these topological improvements to 
show that many standard topological properties (i.e., all the homology 
groups) of any algebraic variety are effectively calculable. 

Using terminology slightly different from ours, Collins gives the following 
definitions and theorems: 

DEFINITION 1. For any subset X of Euclidean space, a decomposition of 
X is a finite collection K of disjoint connected subsets Y of X whose union is 
X. Such a decomposition is a Tarski decomposition if each such subset Y is a 
Tarski set. 

In what follows, E’ will denote the Euclidean space of r dimensions. 

DEFINITION 2. A cylindrical algebraic decomposition of E’ is defined as 
follows. For r = 1 such a decomposition is just a partitioning of E1 into a 
finite set of algebraic numbers and into the finite and infinite open intervals 
bounded by these numbers. For r > 1, a cylindrical algebraic decomposition 
of E’ is a decomposition K obtained recursively from some cylindrical 
algebraic decomposition K’ of E’- ’ as follows. Regard E’ as the Cartesian 
product of E’- ’ and E’, and accordingly represent each point p of E r as a 
pair [x, y] with x E E’- ’ and y E E’. Then K must be defined in terms of 
K’ and an auxiliary polynomial P = P(x, y) with rational coefficients, in 
the following way. 

(i) For each c E K’, let c X E’ designate the cylinder over c, i.e., the set 
of all [x, y] such that x E c. 

(ii) For each c E K’ there must exist an integer n, such that for each 
x E c there are exactly n distinct real roots f,(x),. . . , f,(x) of P(x, y) 
(regarded as a polynomial in y), and these roots must vary continuously 
with x. We suppose in what follows that these roots have been enumerated 
in ascending order. Then each one of the cells of K which intersects c x E’ 
must have one of the following forms: 

@.a) {Ix, ~1: x E c, Y <f,(x)> 
(lower semi-infinite “segment” of c X E’ ). 

(ii.b) {[x, J;(x)]: x E C} 
(“section” of c X E’). 
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(ii.4 (Ix, rl: x E c,h<x> < Y <h+,(x)> 

(ii.@ {ix, rl: x E c, f,(x) < Y> 
(“segment” of c x E’). 

(upper semi-infinite “segment” of c X E’). 

All these cells are said to have c as their base cell in K’; K’ is said to be the 
base decomposition, and P the base polynomial, of K. It is convenient to put 
&(x) = - cc and f,+,(x) = + cc, and then to designate the cells (ii.a), 
(iib), (ii.c), and (ii.d) as co*, ci, CT, and cz, respectively. 

It obviously follows by induction that each of the sets constituting a 
cylindrical algebraic decomposition K of E’ is topologically equivalent to an 
open cell of some dimension k G r. We will therefore refer to the elements 
c E K as the (open) Collins cells of the decomposition K. 

DEFINITION 3. Let S be a set of functions of r variables, and K a 
cylindrical algebraic decomposition of E ‘. Then K is said to be S-invariant 
if, for each c in K and each f in S, one of the following conditions holds 
uniformly for x E c: either 

(a) f (x) = 0 for all x E c; or 

(b) f(x) -C 0 for all x E c; or 

(c)f(x) > 0 for all x E c. 

DEFINITION 4. A point p E E’ is algebraic if each of its coordinates is a 
real algebraic number. A defining polynomial for p is a polynomial with 
rational coefficients whose set of roots includes all the coordinates of p. 

THEOREM 1 (Collins). Given any finite set S of polynomials with rational 
coefficients in r variables, we can effectively construct an S-invariant cylindri- 
cal algebraic decomposition K of Er into Tarski sets such that each c E K 
contains an algebraic point. Moreover, defining polynomials for all these 
algebraic points, and quantifier-free defining formulae for each of the sets 
c E K, can also be constructed effectively. 

The proof of Collins’ Theorem, which is not difficult, will be reviewed in 
Appendix A below. . 

In what follows we will find it useful to sharpen Collins’ results in certain 
topological respects. For this, we have to impose an additional requirement 
on the decomposition; in certain unfavorable orientations of E’, this 
condition can be false. However, as we shall show below, one can always 
restore this extra property by an appropriate rotation of the r-Euclidean 
space, and such a rotation can be easily calculated. This requirement is 
stated in the following: 
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DEFINITION 5. A Collins decomposition K is said to be well-based if the 
following condition holds. Let K’ be the base decomposition and P(b, x) 
the base polynomial of K. Then we require that P(b, x) should not be 
identically zero for any b E E’- ‘. Moreover, we require that this same 
condition apply recursively to the base decomposition K’. 

EXAMPLE. Consider the polynomial 

P(x, y, z) = (x” + y2)z + (x2 - Y2) 

in 3-dimensional space E3. Then, since P(O,O, z) vanishes identically, no 
P-invariant Collins decomposition of E3 whose final step projects E3 onto 
E * in the z-direction is well-based. 

For the correctness of the topological assertions that we are about to 
make, it is essential that the decomposition K be well-based. Later we shall 
see how to rotate the given Euclidean space so as to make the decomposi- 
tion well-based. For the moment we assume a well-based decomposition K, 
and show that it has certain useful topological properties. 

LEMMA 1. Let c E K. Then the closure of c is a union of cells of K. 

Proof To establish the lemma, we will use induction on the dimension r, 
and prove the following stronger 

CLAIM. Let r 2 1, and let K be a Collins decomposition of E’. Then the 
closure of each cell in K is a union of cells of K. Moreover, for each cell c of 
K, each point z in the boundary of c, and each E > 0, the open e-ball about 
z contains a (relative) neighborhood U of z in c U {z} such that U - {z} is a 
connected subset of c. 

Proof of claim. Our claim holds trivially for r = 1. Assume r > 1. With 
no loss of generality assume that c has either the form 

c = c;* = {[b, x]: b E c’,fj(b) < x <fi+,(b)), 

or 

c = c’ = {[b,l;(b)]: b E c’}, 
J 

for some c’ E K’ = the base decomposition of K. In either case the closure 
of c obviously contains c itself, and, in case (l), also the two “sections” cj 
and c;+, bounding c from above and from below, all of which are of course 
cells in K. Any other point in the closure of c must be of the form [b, x], 
where b belongs to the boundary of c’, and where x,(b) G x Q x2(b); here 
we write 

x,(b) = liminf h(b’) and x2(b) = limsup fk(b’), 
b’sc’,W+b b’ec’.b’-+b 
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where k = j + 1 in case (l), k = j in case (2). Note that 

liminf f(r) 
XES, X-y 

designates the smallest limit off(x) for any sequence yi of points of the set 
s for which y, + y, and similarly for lim sup. Conversely, any such point 
clearly belongs to the closure of c. Let e be the set of all such points. By our 
induction hypothesis, the boundary of c’ is a union of cells in K’. Let 
c” E K’ be a cell of this boundary. Note that x,(b) and x1(b) either are 
roots of P or are - cc or + cc. We will show that these functions are (equal 
if k = j, and) continuous in the entire closure of c, and hence are continuous 
for b E c” (here we give the extended real axis R*, including the points 
- cc, + co, its standard topology, which makes R* homeomorphic to the 
compact unit interval [ - 1, + 11.) 

The asserted continuity is an easy consequence of the following auxiliary 
lemma. 

LEMMA 2. Let c’ E K’ be as aboue, and let fj(b) denote the jth root of 
P(b, 0) for b E c’. Then there exists a unique continuous extension (in the 
sense of the extended topolog of R*) of 4. to the entire closure of the cell c’. 
Moreover, this extension, which we will also denote by fi, is either infinite or 
else a root of P. 

It will be shown below that Lemma 2 follows inductively from our other 
assertions. Assume for the moment that this has been proved. It then 
follows that the set 

K(c”) = {[b, x]: b E c”, x,(b) d x Q x2(b)) 

must be a union of cells in K. We can show this, and even provide a more 
explicit characterization of these cells, as follows. Let c’ E K’ be as above, 
and let fi(b) be the jth root (of m distinct real roots) of P(b,. ) over c’. Let 
c” E K’ be any cell in the boundary of c’. Use the same symbol fi(b) to 
denote the continuous extension of fi to b E c” which exists by Lemma 2. 
Then it follows from Lemma 2 that, for b E c”, fj(b) is (either - cc or + cc 
or) one of the M roots of P over c”. In either case we can write&(b) = FJ( b), 
where FJ is the Jth root of P over c” (by our convention, this also includes 
the extreme cases J = 0, M + 1); note that J is independent of b, because 
the roots FJ are isolated and J: varies continuously over c”. Define a 
mapping 

p(c’, c”): {O..m + l} + {O..M + l} 

by putting p(c’, c”)(j) = J if&(b) = F,(b) for some, hence for all b E c”. 
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Then the assertion we need to prove is contained in the following somewhat 
more detailed 

LEMMA 3. Let c’ E K’ be as above. Then the cells of K which intersect the 
closure of the cell cj are c; itself, and all cells of the form c;‘, where c” is 
contained in the closure of c’ and p(c’, c”)(j) = J. The cells of K which 
intersect the closure of cj* are c;* itself, the two sections cj and cj+ ,, and all 
cells of the form c;‘, c;I*, c;‘+ ,, c;‘+*,, . . . , cz, where c” is contained in the 
closure of c’, p(c’, c”)(j) = J, and p(c’, c”)( j + 1) = L. Moreover, all of 
these cells are contained in the closure of c; (resp. c;*). 

Proof: We prove only the second assertion, the first being even simpler. 
As noted in the paragraph immediately preceding the statement of Lemma 
2, the closure of cJ* consists of cj*, c;, cj’+ ,, and of the union of all the sets 
K(c”) where c” ranges over all the cells contained in the boundary of c’. By 
Lemma 2, and by the remarks preceding the present lemma, we have 
x,( 6) = F’(b), x2(b) = F’(b), for b E c”, where J, L are as in the state- 
ment of the present lemma. Thus K(c”) is the union of all the cells 
c;‘,..., c i. It is then clear that all these cells, together with CJ and c;+ 1, are 
the only cells which can intersect (and hence be contained in) the closure of 
cl* 

J * 
Q.E.D. 

We can now complete the proof of Lemma 1. Indeed, the first part of the 
claim to be proved is now immediate from Lemma 3. To prove the second 
part, let c, c’, [b, x] E %, and let E be as in the claim. Let d, d’, be the base 
cells of c, c’ respectively. Then either c = dj for some j or c = d; for some j. 

Assume first that c = dj, for some j. Project the e-ball U about [b, x] onto 
a subset U’ of E r-‘. By inductive hypothesis, U’ contains a relative 
neighborhood I” of b in d + {x} such that V - {x} is connected. The 
continuity of fi(b) implies that for sufficiently small I” the set {[b, f,(b)]: 
b E I”) is a connected neighborhood of [b, x] in c + {[b, x]} which is 
contained in U. 

Next consider the case where c = dj*. Let J, L be as in Lemma 3, and let 
0 < (Y < 1 be such that x = cuF,(b) + (1 - a)F’(b). Obtain U’, v’ as in the 
preceding paragraph, and consider the set 

V= {[a,/3h(a) + (1 -B)h+,(a)]:aE v,OGPG 1, ID-al <s>. 

Note that V is relatively open in c. It also follows from the (uniform) 
continuity of 4 and rj+ , over V’ that if V’, 6 are both sufficiently small, V 
will be a connected (relative) neighborhood of [b, x] in c + {[b, x]} which is 
contained in U. 

Thus both assertions of our claim continue to hold in r dimensions, 
completing the inductive proof of Lemma 1. Q.E.D. 
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Next we return to finish the proof of Lemma 2, which will complete our 
whole interlocking set of inductions. 

Proof of Lemma- 2. We give the extended real axis R* the metric 
topology of the compact unit interval [ - 1, + l] (which is homeomorphic to 
R*) and write the distance function in R* as d(x, y). It is sufficient to prove 
that fi is uniformly continuous on any bounded subset of c’. Suppose the 
contrary. Then there exist S > 0 and two sequences b,, bi E c’, such that 
both sequences converge to a point b, on the boundary of c’, but for all n we 
have d( h( b,,), h( bh)) > 8. By inductive hypothesis, for each integer m there 
exists a (relative) neighborhood N, of b,, in c’ + {b,} which is contained in 
the (l/m)-ball about b, in E ‘-I, and such that iv,,, - (b,,} is connected. For 
all m > 1 define sets 

R, = {[by l;(b)]: b E Nm - V+,J), 

and let R denote the intersection of the closures of these sets. R is obviously 
a compact set. We claim that it is connected. To see this we first observe 
that each of the sets R, is connected, being the image of the comrected set 

%I - (b,} under the continuous function b + [b, h(b)]. Next suppose that 
R is not connected. Then there exist two disjoint open sets U, V such that R 
is contained in the union of U and V and intersects both U, V. But this 
implies that for sufficiently large m, R, is also contained in the union of U 
and V, for otherwise there would exist a sequence z,, such that z, E R, - 
U - V for all m, which, by compactness, must converge to some z E R - U 
- V, which is impossible. Since R, is connected, we can assume with no 
loss of generality that R, is contained in U for all sufficiently large m. But 
then R must also be contained in U, a contradiction which proves that R is 
connected. Since the projection of R into E ‘- ’ consists of the single point 
b,, R must be a vertical straight segment, all of whose points are obviously 
roots of P(b,, 0). However, since we have assumed that K is well-based, 
there are only finitely many such roots, and so R must consist of a single 
point [b,, x]. Hence this point is the common limit of both sequences 
{[b,, h(b,,)]}, {[b;, &(bA)]), which is impossible. This shows that fj is uni- 
formly continuous over bounded subsets of c’, and hence admits a unique 
continuous extension to the entire closure of c’. Q.E.D. 

Remark. Lemma 2 is false if the decomposition is not well-based. 
Indeed consider the example given earlier. It is easily seen that {[O,O]} is a 
base cell. Hence, if c is a 2-dimensional base cell c containing [O,O] in its 
boundary, the single zero of P(x, y, *) for [x, y] E c can never admit a 
continuous extension to [0, 01. 

Lemma 2 has several consequences, which collectively show that a well- 
based Collins decomposition is free of local pathology. 
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COROLLARY. Assume K is well-based. Let c E K’, and let c’ be a boundary 
cell of c. L.et g,(b) denote the k th root of P( b, .) for b E c’. For each b E c’ 
let J(b) denote the set of a/f indices j such that g,(b) is the limit of some 
sequence J.( b;), as b,!, E c approaches b. Then J(b) is a constant depending 
only on c’, but not on the particular point b E c’. 

LEMMA 4. Let c e K, and let c’ E K be a boundary cell of c. Then for each 
point z E c and each point z’ E c’ there exists a continuous path connecting z 
to z’, which, except for its endpoint z’, lies wholly in c. 

Proof. Proceed by induction on r. Let d, d’ be the base cells of c, c’ 
respectively. Let z = [b, x], z’ = [b’, x], where b E d, b’ E d’. If d = d’, 
then c = d,! for some j, and c’ is its top or bottom face. Assume c’ to be the 
bottom face dj of c; then the desired curve is constructed as follows. Let 
q‘(t) be a curve contained in d which connects b with b’ (the recursive 
construction of Collins cells makes it quite easy to construct such a curve 
explicitly). Next let 0 < (Y < 1 be such that 

x = ah(b) + (1 - ++,(b)- 

Then the desired curve q(t) is simply [q’(t), q*(t)], where 

4*(t) = Ml - t) + tlfihm) + LO - al - t)l~+MtN~ 
Ogt<l. 

Otherwise, d * d’, and by inductive hypothesis there exists a continuous 
curve q(t), t E [0, l] such that q(0) = b, q(1) = b’, and q(t) E d for all 
t < 1. First suppose that c’ is a section 

<[a7 a(a)] : a E d’), 

where g,(a) is the kth root of P(a, -) over d’, and that c is a section 

{[a, h(a)] : a E d}, 
where 4 is the jth root of P(a, -) over d. Extending fj continuously to the 
whole closure of d, so that &(a) = g,(a) for a E d’, the curve we want is 
simply 

PW = [4(t)7 fjM))]Y t E 109 11. 

The other possible cases, i.e., those in which one or both of c and c’ is a 
“segment” rather than a section, can be handled in essentially the same 
manner; we leave details to the reader. Q.E.D. 
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Next we quote some standard definitions and results concerning finite cell 
complexes and their (singular) homology groups; see Cooke and Finney [9]. 

DEFINITION 6. A decomposition of a compact topological space S into 
finitely many disjoint sets (ci> is called a cell complex if 

(a) Each ci is homeomorphic to an open unit ball of some dimension d,, 
which we call the dimension of ci. 

(b) For each integer dimension d, the union S, of all the sets ci of 
dimension Q d is closed. 

(c) Each cell ci of dimension di is open in the relative topology of Sd,. 

(d) For each cell ci of dimension di, there exists a continuous mapping 
f. of the unit closed ball B of dimension di onto the closure ci of ci, which 
maps the interior of B homeomorphically onto ci. 

DEFINITION 7. The cell complex {ci} of the preceding definition is said 
to be regular if each of the mappings fi is a homeomorphism of the closed 
ball B of dimension di onto the closure of the corresponding cell ci. 

THEOREM 2. The collection of compact cells of a (well-based) Collins 
decomposition of E’ forms a regular cell complex. 

We will, as usual, prove this theorem by induction on the dimension r, for 
which purpose the following easy lemma will be useful. 

LEMMA 5. Let B be the closed unit ball in E’, and let f and g be two 
continuous real functions on B such that g(b) < f(b) for each b in the interior 
of B. Put 

B* = {[b,x]: b E B,g(b) 6 x <f(b)}. 

Then B* is homeomorphic to the closed unit ball B, of Eri ‘. 

Proof By shifting and contracting B* along the x-axis we can assume 
that g(b) = -f(b), and that f(b) < l/2 for all b E B. For each b f 0 in B, 
let B(b) = b/lb], so that 0 is continuous for all b * 0. Put r(b) = (1 - 
f *Wb)))“*, and then let T map the point [b, x] of B* to 

[bdb), ~(1 - lbl*r*(b))“*/f(b)]. 

(If ] b] = 1 and f (b) = 0, then put T(b, x) = [b, 01.) Since br( b) is continu- 
ous for all b, and since f(b) f 0 for ] b] < 1, this mapping is plainly 
continuous for all [b, x] E B* such that ] b ] < 1. T is also continuous when 
] b] = 1. This is plain for each b such that ] b] = 1 and f(b) > 0; on the 
other hand, if f(b) = 0, then since Ix’/f (b’) I < 1 for [b’, x’] E B*, it 
follows that T[ b’, x’] + [b, 0] as [b’, x’] --, [b, 0] from within B*. Moreover, 
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T is l-l on B*. Indeed, if T[b, x] = T[b’, x’] then plainly e(6) = 0(V), so 
that r(b) = r(V), and hence b = b’, x = x’. Since T is continuous and l-l 
on the compact set B*, it is a homeomorphism on B*. 

It is easily seen that the range T( B*) is the set B+ of points [a, JJ] in the 
closed unit ball ] al2 + y2 < 1 which satisfy the condition Iat d r(a). 
The boundary of B+ then consists of all points [a, y] which either lie on the 
boundary of the closed unit ball B, of E’+ ’ and satisfy ]a ] < r(a), or else 
are interior points of B, such that [al = r(a). It then follows that the 
boundary of B+ has the property that each ray from the origin meets it in 
exactly one point. Hence B+ is a star-shaped compact set, and it follows 
from Lemma 6 below that B+, and hence also B*, is homeomorphic to the 
closed unit ball B, . Q.E.D. 

LEMMA 6. Let A be a compact set in E’ which contains the origin 0 of E’ 
in its interior, and which is star-shaped relative to 0 (i.e., each ray from 0 
intersects the boundary A’ of A in exactly one point.) Then A is homeomorphic 
to the closed unit ball B of E’. 

Proof. This is well known, but to prove it let 8 designate an arbitrary 
point on the boundary of B, and let r(e) be the length of the straight ray 
from 0 to A’. Then, since each such ray intersects A’ in exactly one point, 
r(f?) obviously varies continuously with 8. The desired homeomorphism 
simply maps each nonzero b E B to br( 0( b)), where B(b) = b/I bl . Q.E.D. 

Proof of Theorem 2. Suppose that Theorem 2 has been proven for a 
Collins decomposition K’ of E’, and let K be a Collins decomposition of 
E’+ ’ with base decomposition K’. Then any cell of K has the form of either 
cj or cy for some c E K’, and for some integerj. In the case of a section cell 
cj = ([b, h(b)] : b E c}, we can simply note that, since fi is continuous on 
the closure C of c, the projection of cj to c extends to a homeomorphism of 
the closure of cj with F, which, by inductive assumption, is homeomorphic to 
a closed unit ball B of an appropriate dimension. Finally, using the same 
homeomorphism of C with B, the case of a segment cell cJ* is covered by 
Lemma 5. Q.E.D. 

DEFINITION 8. If c and c’ are Collins cells belonging to a decomposition 
K, and if c’ is contained in the closure of c, then we say that c’ is a face of c. 

We continue our analysis by quoting another standard definition from 
Cooke and Finney [9]. 

DEFINITION 8. Given the finite regular cell complex K, an incidence 
function (Y on K is a function assigning one of the integers { - 1, 0, + 1) to 
each pair c, c’ of cells of K, which satisfies the following conditions: 
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(i) (Y(c, c’) * 0 iff c’ belongs to the boundary of c and has dimension 
exactly one less than the dimension of c. 

(ii) If c is of dimension 1, and the two O-dimensional cells (i.e., discrete 
points) constituting the endpoints of c are c, and c2, we have a(c, c,) + 
a(c, c*) = 0. 

(iii) If c” belongs to the boundary of a cell c of dimension d, and has 
dimension exactly d - 2, then 

&x(c, c’)a(c’, c”) = 0, 
c’ 

where the sum extends over all cells c’ of dimension d - 1 whose closures 
are subsets of c- and supersets of the closure of c”. (It is well known (see, 
e.g., Cooke and Finney [9]) that for any c, c” there are precisely two cells c’ 
of this kind, if the cell complex is regular.) 

Every regular cell complex A admits an incidence function, and by a 
standard result proved at length in the cited work of Cooke and Finney, any 
such incidence function can be used to compute the homology groups of A 
in a purely combinatorial manner. For the Collins cell decompositions 
which we consider, incidence functions are easy to define; we simply 
proceed inductively on the dimension, and use a variant of the standard 
“Cartesian product rule.” More specifically, suppose that K and K’ are as in 
the proof of Theorem 2 above, and that an incidence function a’ has already 
been defined for the cells of K’. Extend this to the cells of K by putting 

(a) cw(cj, cj) = (~‘(c, c’), if c’ belongs to the boundary of c and 
P(C, c’>(j) = J; 

(b) clr(cj*, c/) = - 1, (Y(c;, cj+,) = + 1; 

(c) a(cj*, CL*) = - a’(c, c’), f i c’ belongs to the boundary of c and 
P(C, c’)(j) < k < P(C, c’)(j + 1); 

and putting a(a, b) = 0 in all other cases. It follows immediately from 
Lemma 3 that the function a defined this way satisfies condition (i) of 
Definition 8. It is trivial to verify that (x also satisfies condition (ii) of that 
definition. 

Next we verify that (Y satisfies condition (iii) of Definition 8. Let c E K be 
an s-dimensional cell, and let c” be an (s - 2)-dimensional cell contained in 
the boundary of c. Let d, d” be the base cells of c, c”, respectively. Several 
cases are possible: 

(i) Suppose c = dj for somej. Then it follows from Lemma 3 that c” 
must have the form d;‘. Furthermore any (s - I)-dimensional face c’ of c 
which contains c” in its boundary must be of the form d;, for some 
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(s - I)-dimensional face d’ E K’ of d which contains d” in its boundary 
and is such that p(d, d’)(j) = L and p(d’, d”)(L) = J. Then, by (a) above 
and by induction hypothesis, we have 

$a(,, c’)a(c’, c”) = ga’(d, d’)a’(d’, d”) = 0. 

(ii) Next suppose that c = d/*. Then d must be (s - I)-dimensional. 
Once more Lemma 3 implies that c” either is an (s - 2)-dimensional face of 
dj or dj+ i (both of which are (s - I)-dimensional), or c” is d;l where d” is 
(s - 2)-dimensional, or c” is d;l* where d” is (s - 3)-dimensional. The first 
case is a special case of the second one, so we begin by assuming that the 
second case holds. Then it follows that d” is a face of d, and that 
p(d, d”)(j) = J G k Q L = p(d, d”)( j + 1). Assume first that k lies strictly 
between J and L; then the only possible cells c’ that ‘come between’ c and 
c” are dL_ ,* and dL*. Hence, in this case, clause (b) of our definition of the 
incidence function (Y implies 

Ca(c, c’)a(c’, c”) 

= a(d;, d;-,*)a(d;-,*, d;l) + a(dT, d;l*)a(d;*, d;) 

= -a’(d, d”) - (- 1 + 1) = 0. 

Next suppose that k = J < L. Then the possible c’ are the lower face dj of c 
and the cell d;‘*, and so we have 

&(c, c’)a(c’, c”) 

= a(d;, d/)a(d,, d;) + a(dj*, d;‘*)a(d;‘*, d;‘) 

= (- 1) . a’(d, d”) + (-a’(d, d”)) . (- 1) = 0. 

A similar analysis covers the case J < L = k. Suppose finally that k = J = 
L. Then the possible c’ are just the upper and lower faces d, and d,, , of c, 
and once again it is easy to verify (iii). 

Next consider the case in which d” is an (s - 3)-dimensional cell, and 
C II - - d;*. It is easily seen that in this case the only possible intermediate 
cells c’ are of the form d;*, where d’ is a cell in K’ intermediate between d 
and d”, and 

p(d, d’)(j) = J, d I -c J2 = p(d, d’)( j + 1); 

p(d’, d”)(f) = L , < k < L, = p(d’, d”)(l= 1). 

However, it readily follows from Lemma 3 that for each intermediate cell d’ 
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there exists exactly one 1 satisfying these inequalities. Hence, by inductive 
hypothesis, we have 

y,, c’)a(c’, c”) = G( -cd(d, d’))( -a’(d’, d”)) = 0 

Thus condition (iii) is established in all cases, so (Y is indeed an incidence 
function for K. 

Since an incidence function for the cells of a Collins decomposition can 
be defined in this straightforward combinatorial manner, and since the 
homology groups of any finite regular cell complex can be computed 
combinatorially from such an incidence function, it follows that the homol- 
ogy groups can be computed by a purely finite procedure once we know 
what (d - 1)-cells are faces of each given d-cell. A technique for determin- 
ing this, which is based on Lemma 3 and its corollary, will be described 
below. Assuming this, we have the following result: 

THEOREM 3. For each j, the (singular) homology group H,.(V) of the real 
algebraic variety V defined by any set II of polynomial equations P(x,, . . . , 
x,) = 0 with rational coefficients, can be computed in a purely rational manner 
from the coefficients of the polynomials P. 

In particular, since V is a regular cell complex the number of connected 
components of V can be formed simply by tracing sequences of cells which 
are faces of each other. 

Collins gives estimates (which we reconstruct in Appendix A below) for 
the complexity of his cell decomposition procedure; in what follows we shall 
extend these to estimates of the work needed to determine whether one 
Collins cell c’ is a face of another cell c, in the special case in which the 
dimension of c is the same as the dimension of the space E’ being 
decomposed. This will show that the connectivity analysis required to solve 
the general movers problem can be performed in time polynomial in the 
total degree of the set II of polynomials (but exponential in the numer r of 
variables appearing in these polynomials.) Appendix C discusses the more 
difficult adjacency analysis in case c has a lower dimension than r. At the 
present moment we do not know whether this more complex task can also 
be handled also in polynomial time. 

To complete the foregoing arguments we still need to show how a 
well-based Collins decomposition can be defined for any algebraic variety. 
Let P be an r-variate polynomial, for which we wish to construct a 
P-invariant Collins decomposition of E’. Following Hironaka [lo], we 
define a good direction to be a unit vector v (i.e., a point in the unit sphere S 
of E’) such that P does not vanish identically on any line parallel to v. A 
simple technique for constructing a good direction, which is given by Lazard 
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[ll], is as follows. Let Q(x,,. . . , xr) be the homogeneous part of P of 
highest degree = n. If o is a direction on which Q does not vanish (i.e., 
Q(u) * 0), then v is a good direction for P. Indeed, for any x E E’ and for 
sufficiently large real t, P(x + tu) behaves asymptotically as Q(fu) = 
f”Q(u) * 0. By an easy lemma of Schwartz [12], if c > 1, then the number 
of integer points in a cube of side I > cn at which Q vanishes is at most 
c- ‘I’. Taking c substantially larger than 1, a good direction 2) can be found 
quite rapidly simply by picking a u at random from such a cube, testing the 
condition Q(u) f 0, and repeating the choice until a v satisfying this 
condition is found. Once having found such a o, we rotate E’ so that o 
becomes the r th axis, and we begin the Collins construction by projecting in 
the direction of 0. As will be seen in Appendix A, this recursive construction 
generates a new polynomial Q in the remaining (r - 1) variables from P 
and u; Q plays exactly the same role for the required base decomposition of 
E’- ’ that P plays for the decomposition of E’. This observation allows us 
to apply the above way of finding a good direction recursively, and in this 
way we build a well-based Collins decomposition. 

Remark. The result of Hironaka [lo] which asserts the triangulability of 
real algebraic varieties, follows immediately from what has gone before. 
Note also that the fact that the cells of a Collins decomposition form a 
regular cell complex was anticipated by Professor P. Kahn of Cornell in a 
1978 letter to Collins. See [ 131. 

To use the Collins cell decomposition associated with a set of polynomials 
to analyze the connectivity of a space defined by algebraic equalities and 
inequalities, we must tackle the problem of deciding when a Collins cell c’ of 
dimension d - 1 forms part of the boundary of a d-dimensional Collins cell 
c. In analyzing this question, we shall first handle the relatively simple case 
in which c is of maximal dimension, i.e., is of the same dimension as the 
Euclidean space E’ which is being decomposed; this is all that is needed for 
the “movers problem” proper (see Section 3 for details). As usual, we 
proceed by induction on the dimension r; i.e., suppose that the decomposi- 
tion K of E’ being considered has the base decomposition K', and that for 
each (r - 2)-dimensional cell c’ of K’ we know the two (r - I)-dimensional 
cells c, and c2 of K’ of whose boundary c’ forms part. We will also suppose 
that for each cell c E K’ considered, an algebraic point p(c) belonging to c 
is known, and that whenever c’ forms part of the boundary of c, a vector v 
pointing from p(c’) into c, i.e., a vector z, such that p(c’) + 60 E c for all 
sufficiently small 6 is known. We will shortly note that it is easy to carry the 
construction of such vectors forward inductively. 

Any r-dimensional cell in E’ must have the form c,? for some (r - l)- 
dimensional cell c E K’, and then, by Lemma 3, the (r - 1)-dimensional 
cells lying in the boundary of CT are its top and bottom cells cj and cj+ ,, 
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together with all cells of the form c;*, where c’ belongs to the boundary of c 
and where p(c, c’)(j) Q J -c p(c, c’)(j + 1). The vector [O,. . . , 0, - l] (resp. 
10,. . . J 0, + 11) points from cj+, (resp. from ci) into CT. Moreover, if 
V- iv ,,..., v,-,]pointsfromanx E c’intoc, then[v ,,..., v,-,,O]points 
from c;* into CT if the former is part of the boundary of the latter. Hence it 
is trivial to carry the necessary vectors v forward, and the boundary 
determination problem presently under consideration reduces to that of 
calculating the map p(c, c’) for an (r - I)-dimensional cell c and an 
(r - 2)-dimensional cell c’ of K’. 

To make this calculation, we begin by observing that the corollary to 
Lemma 2 implies that to compute p it suffices to compute, for each root 
f,(b) over c’, the number k of roots of P into which h( 6) splits as b moves 
slightly into c. Moreover, we can make this calculation for an arbitrary 
b E c’. 

Given b = p(c’), and the vector v which points from b into c, the points 
b’ = b + tv will lie in c for sufficiently small positive values of t. Moreover, 
the bivariate polynomial 

Q(x, y) = P(b + xv> fi(b) +I’> 

has coefficients which are algebraic since they depend algebraically on the 
(algebraic) coordinates of b, and this polynomial vanishes at the origin [0, 01. 
Let x vary in a sufficiently small interval (0, x0], and for each such x define 
the polynomial 

R,(Y) = Qk Y>- 

As is well known (see, e.g., Van der Waerden [14, Ch. l]), for sufficiently 
small x all the roots y of R,(y) which lie near the origin are expressible by 
fractional power series of the form 

y = c,x I/k + czXW + . . . 

= C,X”k + o(x”k), 

where k < n = the degree of R, as a polynomial in y. Thus, if we substitute 
x”+ ’ for x and if we let x be small enough, it follows that each root y of 
Rx.+ I(*) lying near the origin must belong to the interval [ -x, x], because 
the sum of the above fractional power series is O(X(“+‘/~)) = o(x). It’ 
therefore suffices to determine the number N of zeroes of R = R,.+I in the 
neighborhood [-x, x] of 0. To find N, we can use the Sturm technique (see 
Appendix B for a review of Sturm sequences), that is, compute the Sturm 
sequence of R at x and at - x, and then N is S( - x) - S(x), where S(a) is 
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the number of sign changes in that sequence evaluated at a. (The Sturm 
sequence is obtained as the remainder sequence of R and its y-derivative R’.) 
Since R and R’ depend polynomially on the parameter x, extra care must be 
taken to ensure that, as this sequence is being calculated by repeated 
divisions, no leading coefficient of any of the polynomials in that sequence 
vanishes for the values of x that we consider (if such a term did vanish, 
subsequent divisions might involve completely different polynomials). How- 
ever, since all these coefficients of R are polynomials in X, and since there 
are only finitely many such coefficients, none of their zeroes will belong to 
the open interval (0, x0], if x,, is chosen to be small enough. 

Therefore we can find the number N of roots in which we are interested 
by calculating the Sturm sequence 

of Rx.+, as a sequence of polynomials in y with coefficients which are 
rational functions in x; and since we can multiply all those coefficients by a 
common denominator, we can even assume that these coefficients are 
polynomials in x. After calculating the polynomials (l), we must find their 
signs at the points -x and x, for x small enough. If we substitute y = x in 
the sequence (l), we obtain a sequence of polynomials Go(x), . . . , Gk(x) in 
x, the signs of whose members are to be computed for x positive and 
sufficiently close to 0; and an exactly similar statement holds if we sub- 
stitute -x fory. Let G(x) be any one of these polynomials; then the sign of 
G(x) is either the sign of the coefficient in G of the nonzero term of the 
smallest degree, or, if all the terms of G vanish, is 0. This gives us N, i.e., the 
number of roots into which h(b) splits as b moves into c. As already 
observed, by collecting these numbers for all the roots fi( b) of P for b E c’, 
and by using Lemma 3 in a straightforward manner, we can reconstruct the 
map P(C, 0. 

The analysis required to determine when a Collins cell c’ of dimension 
k - 1 is a face of a cell c of dimension k < r is somewhat more difficult, for 
which reasons we prefer to present it in Appendix C below. Note that 
several two- and three-dimensional cases of the results proved in this section 
were established by Arnon [8]. Lemma 1 of this section is related in this way 
to Amon’s Corollary 3.3.25 and Theorem 3.4.11, Lemma 2 to his Theorem 
3.6.16, and Lemma 3 to his Theorems 3.3.8 and 3.3.14. 

3. A GENERAL ALGORITHM FOR THE PATH-PLANNING PROBLEM 

As noted previously, the position of one of the hinged bodies B we 
consider is always described by a point Tin a smooth algebraic manifold G, 
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and the set of points occupied by a particular rigid part Bi of B is the range 
on Bi of a Euclidean transformation q whose coefficients can be expressed 
as polynomials in the components of T. We assume that each part Bi of each 
of our bodies is a compact Tarski set, and moreover that each face, edge, or 
other significant feature of such a part Bi is also a compact Tarski set (the 
walls, however, are not assumed to be compact but merely closed Tarski 
sets). The set F of forbidden configurations for the body B is then defined 
as follows. First we note that if Bi and Bj are two parts of B which are 
hinged together in any of the ways specified above, then there exist some 
face or other closed feature B,! (resp. BJ of Bi (resp. Bj) which always touch 
each other. Any other touch between Bi and Bj at a point outside B; or B,! is 
then considered to be forbidden (in particular, if Bi and Bj are not directly 
hinged to each other, then it is forbidden for them to intersect at all). This 
defines a set F, of points of G which represent forbidden configurations of 
B, and we define F to be the closure of Fo. F clearly constitutes a closed 
Tarski set, and hence a real closed semi-algebraic subset of G. (All this 
continues to apply in cases involving several disconnected, independently 
moving bodies, some of which can represent (immobile) walls.) Our path- 
planning problem is therefore that of deciding whether or not two points of 
G - F belong to the same component of G - F, where F is a real closed 
semi-algebraic subset of G, and, if so, to construct a path that connects 
these points in G - F. (Note: If F is not required to be closed, the problem 
is still decidable, but the technique we are about to present may become less 
efficient; additional comment on this point is found below.) 

To show how to decide this question, we can proceed as follows. Let Q be 
a quantifier-free defining formula for the set F of forbidden positions. Since 
the condition a > b (resp. a > b) can be written as a - b > 0 (resp. 
a - b > 0 or a - b = 0), etc., we can suppose without loss of generality 
that Q is a boolean combination of clauses P > 0 and P = 0, P designating 
some arbitrary polynomial in the appropriate number r of variables. Let S 
designate the set of all polynomials appearing in Q or as defining equations 
of the manifold G, and use Collins’ theorem to construct an S-invariant 
cylindrical algebraic decomposition K of E’. Then it is clear that G, F, and 
G - F are all unions of collections of cells c E K. 

It follows from the general topological results presented in the preceding 
section that two points p and q of G - F can be connected by a continuous 
arc in G - F if and only if there exists a chain c,, . . . , ck of cells of G - F 
such that p E c,, q E ck, and such that for eachj, either cj+, is a face of cj, 
having one dimension less than that of cj, or vice versa. (This follows from 
well-known properties of the homology group H,,(G - F); see, e.g., [9].) 
Note that the recursive construction of the Collins cells gives us an effective 
way of connecting any two points in the same cell by a continuous arc lying 
wholly within that cell, while Lemma 4 gives us an equally explicit way of 
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constructing an arc from any point p in a cell c’ forming part of the 
boundary of another cell c to any point q E c. 

All in all, therefore, the results we have proved concerning the Collins 
decomposition give us a constructive way of determining whether the two 
given points p and q belong to the same (arcwise connected) component of 
G - F, and of finding a smooth arc connecting them when they do. 

If F is not assumed to be closed, then to check for the existence of a chain 
of cells connecting the given points we may need to employ the more costly 
test for adjacency of Collins cells of arbitrary dimension described in 
Appendix C. At present we do not know whether this test can be carried out 
in time polynomial in the geometric complexity of the problem. By making 
the technical assumption that F is a closed subset of G we avoid this 
difficulty, since then connectivity in G - F can be determined by following 
chains of cells of codimension at most 1. To see this, assume for the moment 
that G can be represented as a whole Euclidean space E k for some k (we will 
explain shortly how such a representation can be constructed). Then, if F is 
closed it follows that G - F is a smooth manifold of dimension k in Ek, so 
that no submanifold of G - F of dimension k - 2 or less can disconnect 
any connected component of G - F (for this well-known fact see, e.g., 
Lemma 1.9 of [5]). Hence in this case two points in G - F are connected to 
one another if and only if the two cells containing them can be connected 
by a chain of cells all of which are either k-dimensional or (k - l)- 
dimensional. This can be done using the relatively efficient “maximal 
dimension” adjacency testing method presented at the end of the preceding 
section. 

To see that G can be represented in this manner, first note that by the 
general discussion of the algebraic representation of a collection of hinged 
bodies given in Section 1, G can be represented as the Cartesian product of 
a finite number of spaces, each of which is either a full Euclidean space Ek, 
or a rotation group of dimension 1, 2, or 3. These groups can in turn be 
represented as the circle S’, the 2dimensional sphere S*, and the 3-dimen- 
sional sphere S3, respectively, with the third representation being double- 
valued, i.e., each rotation in 3-space is represented by two antipodal points 
in S3 (for more details concerning this representation, see, e.g., [15]). 
Moreover, with the exception of one point, S* and S3 can be mapped 
algebraically onto E* and E3 respectively by appropriate stereographic 
projections. Omission of the exceptional points of one or more such 
stereographic mappings will not affect the connectivity of the open manifold 
in which we are interested since the points omitted all lie on submanifolds 
of G of codimension at least 2. Therefore, with no loss of generality, we can 
assume that G is represented as a product of a Euclidean space Ek by a 
finite number of circles S’. Each such circle can be mapped algebraically 
(with the exception of one point) onto a line by a stereographic projection, 



320 SCHWARTZ AND SHARIR 

but here the omitted point can affect the connectivity of the resulting image 
of G - F. To overcome this small technical difficulty, assume first that only 
one circle is involved, i.e., G = Ek X S’. Map S’ onto a line R, by 
projecting it from a point X, E S’, and also onto another line R, from 
another point X,. We then obtain two distinct representations G, and G, of 
G, and can construct corresponding Collins decompositions K, and K, for 
each of them. Next we can analyze the connectivity of G, (resp. G2) by 
constructing an appropriate connectivity graph CG, (resp. CG,) in the 
simplified manner described above, and finally we can merge these graphs 
into one graph by adding edges which connect a cell cl E CG, to a cell 
c2 E CG, whenever c, and c2 have a common point of G - F (this property 
of cells can be checked for easily if we take care to include the equation 
defining the subspace Ek x {X,} (resp. Ek X {Xl}) among the algebraic 
equations from which K, (resp. X2) is generated). The connectivity of 
G - F can then be determined by analyzing chains of edges in this merged 
graph. Cases in which G is the product of E k by more than one circle can be 
handled in a similar manner. 

Note. Another minor technical point to be noted is that the representa- 
tion of the full 3-dimensional rotation group as S3 is bivalent, so that a path 
between two specified rotations R, and R, of some subpart Bi of B can 
correspond either to a path between a point 5, E S3 representing R, and a 
similar point t2 representing R, or to a path between El and -t2. Thus in 
order to determine whether R, and R, can be connected we have to check 
for the existence of one of several paths. 

Once a well-based Collins decomposition has been constructed, the 
connectivity analysis can proceed, as already noted, via a simple search 
through the connectivity graph whose nodes represent the Collins cells of 
highest dimension, and whose edges indicate cell adjacency. The computa- 
tion cost of such an analysis is plainly linear in the size of the Collins 
decomposition. Collins has shown (see also Appendix A below) that the 
number of cells in a cell decomposition K is 0((2n)3’+’ * m”), where m is 
the number of polynomials defining the sets G and F, and where n is the 
maximum degree of any one such polynomial. Note that n is related to 
the degree of any single geometric constraint, and that r is related to the 
number of degrees of freedom of the bodies B. If we fix r, it follows that the 
number of cells in K, as well as the number of adjacent pairs of cells, is 
polynomial in m and n, i.e., in the geometric complexity of the problem, 
that is, in the number of different walls, faces, and other features of the 
system B of bodies, and in their algebraic degrees. Moreover, the time 
required to construct the Collins decomposition, and to test for adjacency of 
cells of maximal dimension, can also be shown to involve a number of 
operations on algebraic numbers which is also polynomial in m and n. As is 
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well known (see Appendix B for details), each such operation can be 
accomplished in time polynomial in the degree of the polynomials defining 
these algebraic numbers. Taking all this into account, we obtain the follow- 
ing result: 

THEOREM 4. The mouer ‘s problem for (algebraic) bodies having a fixed 
number of degrees of freedom whose set of forbidden configurations is closed 
can be solved in time polynomial in the number of geometric constraints present 
in the problem. 

Remarks. (1) The computational cost of our solution of the movers 
problem is still exponential in the number of degrees of freedom of the 
bodies B. That this complexity growth is probably inherent is indicated by a 
theorem of Reif [l], which asserts that the mover’s problem for a robot B 
with many jointed arms (all free to rotate around a common axis) is 
PSPACE-complete. 

(2) A comparison of Theorem 4 and the discussion preceding it with 
the more elaborate technique used in [5] to solve certain 2-dimensional cases 
of the motion-planning problem efficiently reveals a significant similarity 
between the two approaches. In both approaches the free space of config- 
urations of B is partitioned into cells, and these cells are comected to each 
other whenever they are physically adjacent to each other. This imposes a 
combinatorial graph structure on these cells, whose connected components 
reflect the connected components of G - F. Moreover, in both cases these 
cells are constructed recursively by adding one dimension at a time. Also, 
the cells appearing in [5] can be shown to consist each of a finite union of 
Collins cells in the associated decomposition. We will not pursue these 
observations in this paper, but they will reappear in a subsequent report on 
efficient algorithms for other special cases of the mover’s problem. 

APPENDIX A: THE COLLINS DECOMPOSITION-AUXILIARY 
REMARKS 

In this appendix we review the construction which leads to the proof of 
Collins’ Theorem 1, and add various auxiliary observations. We begin with 
the following remark. Let Pb(z) be a polynomial of fixed degree n whose 
complex coefficients depend continuously on a parameter b which varies in 
some connected set S. Suppose that the number of distinct roots of Pb(z) is 
independent of b. Then these roots vary continuously with b. This follows 
immediately from the fact that the unique root p of Pb lying in any small 
circle C can be expressed by a quotient of Cauchy integrals over this circle. 
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More specifically we have 

Next suppose that the polynomial Pb also has real coefficients for each 
value of b. Then the number m of real roots of Pb is also independent of b, 
and for eachj d m thejth largest real root of Pb depends continuously on b. 
To establish this, let S, be the set of points b for which there exist exactly k 
real roots. Take a point b, in S,, let rl . . . r, be the distinct complex roots of 
Pb,, with rl . . . rk real and the remaining roots nonreal. Draw disjoint small 
circlesCi,j = l... I, around these roots. Then for b sufficiently near b,, each 
of those circles will contain exactly one of the roots of Pb, and each root of 
Pb will lie in one such circle. Since complex roots of Pb must occur in 
conjugate pairs, it follows that (if they are sufficiently small) the circles 
c ,,. . . , C,, and only these, contain real roots of Pb, which proves our 
assertion. 

Next, suppose, in addition to the assumptions made above, that Rb(x) is 
a second polynomial with real coefficients depending continuously on 
b E S, and that for each b E S all the zeroes of R, are contained in the set 
of zeroes of Pb. Then for each j, R, is nonzero and of constant sign in the 
open interval Ij(b) between the jth and the (j + 1)st largest real zeroes of 
Pb, and arguing by continuity and from the connectedness of S it is clear 
that the sign of R, on the interval Ij(b) is independent of b. 

A simple variant of the Collins technique, sufficient for our purposes, but 
a bit less efficient than the one developed by Collins, can be described as 
follows. Assume that we are given a (finite) collection { P,(b, x)} of poly- 
nomials in k + 1 variables whose coefficients are all rational. (We continue 
to suppose that b designates a vector of k real variables, and that x 
designates the last of the k + 1 variables on which Pi depends; accordingly, 
we will treat the multivariate polynomials Pi as polynomials in x with 
coefficients belonging to the ring of rational polynomials in the k other 
variables b.) Let P denote the product of all these polynomials. We can then 
construct a family of polynomials {Q(b)} in the k variables b with the 
property that for each (connected) k-dimensional set S over which each of 
the polynomials Q(b) maintains a constant sign (zero, positive or negative), 
the number of distinct zeroes of P(b, .) is constant. Suppose for the 
moment that this has been done. Then the preceding remarks imply that the 
distinct real roots of P(b, 0) over each such set S can be enumerated from 
smallest to largest so that for each j the j th root fi( b) varies continuously 
over S. On the other hand, once the family (Q(b)) has been formed, we can 
partition Ek into connected sign-invariant subsets S by a recursive applica- 
tion of the Collins technique to the collection {Q(b)). The complexity of the 
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total procedure then depends on the number of polynomials Q needed to 
ensure the invariance of the number of distinct real roots of P over each 
connected set on which they maintain a constant sign, and on their maximal 
degree. 

To construct the required polynomials Q, we have only to use the 
following well-known observation: Let P’ denote the x-derivative of P, and 
let R = GCD(P, P’). Let n be the degree of P, and m be the degree of R. 
Then P has n - m distinct roots. Hence it suffices to introduce enough 
polynomials Q(b) to ensure that the degrees of P and R are constant on any 
connected set on which the Q’s are sign-invariant. 

To do this we first recall some facts concerning resultants and subre- 
sultants of polynomials; for which see Brown and Traub [ 161: Let A(x) and 
B(x) be two polynomials in x, having degrees a and b, respectively. Fix any 
j 2 0, and consider the equation 

A(x)tgx) = B(x)l$(x) (*I 

in two polynomials q., 5, having degrees b - j - 1 and a - j - 1, respec- 
tively. The unique factorization theorem for polynomials implies that ( * ) 
has a nonzero solution if and only if A and B havej + 1 common roots. By 
expanding (*) in terms of the coefficients of q and 5, we obtain a system 
of a + b - j linear equations in a + b - 2j unknowns. We prefer to reduce 
this system to a square system, to which end we use the following observa- 
tion. Suppose that we already know that ( * ) admits a nonzero solution for 
all i = 0 , . . . , j - 1, so that A and B have at least j common roots. Replace 
(* ) by the weaker condition 

A(x)l$(x) -B(x)?(x) = c,(x), (**) 
where Cj( x) is an arbitrary polynomial whose degree is at most j - 1. This 
system mvolves exactly as many equations as unknowns, so that Eq. ( * * ) 
then has a nonzero solution if and only if #j( A, B) = 0, where \c;.( A, B) is 
the determinant of the (a + b - 2j) x (a + b - 2j) matrix of the homoge- 
neous system of linear equations representing the condition that highest 
(a + b - 2j) powers of x in the left-hand side of ( * * ) have zero coeffi- 
cients. (The determinant Ic;.( A, B) is known as thejth principal subresultant 
coefficient of A and B; qo(A, B) is the resultant of these polynomials. See 
Brown and Traub, op. cit., for more details.) If qj( A, B) * 0, then (* *), 
and hence also ( * ), has only trivial solutions, so that A and B have exactlyj 
roots in common. On the other hand, if #j(A, B) = 0, then there exist I?$, 
5, and Cj satisfying (* * ). However, we already know that A and B have at 
least j roots in common. Hence Cj(x) must be divisible by their product. 
But since Cj(x) is of degree at mostj - 1, it must be identically 0, so that q 
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and 5 also satisfy ( * ), and so have at least j + 1 roots in common. Thus, 
given the two polynomials A and B, we can determine exactly how many 
roots they have in common by computing $J~C;.(A, B) for increasing j until 
qj(A, B) becomes nonzero. This establishes the following: 

LEMMA 1. The number of common roots of two polynomials A(x) and 
B(x) is j, where j is the smallest integer such that #j(A, B) * 0. 

In particular, the degree of the polynomial R(b, x) introduced above is the 
least j such that rG;.(P, P’) * 0. Note also that the process just described 
depends on the knowledge of the degree of A and B (more precisely, on the 
maximal degree of A and B). Hence if A and B also depend on some 
parameter b (as does happen in the case in which we are interested), these 
degrees may vary if the leading coefficients of these polynomials become 
zero. All these considerations lead us to the following: 

LEMMA 2. Let P(b, x) be of degree n in x. For each j = 1,. . . , n let 
P,(b, x) denote the sum of terms of P whose degree in x is < j, and let Qj(b) 
denote the leading coefficient of q. Also let Rj,(b) = I,!J,($ pi), for k = 
0 , . . . , j - 2. Let M be the collection of all polynomials Qj(b) and Rj,(b). 
Then on each connected set S on which all polynomials in M maintain a 
constant sign, the number of distinct real roots of P( b, *) is constant. 

To bound the computational cost of all this, let Q*(b) denote the product 
of all nonzero polynomials in M. Then the degree of Q*, as a polynomial in 
any of the components y of b, is easily seen to be 0(dn3), where d is the 
degree of P in y. Indeed this product involves 0( n2) polynomials, which are 
determinants of matrices of size 2n X 2n at most, each element of which is 
of degree d in y. 

Using the preceding remarks, the Collins decomposition can be built up 
in the following recursive manner. Let S = {P,(b, x)} be any set of poly- 
nomials in k + 1 variables whose coefficients are all rational. Let P be the 
product of all the nonzero Pi, and let Q(b) be the product of all nonzero 
polynomials appearing in Lemma 2. Applying Collins’ construction recur- 
sively, let K be a Q-invariant cylindrical algebraic decomposition of the 
Euclidean space Ek. Let c be any one of the cells of K. Then Lemma 2 
implies that the number of distinct real roots of P( b, a) remains constant as 
b varies in c. Hence, if f,(b),. . . , f,(b) designate the real roots of P over c in 
ascending order, then all the functions fi( b) are continuous in b for b E c, 
and the collection of sets (ii.a)-(ii.d) of Section 2 partition the cylinder 
c X E’ in such a way so that the collection of all these sets over all base sets 
c E K defines an S-invariant (k + I)-dimensional cylindrical algebraic de- 
composition. 

Remark. Using the technique for selecting a good direction described in 
Section 2 we can reduce M somewhat. Let R denote the homogeneous 
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portion of P of highest degree 1. Rotating axes, we can ensure that R has a 
nonzero term involving x’. In this case M need only include Q, and the 
subresultants Rlk, so that Q* will be of degree dl at most. 

We omit the somewhat more refined argument, given by Collins, which 
shows how to find effectively quantifier-free defining formulae for the cells 
of the Collins decomposition. 

As noted by Amon [8], it is easy to write a Tarski statement which asserts 
that y is the j th real root of P in ascending order. This is simply 

P(Y) = 08t(3Y,,...,Yj-,)I 

X(Y, <Y2&Y, <Y,&*-~Yj-,<Yj-l 

&P(y,) = o&c*** &P(yj-,) = O&Yj-, <Y 

&(Vx)(P(x) <O&x <y =q 

x((x=y, vx=y,v -.-vx=y,J). (1) 

Collins also notes that it is easy to find an algebraic point in each cell in 
the decomposition K, in the following recursive way. Let K’ be the base 
decomposition of K. Proceeding recursively, obtain such a point for each 
c’ E K’. Let b E c E K be such a point. Then the points 

[c, Y1 - ll,[c, Y, + 11, 
[c, Yj], j= l,m**, m9 

[ 
C, 

Yj + Yj+ 1 1 2 ’ 
j=l ,..., m - 1, 

are all algebraic and there is one such point in each cell intersecting c x E’. 

EXAMPLE. We illustrate the technique described above by finding a 
P-invariant decomposition of the 2-dimensional plane, where 

P(x, y) = x3 + y3 - 3xy 

(This is one of the examples analyzed by Amon [ 171.) We begin by 
projecting E2 onto E’ in the y-direction. Since the leading coefficient of P 
(as a polynomial in y) is constant, in the first step of the Collins decomposi- 
tion it is sufficient to construct the following polynomials in x (we delete the 
common factors of their coefficients): 

&(P, P,) = x6 - 4x3, 

+,(p, p,> = x. 

Moreover, since the second polynomial is a factor of the first, only Q(x) = Jl,, 
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need be retained. The real roots of Q are 0 and 4’i3, so that the base 
decomposition K' of the decomposition we seek has 5 cells, namely, 

co* = (-cqo), 

Cl = Ro, 

cy = (0,41'3), 

c* = {4"3}, 

c; = (41'3, +a). 

Next we determine how many distinct real roots P(x, Y) (as a polynomial in 
y) has over each of these cells. To do this we compute the Sturm sequence 
of P and P,, (see Appendix B below for a review of Sturm sequences), which 
is 

A)(Y) = Y3 - 3XY + x3, 

f,(Y) = Y2 - x9 

h(Y) = 2XY - x3, 

f3(y) = 4x - x4. 

From this sequence one easily finds out that P( X, .) has one root over c& 
one root over c,, three roots over c:, two roots over c2, and one root over ct. 

Since the decomposition we have considered is well-based, it is a regular 
cell complex, and its topology will be completely determined once the p 
maps on its base cells are found. The maps p can be computed by using the 
technique described in Section 2. Omitting details, one finds that the map 
p(cG, c,) maps 1 to 1; the map p(cf, c,) maps all three roots 1,2,3 to 1; 
the map p(c:, c2) maps the two upper roots 2,3 to the upper root 2, and 
the lower root 1 to the lower root 1; and, finally, the map p(cz, c2) 
maps the single root 1 to 1. 

APPENDIX B: ON EXACT S~OLIC COMPUTATIONS WITH 
ALGEBRAIC NUMBERS 

This appendix addresses the problem of how to perform the exact 
calculations with algebraic numbers required for the algorithms described in 
this paper, for which numerical approximate solutions may not be accept- 
able, since such calculations may lead to incorrect conclusions, e.g., in 
comparing approximate quantities we may wind up putting them in an 
order which is different from the order of the original numbers, if these 
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numbers are very close to each other. Of course, the algorithms to be 
described will never be able to give an “exact” value of an algebraic 
number. Nevertheless they can be used whenever an answer to some discrete 
query involving algebraic numbers is needed, as in the Collins decomposi- 
tion related technique sketched in this paper. 

This kind of problem, i.e., how to perform exact calculations involving 
algebraic numbers, has been studied by many authors (see [18-211). In this 
appendix we will review the methods used to perform calculations of this 
kind, describe various improvements of techniques that have appeared in 
the literature, and present a few additional techniques. 

In the following discussion, we ignore all those (possibly substantial) 
computational costs which can (and will) arise from the growth in size of the 
integers with which the algorithms to be described must deal; that is, we will 
measure cost by assigning each operation on integers (and hence each 
elementary operation on rational numbers) a nominal cost of 1. (Note, 
however, that much prior research has concentrated on obtaining more 
realistic cost estimates for such algorithms, taking into account the possible 
growth of coefficients during certain operations on polynomials, such as 
computation of the GCD of two polynomials, the Sturm sequence of a 
polynomial, the sequence of derivatives of a polynomial, etc. (see [16, 19, 
201. These more refined estimates have shown that the extra cost incurred in 
such operations is still polynomial in the degree and the size of the 
coefficients of the polynomial(s) involved. Our significantly more optimistic 
cost measure is like the one used by Aho, Hopcroft, and Ullman [22].) 

Some of the results presented below rely on the weak but useful lower 
bound on the smallest possible distance between two distinct real roots of a 
polynomial. This is the content of the result of Mahler [23] (see also 
Mignotte [24]) which the following definition and theorem summarize. 

DEFINITION 1. (a) Let P be a polynomial over the complex field. Then 
] PI is defined to be the sum of the absolute values of all the coefficients 
of P. 

(b) The squurefree part P* of P is the quotient of P by the greatest 
common divisor GCD(P, P’) of P and its derivative P’. 

As already observed, P* and P have exactly the same roots, but all the 
roots of P* are simple. If P = P*, i.e., if P has simple roots only, then P is 
said to be squarefree. With the significant reservation noted above the 
squarefree part of a polynomial P of degree n can be calculated in time 
0( n log2n) by using fast techniques for the required GCD computation and 
division steps; see Aho, Hopcroft, and Ullman [23, Ch. 81. 

THEOREM 1 (Mahler). The minimum distance between two distinct roots of 
a squarefree polynomial P of degree n with integer coefficients is bounded 
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Theorem 1 is important in what follows, since it guarantees that suffi- 
ciently precise approximate calculations with algebraic numbers (of the type 
to be considered below) will yield entirely precise results. However, in most 
of the following algorithms we will not have to compute the roots of a 
polynomial P to such a high degree of accuracy, unless roots of P actually 
happen to be that close to one another. 

DEFINITION 2. (a) Let P be a squarefree polynomial of degree n with 
integer coefficients. Then a P-isolating interval for a real root r of P is an 
interval with rational endpoints, which contains r in its interior, but does 
not contain any other root of P. 

(b) Let P be as in (a). A P-separation of the real line is a partition of R 
into a union of disjoint P-isolating intervals. 

Theorem 1 yields a lower bound on the size of a maximal P-isolating 
interval for a root of P. However, assuming that the roots of P are randomly 
distributed, the size of P-isolating intervals can be expected to be much 
larger than A(n, I PI). 

Following a convenient convention, we can represent an algebraic num- 
ber x by a pair consisting of a squarefree polynomial with integer coeffi- 
cients having x as a root and of a P-isolating interval for x. To proceed in 
this way, it is obviously important to be able to find isolating intervals for 
all the real roots of a squarefree P (i.e., to find a P-separation of the real 
line) rapidly. This root isolation problem is considered by Heindel [19], 
Akritas [18], and Collins and Loos [20]. Akritas describes an isolation 
technique based upon systematic binary searching using the Descartes rule 
of signs, which he indicates can solve this problem for a polynomial P of 
degree n in time 0( n’). (However, the details of his efficiency estimate are 
not entirely clear.) The estimates of Heindel and of Collins and Loos give 
the bound 0( nl” + n710g3 ] PI), which is also polynomial in n and 1 PI, 
although with a relatively high exponent. Below we will sketch a root- 
isolation algorithm, essentially an improved variant of the older technique 
suggested by Heindel [19], which uses a Sturm sequence-based technique 
and can accomplish root isolation using O(n310g n) arithmetic operations 
(in our cost measure) in the worst case, but on the average will require only 
O(n210g2 n) such operations. 

We begin by reviewing the beautiful classical theory of Sturm sequences 
(see Marden [25], p. 130ff.), which gives a very useful way of handling 
several of the problems that concern us. Let P be a univariate polynomial, 



THE “PIANO MOVERS” PROBLEM 329 

and let P’ be its derivative. The Sturm sequence of P is a sequence {fi} of 
polynomials such that f0 = P, f, = P’, and such that for each i > 1, -fi is 
the remainder obtained by dividing fiP2 by fi- ,. For this sequence there 
plainly exists a sequence of quotient polynomials Qi-, (with rational 
coefficients) such that 

fi-2 = Qi-Ifi-1 -A, i> 1, 

where the degree of fi is strictly smaller than that of fi- ,. Since P is assumed 
to be squarefree, this process must terminate with some constant function 
fk. The Sturm sequence has the property that, for any interval [a, b], the 
number of roots of P in this interval is S(a) - S(b), where S(x) is the 
number of sign changes in the sequence [ fo(x), f,(x),. . . , fk(x)]. 

Next we describe a fast procedure for the computation of the Sturm 
sequence of a given polynomial P of degree n. At a first glance it might 
seem that this task will require time at least O(n*), since that many 
coefficients appear in the polynomials constituting this sequence. However, 
by representing the sequence in a more economical way, we can reduce this 
time to O(n log*n). To do this, we note that the degree of Qi is the 
difference of the degrees of fi- , and fi. Thus if m, denotes the degree of the 
quotient Qi, i = l,..., k - 1, the sum of all the mi’s is n. Hence we can 
represent the Sturm sequence by the sequence [ fo(x), f,(x), Q,(x), . . . , 
Qk _ ,(x)1, which involves only O(n) coefficients. Once this representation is 
available, we can use it to evaluate the whole Sturm sequence at any given x, 
as well as the number of sign changes in the Sturm sequence, in time O(n). 
To do this, we first compute fo(x), f,(x), and Q,(x) for i = 1,. . . , k - 1 
(which requires total time O(n)). Then, using the “backward formulae” 

h(x) = Qi(x)h-l(x) -fi-z(x), i = 2,. . . , k, 

the Sturm functions can be evaluated at x in O(n) additional time. 
For this more efficient evaluation, we simply need all the quotient 

polynomials Qi. Up to a sign change, these are exactly the quotients 
obtained during calculation of the GCD of P and P’. To compute all these 
quotients efficiently, we can use the fast polynomial GCD procedure 
described in [22, Ch. 81. This procedure works as follows. Let a(x), b(x) be 
two polynomials of degree 4 n. Let the remainder sequence {I;(x)} and the 
quotient sequence {qi(x)} of a(x) and b(x) be defined so that r,,(x) = u(x), 
r,(x) = b(x), ri-l(x) = qi(x)ri(x) + ‘i+,(X), i > 1, and deg(ri+,(x)) < 
deg(r,(x)). For each i there exists a polynomial 2 X 2 matrix Mi such that 
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Furthermore, each Mi is the product of matrices of the form 

The fast GCD algorithm first computes the two middle elements Q(X) and 
5 + , (x) in the remainder sequence, and then calls itself recursively with 9 (x) 
and q+ ,(x) to process their remainder sequence, which of course coincides 
with the rest of the remainder sequence of a and b. To find 5 and q+ ,, the 
algorithm uses another recursive procedure HGCD which computes the 
matrix Mj. This second procedure uses the fact (see [22, Lemmas 8.6 and 
8.71) that all the quotients qi(x), i < j, depend only on the most significant 
half of the polynomials CL and b. HGCD thus discards the least significant 
halves of a and b, thereby obtaining polynomials a’ and b’ of degree at most 
n/2; it then calls itself recursively to compute the two middle elements 5, 
and ‘it+, among the first j elements in the remainder sequence of a’ and b’, 
during which process it also calculates the matrix Mj,. The quotient q,,(x) 
and the matrix Nj, are then calculated, after which HGCD calls itself once 
more with 7, and q,+, as parameters to compute the product L of the 
matricesNjP+,,..., Nj. The matrix Mj is then computed as Mj, . Nj, - L, and 
recursively returned. This description should make it plain that the algo- 
rithm sketched computes all quotients qi(x) appearing in the quotient 
sequence of u(x) and b(x). With minor modifications, it can therefore be 
used to obtain the desired efficient representation of the Sturm sequence of 
a given polynomial. Since the fast GCD algorithm runs in time O(n log2n), 
this is also the time required for the calculation of the Sturm sequence. 

This gives us the following: 

THEOREM 2. The number of distinct real zeroes of a polynomial with 
rational coefficients of degree n, lying in any given interval [a, b], can be found 
in O(n) arithmetic operations, after preprocessing which requires 0( n log*n) 
arithmetic operations. 

We can now describe a root-isolation procedure as follows. We first 
compute the Sturm sequence of the given polynomial P, in the manner just 
described. Next we find an upper bound b and a lower bound u such that all 
real roots of P lie in the interval [a, b]. For example (see [25]), we can take 

b= -u=max 1 +F:i=O,..., n-l 
” 

where pi is the coefficient of the ith power of x in P. Let N = S(b) - S(u) 
denote the number of distinct real roots of P. We perform a binary search 
of the interval I = [a, b] to find a point c E [a, b] which separates it into 
two subintervals each containing at least one root of P. It follows from 
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Mahler’s theorem that such a point will be found after at most 0( n log n) 
bisections of I, at each of which we have to evaluate S, so that to find c will 
take O(n210g n) steps. (However, assuming random distribution of the roots 
of P, the expected number of required bisections will be O(log n), so that c 
will be found on the average after O(n log2n) steps.) We then apply the 
same process to each of the intervals [a, c] and [b, c], and continue in this 
manner until isolating intervals for all the roots of P have been found. 
Obviously only N < n intervals will have to be processed, so that the whole 
procedure requires O(n310gn) steps in the worst case, and O(n210g2n) 
steps on the average; note that these time bounds also dominate the time 
required for the initial computation of the Sturm sequence. 

An alternative, and possibly more attractive, technique for root isolation 
has been described by Collins and Loos [20], and is based on Newton’s 
approximation technique. Their technique proceeds inductively by first 
obtaining root-separating intervals for the derivative of P, making sure that 
none of these intervals contains a root of the second derivative of P. On any 
interval in the complement of the union of these intervals P’ has constant 
sign, so that it is trivial to check whether such an interval contains a root of 
P. On any of the P’-isolating intervals I, P is either convex or concave 
throughout I. Hence Newton’s technique will converge (very rapidly) to a 
root of P in I if such a root exists. This enables one to partition I rapidly 
into P-isolating intervals which do not contain a zero of P’, thus allowing 
iteration of the process. More details can be found in [20]. 

Once any root-isolation procedure is available, we can use it to perform 
various exact computations in algebraic numbers. Before describing efficient 
procedures for such computations, we first note a simple but useful generali- 
zation of Sturm’s theorem. Specifically, let A(x) and B(x) be two given 
polynomials, where A is squarefree. Form the generalized Sturm sequence of 
A and B (which, up to sign changes, coincides with the remainder sequence 
of A and B) as follows. Put fO( x) = A(x), f,(x) = B(x), and, for each 
i> 1, 

so that the last element in this sequence will be the GCD of A and B. Let 
S(x) denote the number of sign changes in the sequence &(x), . . . , f,Jx)]. 
As in the case of standard Sturm sequences, it is easy to see that each time 
we cross a zero of some function L(x), i > 1, S(x) remains unchanged. 
However, each time we cross a zero x0 of f0 = A from left to right, S(x) 
decreases by sign(d’(xO) B(x,)). (It is easy to check that this statement 
remains true even if x0 is a zero of B(x).) Hence, in any given interval 
Ia, bl, 

S(a) - S(b) = zsign(d’(x)B(x)), 
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where the summation extends over all distinct roots of A lying in (a, 6). (In 
the case of a standard Sturm sequence, B(x) = A’(x), so that the above sum 
is equal to the number of distinct real roots of A in (a, b).) 

In particular, if the interval (a, b) is known to contain just one root r of 
A(X), then S(a) - S(b) is 0, 1, or - 1, depending on the signs of A’( r ) and 
B(r). Since A has been assumed to be squarefree, the sign of A’(r) is easily 
calculable from the signs of A(u) and A(b). Hence the sign of B(r) can also 
be calculated. That is, given an algebraic number r, represented as the ith 
root of a squarefree polynomial A, for which an A-separation of the real line 
is available, and another polynomial B, we can find the sign of B(r). (Note 
that (an efficient representation of) the generalized Sturm sequence can be 
computed and evaluated using precisely the same techniques prescribed for 
standard Sturm sequences.) This technique improves that described by 
Rump [21]. 

This generalized Sturm technique is applicable to a variety of other 
problems. For example, we can use it to determine the multiplicity of the 
real roots of a given polynomial P. To do this, we first compute the 
squarefree part P* of P, and then isolate the real roots of P* (i.e., 
the distinct real roots of P). For each root r of P, we use the above 
procedure to determine sign P’(r). If this is nonzero, then r is a simple root. 
Otherwise r has multiplicity 2 at least; we then repeat our procedure to find 
the sign of P”(r), and so on, until a nonzero sign is obtained, from which 
the multiplicity of r is immediately calculable. Using this technique, the 
multiplicities of all real roots of a polynomial of degree n can be found in 
time O(n210g2n) (assuming that a P-separation is available). Indeed, the 
total number of roots is n, and to determine each multiplicity, an 0( n log2n) 
procedure is applied. 

A very similar procedure can be used to compare two real algebraic 
numbers a and b, given as roots of the squarefree polynomials P and Q, 
respectively. To do this, obtain a P-separation and a Q-separation of the 
real axis, and merge them into one partitioning. Let Z = [c, d] be a 
P-isolating interval for a, and let J = [e, f] be a Q-isolating interval for b. 
If Z and J are disjoint, then the manner in which a and b compare is 
immediately obvious. Suppose then that Z and J intersect. Several cases can 
arise; we will treat only the case in which c < e c d -C f, since the other 
cases can be handled in a similar manner. Since P is squarefree, and since 
(c, d) contains only one root of P, P(c) and P(d) have different signs. By 
evaluating the sign of P(e) we can determine whether a lies in the subinter- 
val (c, e) or in the subinterval (e, d) of I. If a lies in (c, e) then we must 
have a < b. Similarly, if b lies in (d, f) we also have a -C b. In the remaining 
case, both a and b (but no other root of P or Q) must lie in the interval 
(e, d). Using the generalized Sturm technique explained above, we can 
compute the sign of P(b), and this shows at once how a and b compare. As 
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before, this procedure takes 0( n log2n) time, where n is the maximal degree 
of P and Q, provided that P- and Q-separations of the real axis are 
available. 

Similar procedures can be used to perform various other exact computa- 
tions with algebraic numbers. Suppose, for example, that we need to 
compare the sum (or product) of two algebraic numbers a and b to a third 
such number. One can of course compute a polynomial R(x) having a + b 
(or ab) as a root. However, it may be undesirable to do this since this can 
generate a polynomial whose degree is deg(A) . deg( B) (where A(x) (resp. 
B(x)) is a polynomial having a (resp. b) as a root), and repeated computa- 
tions of this sort may result in polynomials of extremely large degrees. To 
avoid this problem, a recursive symbolic representation of algebraic num- 
bers might be more advantageous: We can specify an algebraic number r 
either as a polynomial A( r,, . . . , rk) in k other algebraic numbers, or as a 
root of a polynomial B(x), whose coefficients are algebraic numbers r,, . . . , 
rk; where each of these numbers is in turn represented in this same fashion, 
until numbers explicitly representable by polynomials with rational coeffi- 
cients are finally reached. Such semi-symbolic representations can be used 
to perform computations of the kind discussed above. Consider the typical 
problem of determining the sign of an algebraic number r specified in this 
recursive fashion. Suppose to be specific that r is specified as a polynomial 
A(r,,..., rk). Let B(rk) = 0 be an equation for rk, and isolate rk as a root of 
B. Then use the technique explained above to determine the sign of 
4r t, . . . , rk), which we regard as a polynomial in rk with coefficients which 
are algebraic. This will require that we determine the sign of various 
polynomials in r,, . . . , r,- ,, which we can do by using the same technique 
recursively. 

Fast Algorithms for the Computation of Principal Subresultant 
Coefficients 

Schwartz [ 121 (see also Moenck [26]) describes a variant of the fast GCD 
algorithm described above which computes the resultant of two polynomials 
having degrees Q n in O(n log*n) time. Since the Collins decomposition 
technique involves numerous calculations of resultants and subresultants, it 
is of interest to note that the algorithm described in [12] can be generalized 
in a straightforward manner to yield a rather similar fast procedure for the 
computation of subresultants as well. For the convenience of the reader we 
will describe the necessary modifications in full detail. 

First we recall the definition of a principal subresultant coefficient. Let 

A(x) = a,xm + a,,-,xm-’ + ... + a,, 
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and 

B(x) = b,,” + b”-,x”-’ + *** + b, 

be two polynomials of degrees m and n, respectively. For 0 Q j d min( m, n), 
the jth principal subresultant coefficient qi(A, B) of A and B is the 
(m + n - 2j) x (m + n - 2j) determinant ’ 

%-n+j+ I . . . 
a2j-n+l 

. . . 
a2j-n+2 

. . . 

0 0 *-- am . . . 
ai 

bn 4-1 . . . bn-m+j+ 1 * * * &j-m+ 1 

0 bn bn-, . . . &j-m+2 
. . . 

0 0 . . . 4l . . . 
!i 

the first n - j rows of which involve coefficients of A, and the last m - j 
rows of which involve coefficients of B. (Here we use the convention that 
ai = 0 if i < 0.) As noted earlier, this is precisely the determinant of the 
linear transformation 

T: [u(x), v(x)] + (A(x)U(x) + B(x)%))/x’, 

where U is a polynomial of degree n - j - 1, I’ is a polynomial of degree 
m - j - 1, and where, as usual, the remainder after the indicated division is 
discarded. Ifj = 0, #j(A, B) is just the resultant of A and B. 

Let Q be the quotient obtained by dividing B by A, and let R = B mod A 
be the corresponding remainder. Suppose that n 2 m, and let k < n - m. 
By subtracting an appropriate upper row from each lower row in ( * ) we see 
that tij(A, B) = rC;.(A, B - xkA). Using this last formula repeatedly, it 
follows that, if both sides of the following equation are considered as 
(m + n - 2j) x (m + n - 2j) determinants, we have 

#j(A, B) = qj(A, Bmod A). 

Moreover, expanding the second determinant by minors of the first n - m 
+ 1 rows, we obtain 

#j(A, B) = L(A)“-“+‘qj(A, Bmod A), 

where L(A) denotes the leading coefficient of A, and where the determinant 
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on the right-hand side is now an (2m - 1 - 2j) X (2m - 1 - 2j) determi- 
nant. However, since the remainder B mod A can be of any degree k lower 
than m, a more appropriate reduction is 

#j(A, B) = L(A)“-‘#j(A, Bmod A) (1) 

where this time #j(A, Bmod A) is an (m + k - 2j) X (m + k - 2j) de- 
terminant. To rewrite this in the symmetric form which covers the case 
m >, n, first note that 

$j(A, B) = (-1) (m-j)(n-j)#j(B, A). 

Hence, if m 2 n, and if k is the degree of A mod B, we have 

(2) 

$,(A, B) = (-l)‘“-“‘m-k’L(B)m-k~j(Amod B, B). 

Finally, if j = m Q n, then 

(3) 

#j(A, B) = L(A)“-“. (4) 

It is also appropriate to put 

+$(A, B) = 0. (5) 

if min(m, n) -C j. Note that the last equality is consistent with the reduction 
formulae (1) given above, in the sense that #j( A, B) = 0 if either 
deg(Amod B) <j or deg(Bmod A) <j. 

The technique for resultant calculation given in [12] depends only on the 
identities (l)-(5) and hence can be adapted to the calculation of principal 
subresultant coefficients. Fleshing out this summary remark, we shall now 
present an efficient technique for the simultaneous calculation of all subre- 
sultants of a given pair of polynomials P and Q. To this end, we make the 
following definition. 

DEFINITION 3. Let a pair of polynomials w  = [P, Q] of degree d, d’ 
with coefficients in a field F be given, and let d = max(d, d’). Write 
P mod Q for the remainder of P upon division by Q. Then the RQ-sequence 
RQ(w) of w  is the sequence t;, i = d, d - 1,. . . , 0, of quadruples 

defined as follows: 

ti = [[Pi, Qi], ai, bi> Mi], 

(1) Pi, Qi are polynomials, ai is a quantity of F, bi is always + 1 or - 1, 
and Mi is a 2 x 2 matrix of polynomials with coefficients in F. 

(2) t, = [[P, Q], 1, 1, I], where I is the 2 X 2 identity matrix. 
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(3) max(deg(Pi), deg(Q,)) 2 i 2 min(deg(Pi), deg( Qi)) for i > 0. 

(4a) If min(deg(Pi), deg(Q,)) < i, then tieI = ti; 

(4b) Otherwise, if deg(P,) = i, then (dropping remainders in all poly- 
nomial divisions) we have 

ti-l = [[Pi, Qimod pi], aiei, bifi, nisi], 

where n = deg(Qi), k = deg(Q,mod Pi), fi = 1, e, = L(Pi)“-k, and 

Ni= [ -h,/p, if]; 
(4~) Otherwise deg( Qi) = i, and then 

ti-1 = [[P,modQi, Qi], aiei, bif,, N,M~], 

where m = deg(P,), k = deg(Pimod Q,), 

ei = (( - l)iL(Qi))“-“, 

f, = (-l)“+, 

and 

The following lemma generalizes Lemma 3 of [12]. 

LEMMA 3. Let w = [P, Q], ti, etc., be as in the preceding definition. Then 
the sequence RQ( w) has the following properties: 

(i) [Pi, Qil = Mi[P, Ql- 
(ii) deg(M,) Q d - max(deg(P,),deg(Q,)) G d - i. 

(iii) For each i d d and each 0 d j d min(deg(Pi), deg(Q,)), Gj(P, Q) 
= a,tJj(Pj, Qi) if j is even, and Gj(P, Q) = a,bi#j(Pi, Qi) ifj is odd. 

ProoJ All this is clear for i = d. A step from ti to tie, via (4a) of the 
preceding definition clearly preserves the validity of (i)-(iii). Now suppose 
that rule (4b) applies to the step from tj to t,-,. Property (i) is clearly 
preserved. Moreover, 

deg(Mi-1) Q deg(Qi) - deg(Pi) + deg(M;) 

G deg( Qi) - deg( pi) + d - deg( Qi) 

= d - deg( Pi) = d - max(deg(Pi-,),deg(Qi-,)). 
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Concerning (iii), it follows by (1) and (2) that 

if j is even, and similarly if j is odd. 
Suppose finally that (4c) is used to obtain ti from lie ,. Again, property (i) 

is clearly preserved, and property (ii) follows by an argument symmetric to 
the one used above, in which Pi and Qi are interchanged. Concerning (iii), 
using (1) and (3) we obtain, assumingj is even, 

= ((-lIi'(Qi)) 
@eg(Pi)-deg(P,mod Q,)) 

* J/(P,modQi, Qi) 

and similarly ifj is odd. This proves the lemma. Q.E.D. 

LEMMA 4. bt w = [P, Q], w* = [P*, Q*] be two pairs of polynomials. 
Suppose that max(deg( P), deg( Q), deg( P*), deg( Q*)) = d, and suppose that 
the terms of order not less than d - 2i in P, Q agree with the corresponding 
terms in P*, Q*. Then the first i + 1 terms of the sequence RQ(w) = 
[fd, t&,,--- ] have precisely the same components ai, bi, Mi as the correspond- 
ing terms a:, b:, h4: of the sequence RQ(w*) = [t$, t$- ,, . . . 1. 

Proof. Except for the equality of b, and bf, the proof is completely 
identical to that of Lemma 4 of [ 121. The equality of bi and br is also an 
easy consequence of that same proof. Q.E.D. 

Lemmas 3 and 4 justify the following principal subresultant calculation 
algorithm, whose underlying idea is to compute the terms ai, bi, and Mi by 
stepping through the sequence [r,] by steps of increasing length, each of 
length double that of the preceding step. Lemma 4 implies that each of these 
steps can use polynomials of substantially lower degree than that of the 
original polynomials. However, as soon as we have calculated ai, bi, and Mi 
for some i 6 d for which j = deg(Pi) 6 deg(Q,), we can get 1c;.(P, Q) 
directly. Indeed, using (4) and Lemma 3(iii), we have 

I1;(f’, Q) = ai+j(P,, Qi) 

= ai . L(pi)(deg(QJ-j), 

if j is even, and similarly if j is odd (and of course analogous formulae are 
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available if i = deg(Q,) < deg( Pi).) Note that if li * tit then 
~n(deg(Ci), deg(Qi)) * min(deg( Pi,), deg(Q,,)), so that for each j either 
there exists no i for which j = min(deg(Pi, Qi), or the i’s for which this 
equality holds all have the same value ti, and hence the above formula 
defines Itj unambiguously. Observe finally that, by (5), all qj which do not 
appear in the above formula for any value of i are 0. 

In view of these comments, the algorithm proceeds as follows. Initialize 
four static lists, AL, BL, CL, and DL to the null list each. 

(1) Call an auxiliary routine HSBRSL(P, Q, 0), with final parameter 
I = 0. This routine will build up the first half of the RQ-sequence [ti], for 
d 2 i > d/2 = d’, and will return the quantities ed’, fd,, and Md’. 

(2) Compute [Pa, Q&l = Mdf[Pd, Qdl. 
(3) Let m = deg(P,,), n = deg(Q,,). If m < n then append the quanti- 

ties ed,, fdr, L(P,,)“-“, m respectively to the end of the four lists 
AL, BL, CL, DL. Similarly, if m >/ n then append the quantities 
ed’y fd’, L(Q&)“-“, n, to the end of these four respective lists. 

(4) Call the whole procedure recursively, passing Pd’, Q# to it as inputs 
to complete the construction of the whole sequence. 

The subprocedure HSBRSL( P, Q, /) required is rather similar to the 
auxiliary procedure HGCD used in the fast polynomial GCD algorithm in 
[22]. It consists of the following steps. 

(1) Discard the least significant half of the coefficients of P and Q; that 
is, let P = P*xk + P’, Q = Q*xk + Q’, where k = max(deg(P), deg(Q))/2, 
and where deg( P’), deg(Q’) < k. 

(2) Apply HSBRSL to P*, Q*, and 1 + k, to obtain ek’, fkl, and Mk, for 
k’ = 3k/2 (by Lemma 4, these are the same as the corresponding quantities 
associated with the original P and Q). 

(3) COInpUte [Pk’, &] = ikfkf[P9 Q]. 
(4) As in step (3) of the main procedure, let m = deg( Pk,), n = deg(Qk,). 

If m d n then append the quantities ek’, fk’, L(Pkr)“-“, m + 1, to the end 
of the four lists AL, BL, CL, DL respectively. Similarly, if m > n then 
append the quantities eke, fkt, L(Qk,)“-“, n + I, to the end of these four 
respective lists. 

(5) Let Pkp = Pk*,xk” + P”, Qk, = Q$xk” + Q”, where k” = k/2, and 
where deg( P”), deg( Q”) c k”. 

(6) Call HSBRSL with PC, Qj$, and I + k”, to obtain e:, fz, and Mz. 

(7) Return e:, fk*, and Mk* * &fk’. 

When the algorithm just sketched has terminated, we can perform one final 
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scan through the lists AL, BL, CL, and DL, to accumulate the scalar 
quantities a, by bi by repeated multiplication of the ei’s and the h’s, 
respectively. Using the following technique we can also calculate all the 
principal subresultant coefficients Gj. For each iteration step k, let yk, mk be 
the k th components of CL and DL, respectively, and let uk- i and b,- , be 
the product of all preceding components in the lists AL and BL, respec- 
tively. If mk is even, put 

and if mk is odd, put 

At the end of this final iteration, all remaining undefined subresultants are 
set to 0. 

The computational cost of the procedure just sketched is evidently the 
same as the original procedure given in [12]. To estimate this cost we note 
that multiplication and division of polynomials of order m can be accom- 
plished in time O(m log m). During each call to the subprocedure 
HSBRSL(P, Q, I) that we have just described polynomials of order at most 
m = maNdeg(P), d&Q)) need to be multiplied and divided (at steps (3) 
and (7)). The total time T(m) required to apply HSBRSL to two polynomi- 
als of degree m therefore satisfies T(2m) = 2T( m) + 0( m log m) and hence 
has the bound T(m) = O(m log*m). Similar considerations show that the 
time used by the main procedure to build up the RQ-sequence has the same 
bound, so that this estimate also bounds the time required to calculate all 
the subresultants of two polynomials of maximal degree m. 

APPENDIX C: ADJACENCY OF COLLINS CELLS OF GENERAL 
DIMENSION 

In this appendix we complete our calculation of Collins cell adjacency by 
considering cells whose dimension is less than that of the whole space E’ 
being decomposed. The problem here is to determine when a Collins cell c’ 
of dimension k - 1 is a face of a cell c of dimension k < r. Our approach 
will again be based upon consideration of the base decomposition K’ of K. 
However, the present case is somewhat more complex than the case k = r 
considered previously, and this makes it necessary to use a bit more (largely 
classical) machinery drawn from the theory of algebraic curves. Accord- 
ingly, we recall the following definitions and lemmas, for which see Keller 
[27, Ch. 51. 
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DEFINITION 1. (a) A fractional (La went) series is a formal series of the 
form 

y(x) = E aix’/o 
i=m 

0) 

whose coefficients are complex numbers, and in which D is an integer. Such 
a series is said to be convergent if it converges in the neighborhood of x = 0. 
Note that we allow m to be negative. The series (1) is said to be truncated if 
it contains only finitely many terms. 

@I If a, * 0, then m/D is called the lkading exponent of the series y. 

(c) If the leading exponent e of the series (1) satisfies e > k (resp. 
e > k), we will writey = 0(x“) (resp.y = o(x~)). 

It is easily seen that the standard definitions of addition, multiplication, 
etc., for power series make the collection of all fractional series into a field. 
This statement, like many others made in the next few paragraphs, is true 
irrespective of whether we consider convergent fractional series only, or 
allow arbitrary, nonconvergent series, and treat operations on them in a 
purely formal manner. Moreover, this statement remains true even if the 
coefficients of the series (1) are required to lie in some subfield of the 
complex numbers. 

In what follows we will designate the field of fractional power series by 
Fr. 

LEMMA 1 (see [27, Ch. VI). The field of fractional series with complex (or 
with algebraic) coefficients is algebraically closed. 

Thus if P(y) = any’ + . . . + a, is a polynomial in y with coefficients in 
the field Fr and if a, f 0, P can be factored as 

P(Y) = a,(r - r,)... (y - r,), 

where r,,..., r” are themselves fractional series, namely, the roots of P(y) 
= 0. 

In what follows we will need to work in purely finite manner with 
fractional series representing the roots of various polynomials. Our ability to 
do so without ambiguity will rest upon various extensions of the following 
simple lemmas, which are also noted by Kung and Traub [28]. 

LEMMA 2. Let P(x, y) be a polynomial with complex coefficients in two 
variables, of total degree d > 0. Let its degree n in y be nonzero, and suppose 
that, when regarded as a polynomial P,.. y) in y, P has no factor in common 
with its y-derivative P:(y) and has a leading coefficient a,(x) which is not 
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zero for x = 0. Regard P,(y) as a polynomial in y with coefficients in Fr, and 
let rl(x),. . . , r,,(x) be its roots (which are elements of Fr). Then 

(a) If I;(x) - q(x) = O(X~(*~-~)), then i =j. 

(b) We cannot have Pi(ri(x)) = o(xd(*“-‘)) for any root r;(x). 

Prooj: Consider the discriminant D(x) of the polynomial P,(y), i.e., 
D = Res(P,, Pi) is the resultant of P, and Pi. This is a polynomial of 
degree d(2n - 1) in x, and since P, and Pi have no factor in common it is 
nonzero. Hence D(x) = o(x~(*~-‘)) is impossible. By well-known identities 
(see [29, Sections 30 and 31]), 

and also 

D(X) = IIIPi(I;:(x>). 
i*j 

(3) 

Since the leading coefficient of y in P,(y) does not vanish at x = 0, it is 
easy to see (by substitution) that no fractional series r(x) with negative 
leading exponent can satisfy P,.(r(x)) = 0. Hence I;:(x) = O(1) for all i, and 
therefore if assertion (a) of our lemma were violated, (3) would imply that 
D(x) = o(x d(2n- ‘)), which is impossible. If we use (4) instead of (3) in this 
argument, (b) follows in the same way. Q.E.D. 

LEMMA 3. Let P,.(y) = a,(x)y” + a,-l(x)y”-l + ... + a,(x) be a 
polynomial in y, of degree n, with coefficients in Fr, and suppose that a,,(x) 
does not vanish at x = 0. Let k 2 1, and let y,, = C~X’/~ be an element of Fr 
such that P,(y,(x)) = O(xnk). Then there exists a root r,(x) of P,(y) = 0 
such that yO(x) - ri(x) = 0(x“). 

Proof. Factor P,(y) in the manner (2). Then it is plain that if y0 - ri has 
leading exponent less than k for all i, the leading exponent of P,.. y,,(x)) 
must be less than nk, contradicting our assumption. Q.E.D. 

Lemma 3 asserts that any power series y,, which comes close enough to 
making P,( yO) equal to zero must lie quite close to a root of P,. It is also 
worth noting that if P,.. y) has no repeated roots, then, once P,( yO) has been 
made small enough, any desired number of coefficients of a root of 
P,(y) = 0 can be calculated rapidly from the coefficients of y, by purely 
rational operations. A technique for calculating fractional power series 
which approximate each of the roots of P,(y) near x = 0 to an arbitrary 
degree of precision is described by Kung and Traub [28]. Their technique 
first uses the Newton’s polygon method to obtain an initial (truncated) 
fractional series approximation for each of the roots of P,, and then uses a 
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variant of Newton iteration (similar to that described by Lipson [30]) to 
extend each of these series to an arbitrary degree of precision. Kung and 
Traub give a complexity bound of O( nN log N) for their procedure, where n 
is the y-degree of the polynomial P,, and where N is the number of terms 
sought in each fractional series. This bound holds asymptotically if n is held 
fixed and N increases, but it ignores the cost of applying the Newton 
polygon procedure (which indeed is independent of N) in order to obtain 
the initial collection of terms required to ensure convergence of Newton’s 
approximation method. At present our best estimates of this cost are still 
exponential, leading us to pose the following: 

Open problem. Given a polynomial P(x, y) with complex coefficients, 
of y-degree n and total degree d, does there exist a procedure for calculating 
truncated fractional series approximations for each of the roots of P(x, y) 
(regarded as a polynomial in y) near x = 0 up to terms of order 0( xdc2+ I)), 
in time polynomial in n and d? 

As will become clear from the subsequent discussion, an affirmative 
answer to this problem would imply that adjacency of Collins cells of 
general dimension, and hence also the homology groups of any algebraic 
variety, can be calculated in time polynomial in the number and the 
maximal degree of polynomials defining a Collins decomposition (or an 
algebraic variety). 

At any rate, once these fractional power series are available, we can use 
them to determine the adjacency of Collins cells. It is worth explaining what 
is involved by commenting briefly on the special case r = 3. Let K’ be the 
2-dimensional base decomposition of a well-based Collins decomposition K 
of E3 whose base polynomial is P(x, y, z). Let c be a l-dimensional curved 
cell in K’, and let c’ = [xc, ~a] E K be an endpoint of c. Let Q(x, y) be the 
base polynomial of K’. It follows from the preceding discussion that in the 
vicinity of c’ the curve c can be specified uniquely by a truncated fractional 
series y(x) which approximates the corresponding root of Q(x, y) near 
(x,,, ya). If enough leading terms of this fractional series are known, then, to 
determine the number of roots of P(x, y, *) into which a given root z0 of 
P(x,, ya, z) = 0 splits as we move from (x0, y,,) into c, we can substitute 
the curvey(x) fory in P, thus obtaining a polynomial R,(z) = P(x, y(x), z) 
in z with coefficients in Fr. Then, using a Sturm-based technique of the sort 
described in Appendix B, we can determine the number of roots of R, into 
which z,, splits for sufficiently small positive x. We can also compute 
truncated fractional series approximating each of these roots, and this 
enables us to carry the same form of analysis inductively to cases involving 
more than three variables. 

However, several technical difficulties must be overcome in following this 
conceptual approach. First of all, Lemma 2 is not immediately applicable to 
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R,, since the coefficients of R, are not simply polynomial but he in Fr; 
moreover R, need not be squarefree. This makes it a little harder to state 
how many terms of a fractional series suffice to characterize a root of R,. z) 
uniquely. Also, the truncated fractional series y(x) gives only an approxi- 
mate representation of the root of Q which traverses the curve c, and at first 
glance it is not clear how many terms need be included in y(x) to guarantee 
that the analysis we have outlined will carry forward inductively. 

To overcome these purely technical difficulties, it is useful to consider 
systems of polynomial equations in several variables having the form 
specified in the following definition. 

DEFINITION 2. (a) A triangular manic system of polynomial equations is 
a system 

p,(x,,x*,..., XJ = 0 

of polynomial equations of total degrees d,, . . . , d, with complex coeffi- 
cients, whose jth equation involves the variables x,, . . . , “j only, and which, 
regarded as a polynomial in xj with coefficients polynomral in the remaining 
variables, has a constant leadmg term. The sequence d,, . . . , d, is the degree 
sequence of the triangular system (5). 

(b) Given the triangular monk system (5) its resultant system is the 
sequence 

&(x,9 x*)9 R~(x,,xj), . . . . Rn(xl, xn) (6) 

of bivariate polynomials defined as follows. R, is simply P2. R, is obtained 
from P3 and Pz by regarding them both as polynomials in the variable x2 
and forming their resultant. More generally, to form Rj(x,, xi) proceed as 
follows: Regard Pj(x,, . . . , xj) and P,- ,(x,, . . . , xj- ,) as polynomials in 
xj- ,, and form their resultant, thus obtaining a polynomial Q,(x,, . . . , 
xjd2, xj) from which the variable xi-, has been eliminated. Then form the 
resultant Q, of Q, and Pjv2 (as polynomials in xjP2), obtaining a poly- 
nomial from which both variables xi-* and xj-, have been eliminated. 
Continue repeatedly in this way, thus finally obtaining the desired poly- 
nomial Rj = Qjm2, from which all variables but x, and xj will have been 
eliminated. 

(c) The sequence a,, . . . , S,, of degrees of the resultant polynomials (6) is 
called the resultant degree sequence of the triangular system (5). 
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DEFINITION 3. (a) A solution curve of the triangular manic system (5) is 
a continuous vector-valued function f(t) = [ f2( t), . . . , f,(t)] with complex 
components defined for all sufficiently small nonnegative values of the 
parameter t, such that for allj = 2,. . . , n we have Pj(t, f2(t),. . . , h(t)) = 0. 

(b) Let 5 and f be as in (a), let d = [d2,. . . , d,] be a sequence of 
rational numbers, and let (Y = [(Ye,. . . , a,] be a sequence of truncated 
fractional series in the variable t, such that oj contains terms of order 0( tdj) 
at most. Then a is said to be an order d descriptor of the solution curve f if 
f, - oj = O(tdj) for allj = 2,..., n. 

Our aim is to generalize Lemmas 2 and 3 to general triangular monk 
systems of more than two variables. For this, we need the following 
straightforward technical lemma, whose main purpose is to enable us to 
bound the order of finite descriptions of solution curves of (5) needed to 
characterize such a solution uniquely. 

LEMMA 4. As in Definition 3, let P2,. . . , P,, be a triangular manic system 
andlet R2,..., R, be its resultant sequence. Then each Rj can be factored as 

where A, R;, and RJ are all polynomials in their respective variables, and 
where Rj is the squarefree part of Rj (regarded as a polynomial in xj) 
represented by a polynomial whose coefficients (which are polynomials in x,) 
have no common factor. Moreover, we can arrange this factorization so that 
the leading coefficient C(x,) of RT does not vanish at x, = 0. 

Proof As in Definition 2, regard Pj(x,, . . . , xi) and pi- ,(x1,. . . , xi- ,) 
as polynomials in xj-, with polynomial coefficients, and form their re- 
sultant Q,. If we use the fact that Pi-, is monk in xi- i, it follows from the 
fundamental theorem of resultant theory that a tuple [x,, . . . , xj-*, xj] is a 
solution of the system P, = P2 = - * * = q- 2 = Q, = 0 of equations if and 
only if there exists an xi-, such that [xi,. . . , xi-*, xj- ,, xi] is a solution of 
the system Pi = 0, i = 2,. . . , j. Arguing repeatedly in this way, we see that 
[x,, xi] is a solution of the equation Rj(x,, xj) = 0 if and only if there exist 
Xl,..., xj- , such that [x,, x2,. . . , xj]isazeroofPif0ralli=2,...,j.0n 
the other hand, it follows since each Pi is monk that all the solutions of the 
system Pi = 0, i = 2,..., j which lie over a small neighborhood of the point 
x, = 0 remain bounded. Thus all the solutions of Rj(x,, xi) = 0 over such a 
neighborhood have the same property. 

Next regard Rj as a polynomial in xj, take its (xj - ) derivative Rj, form 
T’ = GCD(Rj, RJ), and use it to factor Rj as Rj = TOT’. These are 
polynomials in xi with coefficients rational in x, but then by multiplying 
through by an appropriate polynomial C(x,) we can write CR, = S’S’, 
where now So and S’ have coefficients which are polynomials in x,. Since 
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the ring of polynomials in two variables is a unique factorization domain, 
every prime factor of C divides one of the polynomials on the right, which is 
to say, divides all its coefficients. This remark allows us to divide through by 
all these prime factors, and if we then collect all common factors of the 
coefficients of R” and R’ in A(x,), we arrive at the factorization (7). 

It is now clear that all the solutions [x1, xj] of RT = 0 which lie over a 
sufficiently small neighborhood of x , = 0 have second components xj which 
remain bounded. By Lemma 1, these solutions T,(x,),. . . , TV can be 
written as fractional power series C,,,,+X,X;/~, and since they remain 
bounded near x, = 0 none of these fractional series contain any term with 
negative exponents. Suppose that the leading coefficient a,(~,) of Ry 
vanishes at x, = 0. Then since R/” can be factored as 

R~(x,, Xj) = a,(X,)n(Xj - ri<X,>), 

it would follow that all the coefficients of R; vanish at x, = 0. But then x, 
would be a common factor of all coefficients of Ry, contrary to the way in 
which Ry has been defined. Q.E.D. 

COROLLARY. Let the polynomials I$ j = 2,. . . , n form a triangular manic 
system, and let the resultant degree sequence of this triangular system be 
f&Y.. -9 S”]. Put 

d= [6,(26, - l),..., 6,,(2S, - l)]. 

Then any two solution curves f(t), g(t) of this triangular system which have 
identical order d descriptors are identically equal for all sufficiently small 
nonnegative values of t. 

Proof Let R, be the resultant system of the triangular system 5. 
Arguing as in the proof of Lemma 4, we can conclude that the components 
f, off satisfy Rj(x, h(x)) = 0, and similarly for the components of g. Our 
assertion is therefore an immediate consequence of Lemmas 2 and 4. Q.E.D. 

DEFINITION 4. Let q. and Sj be as in the preceding corollary, let 
d = [d,,..., d,] be the degree sequence of the pi, and define d* = 
maj,2...,,d2d3 * * . djaj(2Sj - 1). Put d;” = d*/(d, . . . d,) for j = 2, .: . , n 
(so that d; is a decreasing sequence of positive rational numbers). Suppose 
that for j = 2,..., n aj(x) is a truncated fractional series such that there 
exist auxiliary truncated fractional series a;(x) (all of whose exponents can 
be assumed to be < d:) such that pi(x, a:(x),. . . , a;(x)) = O(xdY-l) and 
aj(x) - a;(x) = O(xd;). Then a = [a2,. . . , a,,] is called an adequate 
descriptor for a solution of the triangular system P2 = . . . = P,, = 0 of 
equations. 
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LEMMA 5. Let d, d*, and 6 be as in the preceding definition. Given any 
adequate descriptor a = [ a2,. . . , a,,] for a solution of the triangular system (5), 
then for all sufficiently small t there exists a solution f(t) = [ f2( t ), . . . , f,( t )] 
of the system Pj(t, f2(t),. ..,fi(t)) = 0,j = 2,. . ., n such that 

fi(t) - ai = O(tsj(*‘j-I)). (8) 

Prooj Use the notations of Definition 4. We proceed by induction on j 
to establish the existence of a solution curve f = [f2,. . . , f,] which satisfies 
the formula 

h(t) - ai = O(tdy), (8’) 

forj = 2,..., n. By definition of the d; it is plain that (8’) implies (8). The 
base casej = 2 for our induction is immediate from Lemma 3. Suppose that 
we have already shown the existence of f2( t), . . . , fi- ,( t) such that 
pict, f*(t),. * * 3 fi( t)) = 0 for i = 2,. . . , j - 1, and such that (8’) holds for all 
such i. As in Definition 4, there exist auxiliary fractional series a;(t) such 
that Pj(t, a,(t),. . . , aj(t)) = 0(&l) and at(t) - ai = O(td:) < 
O(tdT-l) (since the dr are decreasing). Thus by (8’) we have at(t) - fi(t) = 
0( t d;- I), from which we see immediately that 

p,(t, f*(t) ,..., h-,(t), a;(t)) = O(t”;-I). 

Hence by Lemma 3 there exists a root fi(t) of this same equation such that 
fi(t) - a;(t) = O(t(dT-l/dj)) = O(td;) for small t, from which (8’) is plainly 
seen to hold forj too. Q.E.D. 

COROLLARY. Let$f = [f2 ,..., f,],anda = [a2 ,..., a,]beasinLemma 
5. Suppose that all the polynomials 5. have real coefficients. Then fj is real if 
and only if all the nonzero coefficients appearing in aj are real. 

Proof Since all Pj are real, the whole situation being considered is 
invariant under complex conjugation. Thus the curve f = [f,, . . . , f”] is also 
a solution curve of the system Pi, and z = [E2,. . . , Zn] is an adequate 
descriptor for j. It is plain from Definition 3 and from the corollary to 
Lemma 4 that f = f if and only if a = Z, from which the present corollary is 
immediate. Q.E.D. 

Our preparation is now sufficient for computations of the topological 
relationships which interest us to be feasible. The following definition takes 
the next step in this direction. 
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DEFINITION 5. Let K be a Collins decomposition of the Euclidean space 
E r, let c be a d-dimensional cell in K, and let c’ E K be a (d - I)-dimensional 
face of c. Then an incidence curne for the pair c, c’ is a triple consisting of 

(i) a triangular manic system P2,. . . , P,,, of m polynomials with real 
algebraic coefficients, 

(ii) a continuous solution curve f(t) = [f,(t), fi(t), . . . , f,(t)], all of 
whose components are real, such that f(t) E c for all sufficiently small 
nonnegative t, and such that f(0) E c’ [all constant components of the 
vector f must be algebraic numbers, and its nonconstant components 
J;,w,. *. 9 h,(t), which for convenience we shall write in left-to-right order as 
g,(t),..., g,(t), must satisfy q(g,(t) ,..., g,(t)) = 0 for j = 2 ,..., m; 
moreover, g,(t) must have the form g,(t) = t + 2, where 5 is an algebraic 
number]; 

(iii) an adequate descriptor (Y for the solution g,, . . . , g, of the triangu- 
lar manic system P2 = - - . = P,,, = 0 [This (finite) descriptor will be used to 
represent the nonconstant components of the curve f in finite terms in a 
unique manner]. 

Our aim is to carry such a family of incidence curves through the whole 
inductive construction of the Collins decomposition, and at each stage to 
use them to determine which (d - I)-dimensional cells c’ are faces of a 
given d-dimensional cell c. To this end, let K be a well-based decomposition 
of E’, and let K’ be the base decomposition of K. Suppose inductively that 
for each cell b of K’ and each of its faces 6’ of one less dimension an 
incidence curve for the pair b, b’ is available. Let c be a d-dimensional cell 
of K, and let c’ be one of its faces. Then, by Lemma 3 of Section 2, either 
c=bT forsomebEK’andc’=bjorc’=bj+,,orc=bj* andc’=b; 
where b’ is a (d - 2)-dimensional face of (the (d - l)-dimensional) cell b, 
or c = bj and c’ ,= bJ where 6’ is a (d - 1)-dimensional face of (the 
d-dimensional) cell b. 

Let P(x,,..., xr) be the base polynomial of K; since K is well-based, the 
leading coefficient of P (regarded as a polynomial in x,) is constant. If 
c = by and c’ = cj, then we can take [[,, . . . , S,- ,] to be any algebraic point 
in b, and then if 5; is the jth root of P({,,. . . , lr-,, x,) we can put 
f(f) = IS,,..., lr;- ,, 5; + t], thereby defining an incidence curve. Of course, 
an entirely similar construction yields an incidence curve for the pair 
bj*v bj+ 1’ 

Next suppose that c = b: and c’ = b;*, where b’ is a (d - 2)-dimensional 
face of b. Let f’ = [f,(t) ,..., f,- ,( f )] be an incidence curve for the pair 
b, b’, let g,(t) = 3 + t, g2(t),. . . , g,,,(t) be the nonconstant components of 
this curve, enumerated in left-to-right order, and let P2,. . . , P,,, be the 
associated triangular manic system of polynomials. Put Sj = l;(O) for j = 
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1 ,***, r - 1, so that the point 2 = [[, , . . . , [,- ,] is an algebraic point in b’. 
Let P be as in the preceding paragraph, let TJ be the Jth real root of 
fYl ,,...,Sr-l,Y)=O( or a sufficiently small rational number if J = 0), and 
let q’ be the (J + 1)st root of this same equation (or a sufficiently large 
rational number if this equation has only J real roots). Put [, = i(n + q’), 
mdf(t) = [f,(t),..., f,- I(t), [,I. This is plainly an incidence curve for the 
pair c, c’, whose nonconstant components are plainly the same as those of 
f’. We have an adequate descriptor for the nonconstant components off’, 
and plainly this can also serve as an adequate descriptor for f. 

Finally, suppose that c = bj and c’ = b;, where b’ is a (d - l)-dimensional 
face of b. Again, let f’(t) = [f,(t) ,..., f,-,(t)],[P2 ,..., Pm-,], and a’ = 
[a 2,. . . , a,- ,] be an incidence curve for the pair b, b’. As in Definition 5, 
let g,,..., g,,-, be the nonconstant components off’, so that g,(t) = t + 5 
where 3 is algebraic, and put a,(t) = t + 5 for convenience. Extend the 
truncated fractional series gi, j = 2,. . . , m - 1 to series a? such that 
gj - a? = O(tD), where D WIU be chosen below. Let P be the same base 
polynomial as in the two preceding paragraphs, let d be its degree, and let 
P* be the polynomial obtained from P by replacing each variable xi in it for 
which fi(t) = Sj is an algebraic constant by lj. Clearly, the degree of P* is at 
most d. Having P*, we can then find all distinct real roots y,, . . . , yI of the 
equation P*( a,(O), . . . , a,- ,(O), y) = 0 and arrange these solutions in in- 
creasing order. By Lemma 2 of Section 2, these roots are in l-l correspon- 
dence with the sequence of “section” cells b; of K whose base cell is b’. 
Next, for each such yk, we can find all the fractional series solutions of the 
manic equation P*( a:(t), . . . , a:- ,(t), y) = 0 whose constant term is y,; 
all terms of these series up to those of order to must be constructed. Let 
a(t) designate any one of the truncated fractional series constructed in this 
way. Since gj - a? = O(tD) for j = 1,. . . , m - 1, we have P*( g,(t), . . . , 
g,- ,(t), a(t)) = 0( tD) and thus by Lemma 3 there exists a solution g of 
p*(g,(t),..., g,-,(t), g(t)) = 0 such that a(t) - g(t) = O(tDid). Append 
the polynomial P* to the triangular monk system P2,. . . , Pmpl, thus 
obtaining a larger system P2,. . . , P,,,, and let R,,. . . , R, and S,,. . . , 8, be 
respectively the resultant system and the resultant degree sequence of this 
extended system. Arguing as in the first paragraph of the proof of Lemma 4, 
we see that R,(g,(t), g(r)) = R,(t + {, g(t)) = 0. Hence if we choose 
D = da,,, (26, - 1) it follows by Lemma 2 that this equation, together with 
the truncated fractional series a and the relationship g - a = O(tDid), 
determine g uniquely, and in particular (arguing as in the proof of the 
corollary to Lemma 5) that g is real for t 2 0 if and only if all the 
coefficients of the fractional series a are real. 

Dropping all those fractional series a which involve any nonreal coeffi- 
cient, we can then go on to append any of the remaining a to al,. . . , a,- ,, 
thereby obtaining an adequate descriptor for the nonconstant components 
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of the curvef= [f,,..., f,- r, g], where g is the unique (real) solution of 
R,(t + {, g(r)) represented by a. Let us agree to compare any two frac- 
tional series b(t), y(t) with real coefficients by comparing coefficients of 
like terms lexicographically; this is equivalent to agreeing that /I Q y if 
/I?(t) d y(t) for all sufficiently small nonnegative f. Then it is plain that for 
each yk the real solutions of P*(g,(t),..., g,-,(t), g(t)) = 0 are in l-l 
ordered correspondence with the truncated fractional series a which we 
retain and which satisfy a(0) = y,. The number of such series is therefore 
the number of distinct real roots into which the root y, of P(f,, . . . , {,- ,, y) 
= 0 splits as f’(t) moves from the point f’(0) = [l,,. . . , S,-,] of b’ to 
immediately neighboring points inside b. The sequences P2,. . . , P,,- ,, P*, 
g13.m*, g,-l,g, and q,..., q,-I, (Y clearly define incidence curves for all 
pairs of cells having the form bj, b;, such that the latter is part of the 
boundary of the former. 

This finishes our inductive construction of incidence curves, and also 
shows how the information on root splitting needed to determine the 
mappings p( b, b’), defined in the paragraph preceding Lemma 3 of Section 
2, can be calculated; so that description of a technique for testing the 
adjacency of Collins cells of general dimension is now complete. 

Remark. Given two Collins cells and Tarski sentences defining each of 
them, we can easily write a quantified Tarski sentence which is true if and 
only if they are adjacent. Thus in principle we can obtain an adjacency-test- 
ing algorithm using standard decision procedures for Tarski sentences. 
However, since the number of quantified variables required to define 
adjacency of Collins cells in this way can be large (compare, e.g., the explicit 
Tarski sentence defining a Collins cell given at the end of Appendix A), this 
technique will probably be much less efficient than that described in the 
present appendix. 
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