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Abstract-Finite-difference methods of orders six and eight are presented for second-order, non- 
linear, boundary-value problems. Both methods are economical in the sense that they use few func- 
tion evaluations at interior grid points. The implementation of the methods is straightforward. The 
convergence of the methods is discussed. Numerical examples are considered to demonstrate compu- 
tationally their order of convergence. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Consider the second-order nonlinear differential equation 

Y” = fk, Y), a<x<b (la) 

subject to the boundary conditions 

y(a) = A y(b) = B. 0) 

For existence and uniqueness of a solution of (l), it is assumed that, for z E [a, b], --o;) < y < o;), 
f is continuous, $$ exists, and $$ 2 0; see [l]. Special differential equations of the second order, 
and in particular systems of such equations, occur frequently, for instance in mechanical problems 
without dissipation (see [l, p. 289; 2, p. 2521). These special boundary-value problems also occur 
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in other engineering contexts, for example in Troesh’s problem relating to the confinement of 
a plasma column by radiation pressure, see references [3-71. A finite-difference scheme for the 
second-order nonlinear boundary-value problem (1) is called an economical method of order 2p 
if 

(i) the scheme is globally 0(h2p) convergent, and 
(ii) each discretization of the differential equation at an interior grid point is based on 2p - 1 

evaluations of f. 

Economical methods of order two (classical second-order method) and four (Numerov’s method) 
are well known (see [l]). Methods of orders six and eight are described for linear boundary-value 
problems by Jain [8], Chawla [9,10], and Usmani [11,12]. In the present paper, simple as well as 
economical methods of order six and eight are described for solving (1). The method of order six 
is a five-diagonal iterative method and uses three function evaluations at each mesh point not 
adjacent to the boundaries, as compared to Jain’s method [8] which uses five function evalua- 
tions. The eighth-order method is a five-diagonal iterative method with five function evaluations 
at each mesh point not adjacent to the boundaries, as compared to Chawla’s method [lo] which 
requires seven function evaluations and contains interior grid points. At points adjacent to the 
boundaries extra function evaluations are called for to ensure that the principal part of the local 
truncation error at all interior mesh points is the same, thus ensuring that accuracy is not lost 
near the boundaries. In Section 2, the methods are described, in Section 3, the convergence of 
the sixth-order method is established and in Section 4 numerical examples are reported. 

2. THE FINITE-DIFFERENCE METHODS 

Let N be a positive integer, h = (b - a)/(N + l), and let xk = a + kh, k = O,l, . . . , N + 1. At 
the grid points zk, set yk = y(zk), fk = f(xk,yk). Following the theory of multistep methods 
for special second-order differential equations (see, (11) of the kind (l), the following scheme may 
be derived 

Y = -d2y, + ad4yrn + (I- ‘@ - 2y)h2fm + Dh2(fm+l + fm-1) + yh2(fm+z + fm-2). (2) 
An interesting feature of scheme (2) is that for different values of cr, @, y methods of different 
order are obtained. For example, 

(i) for o = p = y = 0 the classical second-order method is obtained; 
(ii) for CY = y = 0, p = l/9, the second-order method of Twizell and Tirmizi [13] is obtained; 

(iii) for Q = y = 0, ,0 = l/12, Numerov’s fourth-order method is derived; 
(iv) for Q = -l/20, p = 2/15, y = 0, a novel sixth-order method is obtained; 
(v) for cr = -311252, p = 1721945, y = 2313780, a new eighth-order method is obtained. 

2.1. A Sixth-Order Method 

As suggested above, scheme (2) with (Y = -l/20, p = 2/15, and y = 0 renders a sixth-order 
method, namely 

where 

62Ym + $f4ym = $h2(2fm+l + llfm + 2fm_1), m=2,3 ,..., N-l, 

&*Yl + &2Yo + 5y1 - 4y2 + y3) = &h2 &,a, 
i=O 

62yN + &2yN+l + 5yN - 4yN-1 + YN-2) = j&h* &ifN+l_i, 
i=o 

(5) 

a0 = 77081, aI = 979962, a2 = 2307, as = 155852, 

a4 = -92193, aa = 30426, a6 = -4315, dl = 80640. 
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With these values of ai (i = 0, 1, . . . , 6) and dr, the local truncation error, T,,, (m = 1,2,. . . , N) 
at every mesh point is 

T, = &h8y(uW (GTl) + 0 (h’“) 1 ash+O. 

2.2. An Eighth-Order Method 

Scheme (2) with 01 = -31/252, 0 = 1721945, y = 23/3?80, gives an eighth-order method, 
namely 

31 
h2Yrn + &4Y” = 3780 2358 h2 fm + gCfm+l + fm-d + $,h2(fm+2 + fm-21, 

m=2,3,N-1 
(6) 

for m = 1 and N, the schemes 

b2Yl + ~(-2yo+5yl-4Y2+113)=~h2~aif., 
i=o 

b2YN + %(-2YI’I+r + 5YN - JYN-1 + ?/N-Z) = &ha f: ai fN+l-i 
i=o 

(7) 

with 

b. = 44867959, br = 655622428, b2 = -29280308, bs = 275499076, 
b4 = -25478390, bg = 162922276, be = -67722068, b, = 16537468, 

bs = -1803641, d2 = 4032 

are suggested. With these values of bi (i = 0, 1, . . . , 8) and d2 the local truncation error T,,, (m = 
1,2,..., N) at each mesh point is given by 

T,,, = &hloY(z)(~,) + 0 (h12) , a.sh-+O. 

3. IMPLEMENTATION AND CONVERGENCE 

3.1. The Sixth-Order Method 

It may be shown by suitably arranging (3)-(5) that the sixth-order method may be written in 
matrix-vector form as 

(J+AJ2)Y+ (&)h’Mf(z,Y)=e, 

where J is the familiar tridiagonal matrix of order N given by 

(9) 

-2 -1 
-1 2 -1 0 

J= “’ 
? . . . 

0 -1 2 -1 
-1 2_ 

for which (( J-‘((, = (N + 1)2/8 (see [ll]), M is the N-square matrix 

M= 

-ml m2 m3 m4 m5 m6 

24 194 24 -1 

-1 24 194 24 -1 0 . . . . . 1 
. . . . . I’ 

0 -1 24 194 24 -1 
-1 24 194 24 

I 
m6 m5 m4 m3 m2 ml I 

(11) 
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in which mi = ai/di (i = 1,2,. . . ,6), f is the N-vector 

f= lfl,f2r...,fNlTr 

T denoting transpose, e is the N-vector 

I 
T 

-$,o ,..., O,l, -2 , 

(12) 

(13) 

and Y, which may be computed from (9) using a nonlinear algebraic system solver, is the N-vector 

y= [Y1,Y2,...,YNlT. (14) 

It follows from (11) that [[M/loo = 1149120/80640 Z 14.25 = M*. 
The theoretical-solution vector 

Y = Y(X) = [Y(Q),Y(Q), . . * ,Y(Xcnr)l 
T 

(15) 

satisfies the equation 

(16) 

where 
T= [Ti,Tz,...,T,v]T 

is the truncation error vector for which 

(17) 

IlTlloo = (&) hsv8 

with 

(18) 

A standard convergence analysis then shows that method (3)-(5) is sixth-order convergent 
provided 

(19) 

3.2. The Eighth-Order Method 

Following the approach of Section 3.1, it can be proved that method (6)-(8) is an eighth-order 
convergent process. 

4. NUMERICAL ILLUSTRATIONS 

To illustrate the six-order convergence of method (3)-(5), consider the following nonlinear 
problem: 

y” = f(x + y + 1)3, O<x<l 

with boundary conditions 

Y(0) = Y(l) = 0 

for which the exact solution is 



Boundary-Value Problems 901 

Table 1. 

Sixth-Order Methods Eighth-Order Methods 

Method (3)-(5) Jain (81 Method (6)-(8) 1 Jain [8] Extrapolated 

h IIEIICO % Error IlEllm % Error Il-‘G % Error IlEllm % Error 
1 
js 0.632-06* 0.650-03 0.772-05 0.794-02 0.981-08 0.161-04 0.504-07 0.518-04 

1 
Is 0.633-08 0.540-05 0.201-06 0.365-03 0.501-10 0.827-07 0.678-09 0.122-05 

1 
32 0.157-09 0.133-06 0.415-08 0.141-04 0.826-13 0.242-09 0.710-l 1 0.240-07 

1 z 0.272-11 0.496-08 0.750-10 0.496-06 0.211-15 0.526-12 - - 

*0.632-06 = 0.632 x 10-6. 

The interval [O,l] was divided into N + 1 equal subintervals each of width h = 2-m (m = 
3 ,...1 6); the corresponding values of N are then given by N = 2* - 1. The values of llEjloo = 
(y(z) - YI as well as the relative errors, expressed as percentages, for the sixth-order method 
(3)-(5) and Jam’s sixth-order method are reported in Table 1. The numerical results verify the 
sixth-order convergence of the method. These results show an improvement in accuracy when 
compared to those of Jain [8]. The efficiency of the method lies in its implementation with 
less function evaluations at each mesh point, ss compared to Jain’s sixth-order method. Four 
iterations are required to obtain relative errors to three significant figures using the Newton- 
Raphson method for a nonlinear algebraic system. Furthermore, the CPU time was calculated 
for h = l/32 (N = 31) for both of the methods .The sixth-order method (3)-(5) takes 12.5ms 
while Jain’s sixth-order method takes 14.2 ms when the program is run on a Pentium III personal 
computer of 800 mhz Intel with 256 mb RAM. 

The above problem is again considered to show the eighth-order convergence of method (6)-(8). 
Table 1 also shows llElloo and the relative errors expressed as percentages for the eighth-order 
method with N = 7,15,31. The results are compared with the eighth-order method of Jain [8] 
(obtained by extrapolating his sixth-order method). The results are more accurate than those 
of Jain. It is remarked that the proposed eighth-order method uses five function evaluations 
on a grid line as compared to eighth-order method of Chawla [lo], which uses seven function 
evaluations. Four iterations are required to obtain (JEIJ, and relative errors to three significant 
figures. 

5. SUMMARY 
Sixth- and eighth-order, finite-difference methods have been developed for the numerical solu- 

tion of a nonlinear, twopoint, boundary-value problem. Numerical results confirm the orders of 
the methods, which are seen to be more accurate and economical than similar-order methods in 
the literature. 
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