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For every hypergraph on n vertices there is an associated subspace arrangement
in Rn called a hypergraph arrangement. We prove shellability for the intersection
lattices of a large class of hypergraph arrangements. This class incorporates all the
hypergraph arrangements which were previously shown to have shellable intersec-
tion lattices. � 1999 Academic Press

1. INTRODUCTION

With every hypergraph H one can associate a subspace arrangement AH ,
see Definition 2.5, which is called a hypergraph arrangement. The following,
characteristic for topological combinatorics, question arises immediately:
What is the connection between the combinatorial properties of H and
topology of AH ?

One of the most important examples of hypergraph arrangements con-
sidered up to now are the so called k-equal arrangements, An, k . Given n
and 2�k�n, such an arrangement consists of the ( n

k) subspaces obtained
by setting some k of the coordinates equal to each other. The correspond-
ing hypergraph is the k-regular hypergraph H=[H�[n] | |H|=k]. The
topology of k-equal arrangements was studied in [BWe]. It was proved
later in [BWa94] that the intersection lattices of An, k are shellable, which
of course immediately gives the topological implications, though in a more
structural way. A few more hypergraph arrangements were considered in
[B94], [B95], [We].
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In this paper we consider a quite broad class of hypergraphs. The class
of the associated hypergraph arrangements includes k-equal arrangements
and also all other hypergraph arrangements the intersection lattices of
which were proved to be shellable (pure or non-pure) up to now.

In Section 2 we shortly define all basic notions used in this paper. In Sec-
tion 3 we prove the shellability of the intersection lattices of the considered
class of hypergraph arrangements, (Theorem 3.1). Then we specialize this
result to the few known cases in Corollary 3.2 and Remark 3.3.

2. BASIC NOTIONS AND DEFINITIONS

In this section we give a short summary of the standard notions used
throughout the text.

For a finite poset P we will denote its chain complex by 2(P). We say
that P is pure if 2(P) is pure. Such posets are also often called graded.

Definition 2.1. A simplicial complex 2 is called shellable if its facets
can be arranged in linear order F1 , F2 , ... , Ft , in such a way that the
subcomplex (�k&1

i=1 F i) & Fk is pure and (dim Fk&1)-dimensional for all
k=2, ... , t. Such an ordering of facets is called a shelling order.

Definition 2.2. A poset P is said to be EL-shellable if one can label its
edges with elements from a poset 4 so that for every interval [x, y] in P,

(i) there is a unique rising maximal chain c in [x, y] (rising means
that the associated labels form a strictly increasing sequence in 4);

(ii) cOc$ for all other maximal chains c$ in [x, y].

Here the symbol ``O'' means ``lexicographically preceding.'' We will often
say ``lexicographically less'' or just ``less.''

The notion of EL-shellability was first introduced in [B80, Chapter 2].
It was proved there that if P is EL-shellable, then 2(P) is shellable. See
also [BWa83] for further investigations and [BWa94] for the non-pure
version.

Definition 2.3. A family of sets H�2[n] such that for any H, H$ # H,
H is not included in H$, is called a hypergraph.

Definition 2.4. A finite collection A=[K1 , ... , Kt] of linear proper
subspaces in Rn is called a subspace arrangement. The intersection lattice
LA of an arrangement A=[K1 , ... , Kt] is the collection of all intersections
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Ki1
& } } } & Kip

, 1�i1< } } } <ip�t, ordered by reverse inclusion: x� y �
y�x, and extended by a unique minimal element 0� .

Definition 2.5. For each subset S=[i1 , ... , is]�[n], such that s�2,
let KS = [(x1 , ... , xn) # Rn | xi1

= } } } = xis
]. Then a hypergraph H # 2[n]

(without singletons) determines a subspace arrangement AH=[KS | S # H].
The arrangement AH is called a hypergraph arrangement.

Hypergraph arrangements were introduced in [B94, Section 3]. It was
also suggested there to denote the intersection lattice of AH by 6H .

3. SHELLABILITY OF THE INTERSECTION LATTICES

Theorem 3.1. Let us fix a partition of [1, ... , n]=E1 _ } } } _ Er , such
that max Ei<min Ei+1 for i=1, ... , r&1. Let H be a hypergraph
[H1 , ... , H l] without singletons, such that the following conditions are
satisfied:

(1) |Hi & Ej |�1 for any 1�i�l and 1� j�r;

(2) for any Hi and x � Hi there exists j such that Hi _ H j=H i _ [x],
i.e. x # H j , Hj �Hi _ [x];

(3) let C=Hi1
_ } } } _ H id

, then there exists j and s such that

Hj & Em={min(C & Em),
<,

if C & Em {< and 1�m�s;
otherwise.

Then 6H is EL-shellable.

Proof. Clearly 6H is a subposet of the partition lattice 6n . We will
adapt the practice of talking about blocks and singletons from there.

We label edges of 6H with 3 different types of labels. Labels within each
type are ordered and for the labels of different types we will use the following
order:

type 1<type 2<type 3.

It is easy to see that all the edges (covering relations) of 6H are of one
of the following types.

(1) Edges corresponding to a merging of two nonsingleton blocks
B1 , B2 � B1 _ B2 . The label is (max(B1 _ B2))1 .
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(2) Edges corresponding to an insertion of a singleton x # Ei into a
nonsingleton block B, such that either

B & Ei {< and x<min(B & E i)

or

B & Ei=< and x<max B.

The label is (x)2 .

(3)(a) Creating a block of size k out of k singletons:

s1 , ... , sk � B=[s1 , ... , sk].

The label is (B)3 .

(b) Insertion of a singleton x # Ei into a block B such that either

B & Ei {< and x>min(B & E i)

or

B & Ei=< and x>maxB.

The label is (x)3 .

Next we have to specify how to order labels internally within each type.
For the labels of types 1 and 2 we just use the usual ordering of integers.
We order labels of type 3 in the lexicographic order, considering integers
as sets consisting of one element.

Any interval [a, b] in 6H is a direct product of intervals [x, y] such
that

(1) y consists of a single block, say B,

(2) x consists of blocks B1 , ... , Bt and singletons a1 , ... , ap (t and p
may be equal to 0 and the singletons are ordered a1< } } } <ap).

We claim that such an interval [x, y] is isomorphic to 6H$ for some
hypergraph H$ satisfying conditions (1)�(3).

Assume first t=0. The ground set of H$ is [a1 , ... , ap]=S and
Ei$=Ei & S. Furthermore H # H$ iff H # H and H�S, in other words iff
H # H & 2S. It is not difficult to check that the conditions (1)�(3) are
satisfied.

Assume now that t>0. The ground set of H$ is [1, ... , t+ p] and

Ei$={[i],
[t+ j | aj # Ei&t],

for i=1, ... , t;
for i=t+1, ... , t+ p.
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Some of the E$t+1 , ... , E$t+ p may be empty. Let us describe the hyper-
graph H$, H$ # H$ iff

either H$=[x, y], 1�x�t;

or H$=[t+ j | aj # H] for some fixed H # H, H�[a1 , ... , ap].

This construction is quite similar to the one of 6n, k (l ), see [BWe].
It is clear that condition (1) is then true.
Let us now check condition (2). If x�t then Hj=[x, y], where y is any

element of Hi . If there exists y # H i , such that y�t then Hj=[x, y].
Finally, if min Hi>t and x>t then condition (2) follows from the fact that
it is true for the hypergraph H.

Finally we check condition (3). If min C�t then

Hj=[min C, min(C"[min C])].

If min C>t then the statement follows from the fact that the condition (3)
is true for H.

So we have decomposed the interval [a, b] into a direct product of
simpler intervals [xi , yi]. Assume that in every such interval the rising
chain is unique and that it coincides with the lexicographically least chain.
What can we say about the total interval [a, b]?

Take a lexicographically least chain c in [a, b], it projects to the
lexicographically least chains in the intervals [xi , yi] (if some of these
chains can be replaced by a lexicographically preceding chain, then so
can c). Take a rising chain d in [a, b], it projects to rising chains in the
intervals [xi , yi], which in turn are also the lexicographically least chains.
Hence both c and d consist of the same set of labels, just permuted. Since
c is lexicographically least and d is rising we can conclude that c=d.

So it is enough to show only for the simpler intervals [x, y] that there
exists a unique rising chain which is also lexicographically least. We have
to consider two cases.

Case 1. x consists of singletons only.
Let Ei$=Ei & [the singletons in x]. Let

[m1 , ... , mq]=[min Ei$ | Ei${<, i=1, ... , r].

We can assume m1< } } } <mq .
It is easy to exhibit a rising chain. In the first step, create a block

C=[m1 , ... , ms] for some s�q. It exists according to the condition (3) of
the theorem. Then insert the remaining singletons into the block C one by
one in increasing order. This is possible according to condition (2) of the
theorem. The obtained chain c is clearly rising.
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Let us see that this chain is lexicographically least. The first step is
always a creation of a block, clearly block C is lexicographically least
possible. Further, one either creates a new block or inserts some element x
into C. Clearly, both such edges are of type 3 and if x=min(�r

i=1 Ei$"C)
then such edge is lexicographically least. Continuing to argue in this way,
we conclude that the chosen chain is lexicographically least.

Let us prove that there are no other rising chains. Consider another ris-
ing chain d. It starts with an edge of type 3a. If the next edge is of type 3a
too then at some point we would have to merge two blocks and such an
edge would have type 1. Hence all the subsequent edges must be of type 3b,
which defines the rising chain d uniquely. So d must coincide with c.

Case 2. x consists of blocks B1 , ... , Bt and singletons a1 , ... , ap , such
that, say max B1< } } } <max Bt and a1< } } } <ap .

It is clear that any rising chain should start with merging the blocks
B1 , ... , Bt with each other in increasing index order, i.e.

B1 , B2 � B1 _ B2 ; B1 _ B2 , B3 � B1 _ B2 _ B3 ; etc.

What happens next is best explained via Fig. 1. The cross-painted areas
denote the elements from B1 _ } } } _ Bt . The elements painted diagonally
up6left�down6right are the ones, whose insertion at the first step would
be of type 2 (we simply say elements of type 2), the up6right�down6left
painted elements are the ones of type 3. Observe that if the element is of
type 3, then it will have this type during the whole insertion process. Insert-
ing an element ei turns all of the elements above it (on the picture) to type 3.

We claim that the next step must be the insertion of the element e1 (see
the picture) into B1 _ } } } _ Bt . Because, if the insertion of e1 will be done
later, then it will still be of type 2 and since it has the smallest label the
chain would not be rising.

FIGURE 1
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Arguing in the same manner we can conclude that the rising chain
should continue by insertions of e2 , e3 , ... , ed . After that all other insertions
will be of type 3, hence there is a unique way to insert the rest of the ai 's
in increasing order (we can never create new blocks in the process, since
otherwise we would have to have an edge of type 1 at some point and so
the chain would not be rising).

It is not difficult to check that the obtained chain is lexicographically
least in the interval [x, y]. Again, the mergings of blocks B1 , ... , Bt done
in the described above order are the lexicographically least edges. Further
insertions give the optimal steps as well, because of our choice of their
order and the fact that it is (lexicographically) better to insert an element
x, rather than create a new block with minimal element x.

So we have proved that in both cases there is a unique rising chain in the
interval [x, y] which is also lexicographically least. Taking in account the
arguments we have mentioned above, this finishes the proof. K

We describe an important class of hypergraphs covered by Theorem 3.1.

Corollary 3.2. Consider a partition of [1, ... , n]=E1 _ } } } _ Er , such
that max Ei<min Ei+1 for i=1, ... , r&1. Let f: [1, ... , r] � [2, 3, ...] be a
nondecreasing map. Consider a hypergraph H such that H # H iff

(1) |H & Ei |�1 for i=1, ... , r;

(2) if min H # Ei then |H|= f (i).

Then 6H is EL-shellable.

Proof. Follows from Theorem 3.1. K

Remark 3.3. Several special cases of Corollary 3.2 were studied before:

(1) |E1 |= } } } =|Er |=1, f (i)=k for all i=1, ... , r. The posets 6H are
usually denoted by 6n, k in this case. They are the intersection lattices of the
so-called k-equal arrangements. The EL-shellability of 6n, k has been proved
in [BWa94]. Other properties of the lattice 6n, k have been studied in
[BWe, SW].

(2) |E1 |= } } } =|Er |=1, f (i)=2, for i=1, ... , l and f (i)=k for
i=l+1, ... , r. These posets are denoted by 6n, k (l ). They were first defined in
[BWe], the homology groups of 6n, k (l ) were also computed there. The
shellability of 6n, k (l ) has been first established in [Koz, Proposition 8.3].

(3) |E1 |=n1 , ... , |Er |=nr , f (1)= } } } = f (l )=2, f (l+1)= } } } = f (r)
=k. These posets are denoted by 6n1, ... , nr , k(l), they are the intersection lattices
of the generalized k-equal arrangements. The posets 6n1, ... , nr , k (l ) were
introduced in [BWe], suggested by a question of Vassiliev. An attempt to

175NOTE



compute their homology groups was taken there and the formulated result
was surely correct, unfortunately the presented proof was wrong. The
shellability of the generalized k-equal arrangements was also proved inde-
pendently by Volkmar Welker, [We].
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