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for a class of finite-dimensional k-algebras of global dimension 2,
which turns out to give an alternative answer to a question of
GIM-Lie algebras by Slodowy in “Beyond Kac–Moody algebra, and
inside”.
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1. Introduction

Since Gabriel’s work [11], the connection between representation theory of finite-dimensional alge-
bras and Lie theory has been revealed by many mathematicians. In [11], Gabriel showed the existence
of a bijection between the isomorphism classes of all indecomposable modules over a hereditary alge-
bra of Dynkin type and the positive roots of the corresponding semisimple Lie algebra. In [12], Happel
introduced the root categories for finite-dimensional hereditary algebras. Thus Gabriel’s bijection has
been extended to a bijection between indecomposable objects of the root category of a hereditary
algebra of Dynkin type and all the roots of the corresponding semisimple Lie algebra.

Let A be a finite-dimensional hereditary algebra over a field k. Let Db(mod A) be the derived cat-
egory of finitely generated right A-modules. Then the root category RA of A is defined to be the
2-periodic orbit category Db(mod A)/Σ2, where Σ is the suspension functor. It was proved by Peng
and Xiao [23] that the root category RA is triangulated via the homotopy category of 2-periodic
complexes of A-modules. With this triangle structure, Peng and Xiao [24] constructed a so-called
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Ringel–Hall Lie algebra associated to each root category and realized all the symmetrizable derived
Kac–Moody Lie algebras. In particular, this provides a concrete and useful realization of Gabriel’s
correspondence. In fact, Peng–Xiao’s construction is valid for any Hom-finite 2-periodic triangulated
categories over finite fields. In [21], Lin and Peng realized the elliptic Lie algebras of type D(1,1)

4 ,

E(1,1)
6 , E(1,1)

7 , E(1,1)
8 via the 2-periodic orbit categories (which are triangulated) of corresponding tubu-

lar algebras. However, in general, for arbitrary finite-dimensional k-algebra A, the 2-periodic orbit
category Db(mod A)/Σ2 is no longer triangulated with the inherited triangle structure from the one
of Db(mod A) (cf. Section 2.7 or [17]). Up to now, there are no suitable Hom-finite 2-periodic triangu-
lated categories to realize the other elliptic Lie algebras via the Ringel–Hall Lie algebras approach. The
aim of this note is to enlarge the application of Ringel–Hall Lie algebra approach and try to establish
more links between representation theory of algebras and Lie theory.

Our motivation also comes from the interaction between singularity theory and Lie theory. Inspired
by the theory that the universal deformation and simultaneous resolution of a simple singularity are
described by the corresponding simple Lie algebras [6], K. Saito associated in [27], a generalization of
root system to any regular weight systems [28], and asked how to construct a suitable Lie theory in
order to reconstruct the primitive forms for the singularities [29]. This has been well-done for simple
singularities and simple elliptic singularities. But, in general, it is not clear how to construct a suitable
Lie theory even for the 14 exceptional unimodular singularities. Based on the duality theory of weight
systems and the homological mirror symmetry, Kajiura, Saito and Takahashi [14,15] (Takahashi [32])
associated a triangulated category TW to each (simple or unimodular) singularity W . The triangulated
category TW is equivalent to the bounded derived category of certain finite-dimensional algebra AW .
If W is a simple singularity, then AW is the path algebra of a Dynkin quiver Q of the corresponding
type of W . Applying Peng–Xiao’s theorem to the root category RAW = RkQ of AW , one gets the de-
sired simple Lie algebra to reconstruct the primitive forms. This fact suggests to study the Ringel–Hall
Lie algebra of AW for a unimodular singularity W . However, the algebra AW is no longer hereditary
and never derived equivalent to a hereditary category. It is not clear whether the 2-periodic orbit
category Db(mod AW )/Σ2 is triangulated or not.

In this paper, we propose to associate a 2-periodic triangulated category RA to any finite-
dimensional k-algebra A of finite global dimension using Keller’s construction [17]. By the con-
struction of RA , we have an embedding of categories i : Db(mod A)/Σ2 ↪→ RA . Moreover, if the
2-periodic orbit category Db(mod A)/Σ2 admits a canonical triangle structure, then the embedding i
is an equivalence, where the canonical triangle structure means that the canonical projection functor
π : Db(mod A) → Db(mod A)/Σ2 is triangulated. This happens if A is a finite-dimensional hereditary
k-algebra. In other words, the category RA of a finite-dimensional hereditary algebra A coincides with
the root category of A in the sense of Happel [12]. We also remark that, using RA , one can easily con-
struct 2-periodic triangulated categories whose Grothendieck groups realize the root lattices for any
homogeneous elliptic Lie algebras. It would be interesting to study the relation between the Ringel–
Hall Lie algebras of these categories and the corresponding elliptic Lie algebras in the future. On
the other hand, Keller’s construction is valid for any algebraic triangulated categories satisfying some
finiteness conditions. In [10], the authors have considered the construction for algebraic triangulated
categories generated by spherical objects and have determined the structure of the corresponding
Ringel–Hall Lie algebras.

This paper is organized as follows: in Section 2, for any finite-dimensional k-algebra A of finite
global dimension, we introduce the root category RA and study its basic properties. It is a Hom-finite
2-periodic triangulated category and admits AR-triangles. We prove that the Grothendieck group of
RA is isomorphic to the Grothendieck group of the derived category Db(mod A). A concrete example
is also given to show that the 2-periodic orbit category is not triangulated with the triangle struc-
ture inherited from the one of Db(mod A). Section 3 is devoted to investigate the root categories of
representation-finite hereditary algebras. Such root categories characterize the algebras up to derived
equivalence. In Section 4, we study the Ringel–Hall Lie algebras associated to the root categories of
a class of finite-dimensional k-algebras of global dimension 2. It turns out that we have a negative
answer to a question on GIM-Lie algebra asked by Slodowy [31]. Let us mention that different coun-
terexamples have been discovered in [1] by using different approach. In Appendix A, we discuss the
universal property of the root category and study recollement associated to root categories. One can



C. Fu / Journal of Algebra 370 (2012) 233–265 235
use this to construct inductively various algebras whose corresponding 2-periodic orbit categories are
not triangulated with the inherited triangle structure from the bounded derived categories.

Throughout this paper, we fix a field k. All algebras are finite-dimensional k-algebras of finite
global dimension. All modules are right modules. Let C be a k-category. For any X, Y ∈ C , we write
C(X, Y ) for HomC(X, Y ). A triangulated subcategory C of T is called thick if C is closed under direct
summands. For a subcategory M in a triangulated category T , we denote by tria(M) the smallest
thick subcategory of T containing M. For a Lie algebra g, let g′ be the derived subalgebra of g.

2. Root categories for finite-dimensional algebras

2.1. Reminder on differential graded categories

We follow [16,19]. Let k be a field. A differential graded (= dg) k-module V is a complex of k-mod-
ules. The tensor product of two dg k-modules V , W is the graded k-module V ⊗k W endowed with
the differential dV ⊗ 1W + 1V ⊗ dW , where dV and dW are the differentials of V and W respectively.
A dg category is a k-category A whose morphism spaces are dg k-modules and whose compositions

A(Y , Z) ⊗k A(X, Y ) → A(X, Y ), X, Y , Z ∈ A

are morphisms of dg k-modules (complex of k-modules). We identify a dg algebra with a dg category
with one object.

The dg category Cdg(k) has as objects all dg k-modules and its morphisms are defined by

Cdg(k)(V , W ) =
⊕
p∈Z

Cdg(k)(V , W )p,

where Cdg(k)(V , W )p is the k-module formed by morphisms f : V → W of graded k-modules of
degree p. The differential of Cdg(k)(V , W ) is the commutator

d( f ) = dW ◦ f − (−1)p f ◦ dV , f ∈ Cdg(k)(V , W )p .

Let A and B be dg categories. A dg functor F : A → B is given by a map F : objA → objB and by
morphisms of dg k-modules

F (X, Y ) : A(X, Y ) → B(F X, F Y ), X, Y ∈ objA,

compatible with the compositions and the units.
A right dg A-module M is a dg functor M : Aop → Cdg(k), where Aop is the opposite dg category

of A. Let DifA be the dg category of right dg A-modules. A dg A-module P is called K-projective
if DifA(P ,?) preserves acyclicity. For any dg category B, let Z0(B) be the category with the same
objects of B whose Hom-space is given by

Z0(B)(X, Y ) = Z 0(B(X, Y )
)
,

i.e. the 0th cocycle of dg k-module B(X, Y ). Let H0(B) be the category with the same objects of B
whose Hom-space is given by

H0(B)(X, Y ) = H0(B(X, Y )
)
,

i.e. the 0th homology of dg k-module B(X, Y ). For the dg category DifA, we define C(A) :=Z0(DifA)

and H(A) := H0(DifA). A morphism L → N in C(A) is called a quasi-isomorphism if it induces an
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isomorphism in homology. Let D(A) be the derived category of A, i.e. the localization of C(A) with
respect to the class of quasi-isomorphisms. A dg A-module L is called compact if D(A)(L,?) com-
mutes with arbitrary direct sums. For instance, the projective A-modules A(?, A), A ∈ A are both
K-projective and compact. Let per(A) be the perfect derived category of A, i.e. the smallest subcat-
egory of D(A) containing A(?, A), A ∈ A and stable under shift, extensions and passage to direct
factors.

Let X be a dg Aop ⊗k B-module. It gives rise to a pair of adjoint dg functors

DifA
T X

DifB.

H X

Assume that X is K-projective as an Aop ⊗k B-module, then (T X , H X ) induces an adjoint pair of
triangle functors (LT X ,RH X ) over the derived categories, where LT X is the left derived functor of T X .

If both A and B are dg k-algebras, we also write ?
L⊗A XB for LT X .

2.2. 2-Periodic orbit categories

Let A be a finite-dimensional k-algebra of finite global dimension. Let Db(mod A) be the bounded
derived category of finitely generated A-modules and Σ the suspension functor. Consider the left
total derived functor of Aop ⊗k A-module Σ2 A

Σ2 = ?
L⊗A Σ2 A : Db(mod A) → Db(mod A),

which is an equivalence. For all L, M in Db(mod A), the vector space

Db(mod A)
(
L,Σ2n M

)
vanishes for all but finitely many n ∈ Z. The 2-periodic orbit category

Db(mod A)/Σ2

of A is defined as follows:

◦ the objects are the same as those of Db(mod A);
◦ if L and M are in Db(mod A), the space of morphisms is isomorphic to the space

⊕
n∈Z

Db(mod A)
(
L,Σ2n M

)
.

The composition of morphisms is obvious. If A is hereditary, the orbit category is called the root
category of A which was first introduced by D. Happel in [12].

A Hom-finite k-additive triangulated category R is called 2-periodic triangulated if:

◦ Σ2 ∼= 1, where Σ is the suspension functor of R;
◦ the endomorphism ring EndR(X) for any indecomposable object X is a finite-dimensional local

k-algebra.

For any finite-dimensional algebra A over a field k, the homotopy category H2(P) of 2-periodic com-
plexes of finitely generated projective A-modules is a 2-periodic triangulated category. Using H2(P),
Peng and Xiao [23] proved that the 2-periodic orbit category Db(mod A)/Σ2 of a hereditary algebra A
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is 2-periodic triangulated with canonical triangle structure, where the canonical triangle structure
means that the canonical projection functor π : Db(mod A) → Db(mod A)/Σ2 is triangulated. How-
ever, this is not true in general. The first non-triangulated example is due to A. Neeman who considers
the algebra of dual numbers k[x]/(x2). The 2-periodic orbit category of k[x]/(x2) is not triangulated
(cf. Section 3 of [17]). Note that the algebra k[x]/(x2) in this example is of infinite global dimen-
sion.

2.3. Root category via Keller’s construction

When Db(mod A) is triangle equivalent to the bounded derived category of a hereditary category,
the 2-periodic orbit category Db(mod A)/Σ2 is triangulated (cf. [23,17]). But in general, the 2-periodic
orbit category is not triangulated. However, a triangulated hull was defined in [17] as the algebraic
triangulated category RA with the following universal properties:

◦ There exists an algebraic triangulated functor πA :Db(mod A) →RA .
◦ Let B be a dg category and X an object of D(Aop ⊗ B). If there exists an isomorphism

in D(Aop ⊗ B) between Σ2 A
L⊗A X and X , then the algebraic triangulated functor ?

L⊗A X :
Db(mod A) →D(B) factorizes through π into an algebraic triangulated functor.

Consider A as a dg algebra concentrated in degree 0. Let S be the dg algebra with underlying
complex A ⊕ Σ A, where the multiplication is that of the trivial extension:

(a,b)
(
a′,b′) = (

aa′,ab′ + ba′).
Let D(S) be the derived category of S and Db(S) the bounded derived category, i.e. the full sub-
category of D(S) formed by the dg modules whose homology has finite total dimension over k. Let
per(S) be the perfect derived category of S , i.e. the smallest thick subcategory of D(S) containing S .
Clearly, the perfect derived category per(S) is contained in Db(S). Denote by p : S → A the canon-
ical projection. It induces a triangle functor p∗ : Db(mod A) → Db(S). By composition we obtain a
functor

πA : Db(mod A) → Db(S) → Db(S)/per(S),

where the functor Db(S) → Db(S)/per(S) is the canonical localization functor. Let tria(p∗ A) be the
thick subcategory of Db(S) generated by the image p∗ A. It is clear that S belongs to tria(p∗ A).
Hence, per(S) is a thick subcategory of tria(p∗ A). By Theorem 2 of [17], the triangulated hull of the
orbit category Db(mod A)/Σ2 is the category

RA := tria(p∗ A)/per(S).

Moreover, there are embeddings i : Db(mod A)/Σ2 ↪→ RA of categories and RA ↪→ H2(P) of trian-
gulated categories. If i is dense, then we say that the 2-periodic orbit category Db(mod A)/Σ2 is
triangulated with inherited triangle structure from the one of Db(mod A). If A is a finite-dimensional
hereditary algebra over k, the embedding i is dense by the main theorem of Keller [17]. In this
case, using the universal properties of RA , one implies that the triangle structure given by Peng and
Xiao [23] is the same as the one described by Keller. Furthermore, we have equivalences of triangu-
lated categories Db(mod A)/Σ2 ∼=RA ∼=H2(P) in this case.

We have the following nice characterization of RA .

Lemma 2.1. Let A be a finite-dimensional k-algebra of finite global dimension and S the dg algebra associated
to A as above. Let p∗ : Db(mod A) → Db(S) be the triangle functor induced by the canonical homomor-
phism p : S → A of dg algebras, where A is viewed as a dg algebra concentrated in degree 0. We have
RA =Db(S)/per(S).
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Proof. We have inclusions per(S) ⊆ tria(p∗ A) ⊆ Db(S). By the definition of RA , it suffices to show
that tria(p∗ A) =Db(S).

Since S is a negative dg algebra. It is well-known that there is a canonical t-structure (D�,D�)

induced by homology over D(S). In particular, D� is the full subcategory of D(S) whose objects
are the dg modules X such that the homology groups H p(X) vanish for all p > 0. The t-structure
restricts to the subcategory Db(S) of D(S) with heart H which is equivalent to mod A. Thus, each
object X ∈ Db(S) is a finite iterated extension of objects in H. But every object in H belongs to
tria(p∗ A), since A is of finite global dimension. This implies that Db(S) ⊆ tria(p∗ A). Therefore we
have Db(S) = tria(p∗ A). �
Definition 2.2. We call the triangulated hull RA := Db(S)/per(S) the root category of A and
πA :Db(mod A) →Db(S)/per(S) =RA the canonical functor.

Remark 2.3. One can also consider the construction for the orbit category Db(mod A)/Σ−2 which is
in fact the same as Db(mod A)/Σ2. Then one replaces the dg algebra S by S ′ = A ⊕ Σ−3 A. The root
category can be defined as RA = tria(p∗ A)/per(S ′).

2.4. Alternative description of RA

There is another description of RA in [17]. Let A be the dg category of bounded complexes of
finitely generated projective A-modules. Naturally, the tensor product of Σ2 A defines a dg functor
from A to A. Then one can form the dg orbit category B as the dg category with the same objects
of A and such that for any X, Y ∈ B, we have

B(X, Y ) ∼=
⊕
n∈Z

A
(

X,Σ2nY
)
.

Now we have an equivalence of categories

Db(mod A)/Σ2 ∼= H0(B).

Let D(B) be the derived category of the dg category B. Let M be the triangulated subcategory of
D(B) generated by the representable functors. The following is a special case of the remarkable the-
orem due to Keller (Theorem 2 in [17], cf. also [18]).

Theorem 2.4. The category Db(S)/per(S) is triangle equivalent to the triangulated hull M.

In fact, Theorem 2 in [17] only implies that tria(p∗ A)/per(S) ∼= M. But by Lemma 2.1 we have
tria(p∗ A)/per(S) ∼=Db(S)/per(S) in the 2-periodic case. This equivalence was induced by the embed-
ding H0(B) ∼=Db(mod A)/Σ2 i−→ RA .

Using this description, we have the following.

Proposition 2.5. Let A be a finite-dimensional k-algebra of finite global dimension. Then the root category RA

is a Hom-finite 2-periodic triangulated category.

Proof. The Hom-finiteness follows from the description of M, since the homomorphisms between
representable functors of B are finite-dimensional over k. Consider the Bop ⊗B-module X : X(A, B) =
B(A, B) for any A, B ∈ B, it induces the identity functor

1 : D(B) → D(B).
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Let Y be the Bop ⊗B-module such that Y (A, B) = Σ2B(A, B) for any A, B ∈ B. Clearly, the module Y
induces the triangle functor

Σ2 : D(B) → D(B).

By the definition of the dg orbit category B, we deduce that X is isomorphic to Y as Bop ⊗B-modules,
which induces an invertible morphism η : 1 → Σ2 by Lemma 6.1 of [16]. Thus, to show that RA is
a 2-periodic triangulated category, we only need to show that RA is a Krull–Schmidt category. It
suffices to prove that each idempotent morphism of RA is split, i.e. RA is idempotent completed.
In fact, D(B) admits arbitrary direct sums, which implies that D(B) is idempotent completed. Recall
that RA = M ⊂ D(B) is closed under direct summands in D(B), the result follows from the well-
known fact that if an additive category C is idempotent completed, then a full subcategory D of C is
idempotent completed if and only if D is closed under direct summands. �
2.5. Serre functor over RA

Keep the notations as above. Let D = Homk(?,k) be the usual duality over k. The Sop ⊗k S-module
DS induces a triangle functor

?
L⊗S DS : D(S) → D(S).

We have the following well-known fact (see e.g. Lemma 1.2.1 of [2]).

Lemma 2.6. There is a non-degenerate bilinear form

αX,Y : D(S)(X, Y ) ×D(S)(Y , X
L⊗S DS) → k,

which is bifunctorial for X ∈ per(S) and Y ∈Db(S).

Proposition 2.7. The functor ?
L⊗S DS restricts to auto-equivalences

?
L⊗S DS : Db(S) → Db(S) and ?

L⊗S DS : per(S) → per(S).

Proof. Since A is of finite global dimension, we know that D A ∈ per A and hence DS ∈ perS . Simi-
larly, we have S ∈ tria(DS) ⊆D(S). This particularly implies that DS is a small generator of D(S). It
is not hard to show that

D(S)
(
S,ΣnS

) ∼= D(S)
(

DS,Σn DS
)
, n ∈ Z.

Thus by Lemma 4.2 of [16], we know that ?
L⊗S DS is an equivalence over D(S). Now the functor

?
L⊗S DS restricts to per(S) follows from tria(DS) = per(S).
Consider the cofibrant resolution of A as a right S-module, one computes directly that

H1(A
L⊗S DS) ∼= D A and Hi(A

L⊗S DS) = 0 for i �= 1.

By the existence of the canonical t-structure of Db(S), we have A
L⊗S DS ∼= Σ−1 D A in Db(S). Now

again by the finiteness of the global dimension of A, we have p∗ A ∈ tria(p∗(D A)) ⊆ Db(S). In partic-

ular, we have tria(p∗(D A)) = Db(S) as tria(p∗ A) = Db(S). Thus, ?
L⊗S DS restricts to an equivalence

?
L⊗S DS :Db(S) →Db(S). �
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Before stating the next result, we recall Amiot’s construction [3] of bilinear form for quotient
category. Let T be a triangulated category and N ⊂ T a thick subcategory of T . Assume ν is an
auto-equivalence of T such that ν(N ) ⊂ N . Moreover, we assume that there is a non-degenerate
bilinear form:

βN,X : T (N, X) × T (X, νN) → k,

which is bifunctorial in N ∈ N and X ∈ T . Let X, Y ∈ T . A morphism p : N → X is called a local
N -cover of X relative to Y if N is in N and it induces an exact sequence:

0 → T (X, Y )
p∗−→ T (N, Y ).

The following theorem is due to Amiot (Lemma 1.1 and Theorem 1.3.1 of [3]).

Theorem 2.8.

1) The bilinear form β naturally induces a bilinear form

β ′
X,Y : T /N (X, Y ) × T /N

(
Y , νΣ−1 X

) → k,

which is bifunctorial for X, Y ∈ T /N .
2) Assume further T is Hom-finite. If there exists a local N -cover of X relative to Y and a local N -cover

of νY relative to X, then the bilinear form β ′
X,Y is non-degenerate.

Recall that RA =Db(S)/per(S). Now we have the following

Proposition 2.9.

1) The bilinear form α induces a bifunctorial bilinear form α′:

α′
X,Y : RA(X, Y ) ×RA

(
Y ,Σ−1 X

L⊗S DS
) → k.

2) The bilinear form α′ is non-degenerate over RA .

Proof. The first statement follows from Lemma 2.6, Proposition 2.7 and Theorem 2.8 directly.
The proof of part 2) is quite related to the proof of Theorem 4.3 of [2]. Let P A = Tot(· · · → ΣnS →

Σn−1S → ·· · → Σ2S → ΣS → S → 0 → ·· ·), i.e. P A is the cofibrant resolution of S-module A. Then
one can easily check that Db(S)(A,Σm A) is finite-dimensional over k for any m ∈ Z. In particular, we
have

Db(S)
(

A,Σ2m A
) ∼= A and Db(S)

(
A,Σ2m+1 A

) = 0,

for m � 0 and Db(S)(A,Σm A) = 0 for m < 0. Since p∗(A) = A ∈Db(S) generates the category Db(S),
which implies that Db(S) is Hom-finite, i.e. for any X, Y ∈ Db(S), we have dimk Db(S)(X, Y ) < ∞.
Since the non-degeneracy is extension closed, it suffices to show that α′

Σn A,Σm A is non-degenerate.
Equivalently, it suffices to show that α′

A,Σn A is non-degenerate for any n ∈ Z. By 2) of Theorem 2.8, it
suffices to show that there exists a local per(S)-cover of A relative to Σn A and a local per(S)-cover

of Σn A relative to A
L⊗S DS . For n < 0, since Db(S)(A,Σn A) = 0, one can take p : S → A as the

local per(S)-cover of A relative to Σn A. Now assume that n � 0. Let

P A,Σn A := Tot
(· · · → 0 → ΣnS → Σn−1S → ·· · → ΣS → S → 0 → ·· ·).
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Clearly P A,Σn A ∈ per(S). One can easily see that p : P A,Σn A → A is a local per(S)-cover of A relative
to Σn A.

On the other hand, note that A
L⊗S DS ∼= Σ−1 D A. A local per(S)-cover of Σn A relative to

Σ−1 D A is equivalent to a local per(S)-cover of A relative to Σ−n−1 D A. If n � 0, we have
Db(S)(A,Σ−n−1 D A) = 0 and p : S → A is a local per(S)-cover of A relative to Σ−n−1 D A. Suppose
that n < 0. One can show that

P A,Σ−n−1 D A := Tot
(· · · → 0 → Σ−n−1S → Σ−n−2S → ·· · → ΣS → S → 0 → ·· ·) → A

is a local per(S)-cover of A relative to Σ−n−1 D A. �
The main result in this subsection is the following.

Theorem 2.10. The root category RA admits Auslander–Reiten triangles.

Proof. Proposition 2.9 implies that Σ−1?
L⊗S DS is the Serre functor over RA =Db(S)/perS . By [25],

one deduces that RA admits Auslander–Reiten triangles. �
2.6. The Grothendieck group of RA

We first recall the definition of the Euler bilinear form for a 2-periodic triangulated category. Let
R be a 2-periodic triangulated category and G0(R) the associated Grothendieck group. The Euler
bilinear form χR(−,−) on G0(R) is defined to be

χR
([X], [Y ]) = dimk R(X, Y ) − dimk R(X,ΣY ),

where X, Y ∈R. We claim that it is well-defined due to the 2-periodic property. Let

L → X → M t−→ Σ L

be any triangle in R. By applying the functor R(−, Y ), we obtain a long exact sequence

· · · → R(Σ L, Y )
t∗−→ R(M, Y ) → R(X, Y ) → R(L, Y )

→ R
(
Σ−1M, Y

) → R
(
Σ−1 X, Y

) → R
(
Σ−1L, Y

) (Σ−2t)∗−−−−−→ R
(
Σ−2M, Y

) → ·· · .

Note that Σ−2t ∼= t as Σ2 ∼= 1, which implies im t∗ = im(Σ−2t)∗ . Hence we have

χR
([X], [Y ]) = χR

([L], [Y ]) + χR
([M], [Y ]).

Dually, one can show that if K → Y → N → Σ K is a triangle in R, then we have

χR
([X], [Y ]) = χR

([X], [K ]) + χR
([X], [N]).

Let A be a finite-dimensional k-algebra of finite global dimension and RA the corresponding root
category. Let G0(RA) and G0(Db(mod A)) be the Grothendieck groups of RA and Db(mod A) respec-
tively. Let χRA (−,−) be the Euler bilinear form over RA defined as above and let χA(−,−) be the
Euler bilinear form over G0(Db(mod A)), i.e.
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χA
([X], [Y ]) =

∑
i∈Z

(−1)i dimk Db(mod A)
(

X,Σ i Y
)

for any X, Y ∈Db(mod A).
We are now in the position to state the main result of this subsection.

Proposition 2.11. Let A be a finite-dimensional k-algebra of finite global dimension and RA the corresponding
root category. Let πA : Db(mod A) → RA be the canonical triangle functor. Then the functor πA induces
an isomorphism π∗

A : G0(Db(mod A)) → G0(RA) of Grothendieck groups which preserves the Euler bilinear
form.

Proof. Suppose that the algebra A has exactly n non-isomorphic simple modules, say S1, . . . .Sn and
let P1, . . . , Pn be the corresponding projective covers. It is well-known that G0(Db(mod A)) ∼= Z[S1]⊕
· · ·⊕Z[Sn]. Let S be the dg algebra defined in Section 2.3. Let p∗ :Db(mod A) →Db(S) be the triangle
functor induced by the canonical homomorphism p : S → A of dg algebras. Recall that the canonical
functor πA : Db(mod A) → RA is the composition of the functor p∗ : Db(mod A) → Db(S) with the
canonical localization Db(S) → Db(S)/per(S) = RA . We first show that the functor p∗ induces an
isomorphism of groups p∗ : G0(Db(mod A)) → G0(Db(S)).

Since S is a negative dg algebra, there is a canonical t-structure over Db(S) whose heart H is
equivalent to mod A. As in the proof of Lemma 2.1, each object of X in Db(S) is a finite iterated
extension of H. Hence, the image [X] of X in the Grothendieck group G0(Db(S)) is a finite lin-
ear combination of the images of objects in H. By the equivalence H ∼= mod A and the assumption
that A is of finite global dimension, for any N ∈ H, the image [N] is a finite linear combination of
[p∗ S1], . . . , [p∗ Sn]. Therefore, for any object X in Db(S), the image [X] of X is a finite linear com-
bination of [p∗ S1], . . . , [p∗ Sn]. Let i : A → S be the injective homomorphism of dg algebras, we have
the induced triangle functor i∗ : Db(S) → Db(mod A) and the associated homomorphism of groups
i∗ : G0(Db(S)) → G0(Db(mod A)). Since p ◦ i = 1A , we have i∗ ◦ p∗ = 1G0(Db(mod A)) , which implies
that p∗ is injective. Hence, [p∗ S1], . . . , [p∗ Sn] are linearly independent over Z and form a Z-basis of
G0(Db(S)). In particular, p∗ : G0(Db(mod A)) → G0(Db(S)) is an isomorphism of groups.

We have the following exact sequence of triangulated categories

per(S) �Db(S) �RA,

which induces an exact sequence of Grothendieck groups

G0
(
per(S)

) ψ−→ G0
(
Db(S)

) φ−→ G0(RA) → 0.

In particular, we have G0(RA) ∼= G0(Db(S))/imψ . Let e1, . . . , en be the orthogonal primitive idempo-
tent elements of A. It is clear that i(e j), j = 1, . . . ,n are orthogonal idempotent elements of S . Let
P̃ j = i(e j)S . By using the existence of canonical t-structure over Db(S), it is not hard to see that

P̃ j , j = 1, . . . ,n are all the indecomposable direct summands of S in Db(S). Since S is negative,
each compact object is a finite extension of direct sum of Σn P̃ j , n ∈ Z (cf. [16, Remark 5.3]). Thus
for any X ∈ per(S), [X] is a finite linear combination of [ P̃ i], i = 1, . . . ,n in the Grothendieck group
G0(per(S)). But ψ([ P̃ j]) = 0 in G0(Db(S)) since ψ([ P̃ j]) = [P j] + [Σ P j] = 0. Therefore imψ = 0 and
φ : G0(Db(S)) → G0(RA) is an isomorphism of groups.

Since the canonical functor πA : Db(mod A) → RA is the composition of p∗ with the localization
functor Db(S) → Db(S)/per(S) = RA , we infer that π∗

A = p∗ ◦ φ : G0(Db(mod A)) → G0(RA) is an
isomorphism of groups. The isomorphism π∗

A preserves the Euler bilinear form follows from a direct
calculation and the definition of χRA . �
Remark 2.12. If A is a finite-dimensional hereditary k-algebra, then RA ∼= Db(mod A)/Σ2. It follows
that G0(Db(mod A)/Σ2) ∼= G0(Db(mod A)).
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2.7. A minimal example

Let Q be the following quiver

2
α

1.

β

Let A be the quotient of the path algebra kQ by the ideal generated by β ◦ α. Then A is
representation-finite and has global dimension 2. Let Db(mod A) be the bounded derived category
of finitely generated right A-modules. Let A be the dg enhancement of Db(mod A), i.e. the dg cat-
egory of bounded complexes of finitely generated projective A-modules. Let Σ2 : A → A be the dg
enhancement of the square of suspension functor of Db(mod A). Let B be the dg orbit category of A
respect to Σ2 (cf. Section 2.4). The canonical dg functor π :A→ B yields an Aop ⊗k B-module

(B, A) → B(B,π A),

which induces the standard functors

D(A)

π∗
D(B).

πρ

We also have a canonical triangle equivalence F :D(Mod A) →D(A). Now the composition

Db(mod A) ↪→ D(Mod A)
F−→ D(A)

π∗−→ D(B)

gives the canonical functor πA :Db(mod A) →RA .

Proposition 2.13. The canonical functor πA :Db(mod A) →RA is not dense.

Proof. We will construct an object in RA which is not in the image of πA . Let Si be the simple
A-modules associated to the vertices i and Pi the corresponding indecomposable projective modules,
i = 1,2. Let l : P2 → P1 be the embedding and γ : P1 � S1 ↪→ P2 the composition of P1 � S1 with

S1 ↪→ P2. Let X be the complex · · · → 0 → P2
(l,0)−−−→ P1 ⊕ P2

(0,l)t−−−→ P1 → 0 · · · , where P1 ⊕ P2 is in
the 0th component. Let Y be the complex · · · → 0 → 0 → P2

0−→ P2 → 0 · · · , where the left P2 is in
the 0th component. Let f be the following morphism from X to Y in Db(mod A)

f : 0 P2

0

(l,0)
P1 ⊕ P2

(γ ,1)t

(0,l)t

P1

γ

0

0 0 P2
0

P2 0,

and g be the following morphism from X to Σ2Y in Db(mod A)

g : 0

0

P2

1

(l,0)
P1 ⊕ P2

0

(0,l)t

P1 0

P2
0

P2 0.
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We claim that the mapping cone of πA( f + g) is not in the image of πA . Let

πA(X)
πA( f +g)−−−−−→ πA(Y ) → Z → ΣπA(X)

be the distinguished triangle. Applying the functor πρ , we get a triangle in D(Mod A)

πρπA(X)
πρπA( f +g)−−−−−−−→ πρπA(Y ) → πρ Z → ΣπρπA(X).

Note that for any X ∈ Db(mod A), we have πρπA(X) ∼= ⊕
i∈Z Σ2i X . Thus, πρ Z is isomorphic to the

mapping cone of the following chain map of complexes

· · · P1 ⊕ P2

(γ ,1)t

( 0 0
l 0

)
P1 ⊕ P2

(γ ,1)t

( 0 0
l 0

)
P1 ⊕ P2

(γ ,1)t

( 0 0
l 0

)
P1 ⊕ P2

(γ ,1)t

· · ·

· · · P2
0

P2
0

P2
0

P2 · · · .

In particular, the mapping cone is

· · · P2 ⊕ P1 ⊕ P2

( 0 0 0
−γ 0 0
−1 −l 0

)
P2 ⊕ P1 ⊕ P2

( 0 0 0
−γ 0 0
−1 −l 0

)
P2 ⊕ P1 ⊕ P2 · · · .

Denote by h the composition P1 � S1 ↪→ P1 and consider the complex P : · · · → P1
h−→ P1

h−→
P1 → ·· · . It is easy to check that the following is a quasi-isomorphism

· · · P2 ⊕ P1 ⊕ P2

(−l,1,0)t

( 0 0 0
−γ 0 0
−1 −l 0

)
P2 ⊕ P1 ⊕ P2

(−l,1,0)t

( 0 0 0
−γ 0 0
−1 −l 0

)
P2 ⊕ P1 ⊕ P2

(−l,1,0)t

· · ·

· · · P1
h

P1
h

P1
h · · · .

In particular, πρ Z is isomorphic to P in D(Mod A). If there exists U ∈ Db(mod A) such that
πA(U ) = Z , then πρ Z ∼= ⊕

i∈Z Σ2i U . But one can easily show that P is indecomposable in D(Mod A).
This completes the proof. �

This example implies that in general the orbit category Db(mod A)/Σ2 is not triangulated even
if A is of small global dimension. In Appendix A, we propose a way to construct various examples
from a known one by using recollement associated to root categories. It would be interesting to know
whether there is an algebra A without oriented cycles such that the orbit category Db(mod A)/Σ2 is
not triangulated with the inherited triangle structure.

3. The ADE root categories

In this section, we focus our attention on the root categories of finite-dimensional hereditary al-
gebras of Dynkin type. We show that such root categories characterize these algebras up to derived
equivalence.
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3.1. Separation of AR-components

Let A be a finite-dimensional k-algebra of finite global dimension. Let πA : Db(mod A) → RA be
the canonical triangle functor. By Theorem 2.10, we know that RA has Auslander–Reiten triangles
(AR-triangles). When πA is dense, it is quite easy to show that πA preserves the AR-triangles, i.e. each
AR-triangle of RA comes from an AR-triangle of Db(mod A) via the canonical functor πA . In general,
we have the following.

Theorem 3.1. Let A be a finite-dimensional k-algebra of finite global dimension and πA : Db(mod A) → RA

the canonical functor. Then the functor πA maps AR-triangles of Db(mod A) to AR-triangles of RA . As a con-
sequence, there is no irreducible morphism between imπA and RA\ imπA .

Proof. Recall that for arbitrary objects X, Y ∈Db(mod A), we have the canonical isomorphism

RA
(
πA(X),πA(Y )

) ∼=
⊕
i∈Z

Db(mod A)
(
Σ2i X, Y

)
,

and Db(mod A)(Σ2i X, Y ) vanishes for all but finitely many i. Denote by S and S̃ the Serre functors
of Db(mod A) and RA respectively. Firstly, we show that πA S(X) ∼= S̃πA(X) for any indecomposable
object X ∈ Db(mod A). Consider the functor DRA(?,πA S(X)) over RA , where D = Homk(?,k) is the
usual duality of k. We have the following canonical isomorphism

DRA
(
πA X,πA S(X)

) ∼= D

(⊕
i∈Z

Db(mod A)
(
Σ2i X, S(X)

))

∼=
⊕
i∈Z

DDb(mod A)
(
Σ2i X, S(X)

)
∼=

⊕
i∈Z

Db(mod A)
(

X,Σ2i X
)

∼= RA(πA X,πA X).

The indecomposable property implies that RA(πA X,πA X) is a local k-algebra. Let η ∈
DRA(πA X,πA S(X)) be the image of 1πA X ∈ RA(πA X,πA X) via the canonical isomorphism. Let
η∗ : RA(πA X,?) → DRA(?,πA S(X)) be the natural transformation corresponding to η. It is clear
that η∗|imπA is an isomorphism. Furthermore, if f : Y → Z is a morphism in RA such that η∗

Y and η∗
Z

are isomorphisms, then η∗
Cone( f ) is an isomorphism. Since RA is the triangulated hull of imπA , one

deduces that η∗ is an isomorphism over RA . In particular, DRA(?,πA S(X)) is representable. On the
other hand, the Serre functor S̃ implies that DRA(?, S̃πA X) is also represented by RA(πA X,?). Thus,
we have πA S(X) ∼= S̃πA X .

Let Σ−1 S X
f−→ Y

g−→ X h−→ S(X) be an AR-triangle in Db(mod A). Let πA(Σ−1 S X)
u−→ W →

πA X v−→ πA S(X) be the AR-triangle in RA . Clearly, πA( f ) is not a split monomorphism. Hence there
is a morphism t : W → πA Y such that πA( f ) = t ◦ u. Namely, we have the following commutative
diagram of triangles

πA(Σ−1 S X)
u

W

t

πA X

s

v
πA S(X)

πA(Σ−1 S X)
πA( f )

πA(Y )
πA(g)

πA X
πA(h)

πA S(X).
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We claim that s is an isomorphism. Otherwise s is nilpotent by the indecomposability of X . Since

Σ−1 S X
f−→ Y

g−→ X h−→ S(X) is an AR-triangle, we have πA(h) ◦ s = 0, which implies that v = 0,

a contradiction. Thus, t is also an isomorphism. In particular, the image of Σ−1 S X
f−→ Y

g−→ X h−→
S(X) is indeed an AR-triangle of RA .

Now one can easily deduce that there is no irreducible morphism between imπA and RA\ imπA ,
which completes the proof. �
Remark 3.2. For generalized cluster categories [3], the separation property of AR-components has been
proved in [4] by using the theory of graded algebra (Theorem 5.2 in [4]). Let CA be the generalized
cluster category associated to A and πA : Db(mod A) → CA the canonical functor. Let S and S̃ be the
Serre functors of Db(mod A) and CA respectively. By the 2-Calabi–Yau property of CA , one deduces
that S̃ ◦ πA(X) ∼= πA ◦ S(X) for any X ∈ Db(mod A). Then one shows that the functor πA preserves
AR-triangles as above. This gives an alternative proof for Theorem 5.2 in [4].

3.2. The ADE root categories

Let A and B be finite-dimensional k-algebras of finite global dimension. If A and B are derived
equivalent, it is clear that RA ∼= RB . But the converse is not known in general. In what follows we
will characterize the algebras sharing the root category with the path algebra of a Dynkin quiver.
Since the derived category of a Dynkin quiver is independent of the choice of the orientation, we
assume Q to be one of the following quivers for simplicity.

An : 1 2 · · · n − 1 n

1

Dn : 3 4 · · · n

2

3

E6 : 1 2 4 5 6

3

E7 : 1 2 4 5 6 7

3

E8 : 1 2 4 5 6 7 8.

Theorem 3.3. Let A be a finite-dimensional k-algebra of finite global dimension. If the root category RA is
equivalent to RkQ for some Dynkin quiver Q , then A is derived equivalent to kQ .

Proof. Since Q is a connected Dynkin quiver, the AR-quiver of Db(modkQ ) is connected. The canon-
ical functor πkQ : Db(modkQ ) → RkQ is dense, which implies that the AR-quiver of RkQ is con-
nected. By Theorem 3.1, we know that the functor πA :Db(mod A) →RA is dense. In particular, each
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X ∈RA has at least one preimage in Db(mod A). Let Pi , i = 1, . . . ,n be the indecomposable projective
kQ -modules. It is clear that

dimk RkQ (πkQ Pi,πkQ P j)� 1 for i � j and RkQ (πkQ Pi,πkQ P j) = 0 for i > j.

Let F :RkQ →RA be the triangle equivalence. We claim that there is an object M in Db(mod A) such
that

πA(M) = F
(
πkQ (kQ )

)
and Db(mod A)

(
M,Σ t M

) = 0 for t �= 0.

Let {Σ2r Xi | r ∈ Z} be the set of preimages of F (πkQ (Pi)) in Db(mod A). The condition that
πA(M) = F (πkQ (kQ )) = F (πkQ (P1 ⊕ · · · ⊕ Pn)) implies that M has exactly n non-isomorphic inde-
composable direct summands, say M1, . . . , Mn . We assume that Mi ∈ {Σ2r Xi | r ∈ Z}, i = 1, . . . ,n and
construct M as follows.

Step 1: Choosing Mn ∈ {Σ2r Xn | r ∈ Z} arbitrarily, since n is the unique sink vertex;
Step 2: Suppose M j , 1 < j � n have been chosen. Let I j be the set of vertices i such that there is an

arrow from vertex i to j. Consider the full subquiver of Q whose vertices are j and i ∈ I j .
Since

dimk RA
(

F
(
πkQ (Pi)

)
, F

(
πkQ (P j)

)) = dimk RkQ
(
πkQ (Pi),πkQ (P j)

) = 1

for each i ∈ I j , there exists a unique ri ∈ Z such that

dimk Db(mod A)
(
Σ2ri Xi, M j

) = 1 and Db(mod A)
(
Σ2t Xi, M j

) = 0 for t �= ri .

Then set Mi = Σ2ri Xi for each i ∈ I j ;
Step 3: Repeat step 2 until j = 1.

It is clear that πA(M) ∼= F (πkQ (kQ )) and

Db(mod A)
(
M,Σ2r M

) = 0 for r �= 0.

On the other hand, we have

RkQ
(
πkQ (kQ ),ΣπkQ (kQ )

) =
⊕
r∈Z

Db(modkQ )
(
kQ ,Σ2r+1kQ

) = 0,

which implies Db(mod A)(M,Σ2r+1M) = 0 for any r ∈ Z. In particular, M is a (partial) tilting com-
plex of Db(mod A). We have Db(modkQ ) ∼= Db(mod EndDb(mod A)(M)) ∼= tria(M), where tria(M) is the

smallest thick subcategory of Db(mod A) containing M . We now prove that tria(M) = Db(mod A). Let
i : Db(modkQ )

∼−→ tria(M) ↪→ Db(mod A) be the composition. By the universal property of the root
category, we have the following commutative diagram

Db(modkQ )

πkQ

i Db(mod A)

πA

RkQ
ī RA,
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where ī is induced by the full embedding i. By Lemma A.2, we know that ī is also fully faithful, thus
an equivalence. It follows that i is dense and an equivalence. We remark that there is no reason that
the induced functor ī coincides with F :RkQ →RA . �
3.3. Tame quiver of type D̃ and Ẽ

Let Q be one of the following quivers

2 n − 1

D̃n : 1 3 · · · n − 2 n n + 1

3

4

Ẽ6 : 1 2 5 6 7

4

Ẽ7 : 1 2 3 5 6 7 8

3

Ẽ8 : 1 2 4 5 6 7 8 9.

Theorem 3.3 also holds for tame quiver of type D̃ and Ẽ . One can adapt a variant proof of Theo-
rem 3.3.

Proposition 3.4. Let A be a finite-dimensional k-algebra of finite global dimension. If the root category RA is
equivalent to RkQ for some tame quiver Q of type D̃ or Ẽ , then A is derived equivalent to kQ .

Proof. It suffices to prove this proposition for Q as one of the above quivers. Note that the canonical
functor πkQ : Db(modkQ ) → RkQ is dense. Let F : RkQ → RA be the triangle equivalence. It is
well-known that the AR-quiver of Db(modkQ ) and hence the AR-quiver of RkQ

∼= RA is the union
of preprojective–preinjective component and tubes up to shifts. We claim that the intersection of
imπA with the preprojective–preinjective component is nonempty. Otherwise, we have imπA ⊆ F (T )∪
Σ F (T ), where T is the union of kQ -modules in the tubes. It is clear that T is a hereditary abelian
subcategory of modkQ . By Theorem 9.1 of [17], we know that Db(T )/Σ2 is triangulated and we have
the following commutative diagram

Db(T )

π

i Db(modkQ )

πkQ

Db(T )/Σ2 ī RkQ ,

where ī is induced by i. In particular, the functor ī is a full embedding. Now imπA ⊆ F (T ) ∪ Σ F (T )

implies that tria(imπA) ⊆ im F ◦ ī, which contradicts to tria(imπA) =RA .
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Therefore the intersection of the image imπA with the preprojective–preinjective component is
nonempty. By Theorem 3.1, every object in this component belongs to imπA . In particular, we have a
preimage of F (πkQ (kQ )) in Db(mod A). Note that in these cases, we have

dimk RkQ
(
πkQ (Pi),πkQ (P j)

)
� 1 for i � j and RkQ

(
πkQ (Pi),πkQ (P j)

) = 0 for i > j.

Then one can adapt the proof of Theorem 3.3 to deduce the desired result. �
4. Ringel–Hall Lie algebras and GIM-Lie algebras

Throughout this section, let k be a field with |k| = q. We study the Ringel–Hall Lie algebras of
the root categories for a class of finite-dimensional k-algebras of global dimension 2. Building on the
representation theory of these algebras, we give a negative answer to a question on GIM-Lie algebras
addressed by Slodowy in [31]. We mention here that different counterexamples have been discovered
by Alpen [1] who considered fixed point subalgebras of certain Lie algebras.

4.1. Generalized intersection matrix Lie algebras

We recall the generalized intersection matrix Lie algebra (GIM-Lie algebra for short) following
Slodowy [31]. A matrix C = (ci j) ∈ Ml(Z) is called a generalized intersection matrix, or GIM for short, if
the following are satisfied

cii = 2,

ci j < 0 ⇐⇒ c ji < 0,

ci j > 0 ⇐⇒ c ji > 0.

If moreover C is symmetric, then C is called an intersection matrix (IM for short). Note that if the
off-diagonal elements of a GIM C are non-positive, then C is a generalized Cartan matrix. A gen-
eralized intersection matrix C is called symmetrizable, if there exists an invertible diagonal matrix
D = diag{d1, . . . ,dl} such that DC is symmetric.

Given a GIM C ∈ Ml(Z), a root basis with structural matrix C is a triplet (H,�,�) consisting of

◦ a finite-dimensional Q-vector space H ;
◦ a family �= {α∨

1 , . . . ,α∨
l }, where α∨

i ∈ H ;
◦ a family �= {α1, . . . ,αl}, where αi ∈ H∗ = HomQ(H,Q)

satisfy the following

1) both sets � and � are linearly independent;
2) α j(α

∨
i ) = ci j for all 1 � i, j � l;

3) dimQ H = 2l − rank C .

We call a root basis a GIM-root basis (resp. an IM-root basis, resp. a GCM-root basis) if its structural
matrix is a GIM (resp. an IM, resp. a generalized Cartan matrix).

The GIM-Lie algebra gim(C) attached to the root basis (H,�,�) is given by the generators h =
H ⊗Q C and e±α , α ∈� satisfying the following relations:

(1)
[
h,h′] = 0, h,h′ ∈ h,

(2) [h, eα] = α(h)eα, h ∈ h, α ∈ ±�,
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(3) [eα, e−α] = α∨, α ∈�,

(4) ad(eα)max(1,1−β(α∨))eβ = 0, α ∈�, β ∈ ±�,

(5) ad(e−α)max(1,1−β(−α∨))eβ = 0, α ∈ �, β ∈ ±�.

If C is a symmetrizable generalized Cartan matrix, then the gim(C) is the Kac–Moody algebra associ-
ated to (H,�,�).

Let ad : gim(C) → End(gim(C)) be the adjoint representation of gim(C). Consider the restriction
of ad to h, the Lie algebra gim(C) decomposes into a direct sum

gim(C) =
⊕
γ ∈h∗

gim(C)γ

of eigenspaces

gim(C)γ = {
x ∈ gim(C)

∣∣ [h, x] = γ (h)x for all h ∈ h
}
.

Let R ⊂ h∗ be the set of all γ ∈ h∗ such that gim(C)γ �= {0}. A non-zero α ∈ R is called a root of
gim(C). We have R ⊂ Γ := Z�, where Γ is called the root lattice of gim(C).

It is clear that h ⊆ gim(C)0. The following question has been addressed in [31] by Slodowy.

Question 4.1. Do we have h= gim(C)0?

Let gim(C)′ := [gim(C),gim(C)] be the derived subalgebra of gim(C). It is known that gim(C) =
gim(C)′ +h. Set h′ := ∑l

i=1 Cα∨
i ⊂ h, then gim(C)′ ∩h = h′ and gim(C)′ ∩gim(C)γ = gim(C)γ for γ �= 0.

We remark that the derived subalgebra gim(C)′ can be presented by generators α∨
i , 1 � i � l and eα ,

α ∈ ±� with the same relations of gim(C).
Clearly, Question 4.1 is equivalent to the following: Do we have dimC gim(C)′0 = l? In [1], Alpen

has given a negative answer by using Lie theory. In the following, a totally different approach is
given, using representation theory of finite-dimensional algebras.

4.2. IM-Lie algebras

Let C be a generalized intersection matrix and (H,�,�) a root basis associated to C . For any
α ∈ �, let sα : H → H be the transformation

sα(h) = h − α(h)α∨, h ∈ H .

The contragredient action of sα on H∗ is given by

sα(γ ) = γ − γ
(
α∨)

α, γ ∈ H∗.

The Weyl group W of the root basis (H,�,�) is defined to be the subgroup of Aut(H) generated by
the transformations sα , α ∈�.

Two GIM-root bases (H,�,�) and (H,�′,�′) are called braid equivalent [31] if they can be trans-
formed into each other by a sequence

(H,�,�) = (H,�1,�1) �→ (H,�2,�2) �→ · · · �→ (H,�m,�m) = (
H,�′,�′)

of transformations of the form
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�k+1 = (
�k \ {

β∨}) ∪ (
sα

(
β∨))

,

�k+1 = (
�k \ {β}) ∪ (

sα(β)
)

for some α,β ∈�k , k = 1, . . . ,m − 1.
It is known that there are braid equivalent GIM-root bases giving rise to non-isomorphic GIM-Lie

algebras. To remedy this defect, Slodowy [31] introduced another class of Lie algebras for intersection
matrix.

Let C be an intersection matrix and (H,�,�) the associated IM-root basis. The symmetric struc-
tural matrix C = (cαβ)α,β∈� induces a symmetric bilinear form

( , ) : Γ × Γ → Z

over the root lattice Γ = Z� by

(α,β) := cαβ, for α,β ∈ �.

Let gim(C) be the GIM-Lie algebra associated to the root basis (H,�,�). Let τ be the ideal of gim(C)

generated by all the elements x ∈ gim(C)γ with (γ ,γ ) > 2. The IM-Lie algebra associated to the root
basis (H,�,�) is defined to be the quotient algebra

im(C) := gim(C)/τ .

If C is a symmetric generalized Cartan matrix, we have gim(C) = im(C) = gcm(C), where gcm(C) is
the Kac–Moody algebra associated to C .

The following theorem has been proved by Slodowy [31].

Theorem 4.2. Let (H,�,�) and (H,�′,�′) be braid equivalent IM-root bases. Let C1 and C2 be the cor-
responding structural matrices of (H,�,�) and (H,�′,�′) respectively. Then the IM-Lie algebra im(C1) is
isomorphic to im(C2).

4.3. The Ringel–Hall Lie algebra

We recall the definition of the Ringel–Hall Lie algebra of a 2-periodic triangulated category fol-
lowing [24] (cf. also [34,35,10]). Let R be a Hom-finite k-linear triangulated category with suspension
functor Σ . By indR we denote a set of representatives of the isoclasses of all indecomposable objects
in R.

Given any objects X , Y , L in R, we define

W (X, Y ; L) = {
( f , g,h) ∈ HomR(X, L) × HomR(L, Y ) × HomR(Y ,Σ X)

∣∣
X

f−→ L
g−→ Y h−→ Σ X is a triangle

}
.

The action of Aut(X) × Aut(Y ) on W (X, Y ; L) induces the orbit space

V (X, Y ; L) = {
( f , g,h)∧

∣∣ ( f , g,h) ∈ W (X, Y ; L)
}
,

where

( f , g,h)∧ = {(
af , gc−1, ch(Σa)−1) ∣∣ (a, c) ∈ Aut(X) × Aut(Y )

}
.

Let HomR(X, L)Y be the subset of HomR(X, L) consisting of morphisms l : X → L whose mapping
cone Cone(l) is isomorphic to Y . Consider the action of the group Aut(X) on HomR(X, L)Y by d · l = dl,
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the orbit is denoted by l∗ and the orbit space is denoted by HomR(X, L)∗Y . Dually one can con-
sider the subset HomR(L, Y )Σ X of HomR(L, Y ) with the group action Aut(Y ) and the orbit space
HomR(L, Y )∗Σ X . The following proposition is an observation of [33].

Lemma 4.3. |V (X, Y ; L)| = |HomR(X, L)∗Y | = |HomR(L, Y )∗Σ X |.

In the following, we set F L
Y X = |V (X, Y ; L)|.

We assume further that R is 2-periodic, i.e. R is Krull–Schmidt and Σ2 ∼= 1.
Let G0(R) be the Grothendieck group of R and IR(−,−) the symmetric Euler bilinear form of R,

where IR(−,−) is defined to be

IR
([X], [Y ]) = χR

([X], [Y ]) + χR
([Y ], [X])

for any [X], [Y ] ∈ G0(R). Let h be the subgroup of G0(R) ⊗Z Q generated by [M]
d(M)

, where M ∈ indR
and d(M) = dimk(End(M)/rad End(M)). One can naturally extend the symmetric Euler bilinear form
to h× h. Let n be the free abelian group with basis {u X | X ∈ indR}. Let

g(R) = h⊕ n

be a direct sum of Z-modules. Consider the quotient group

g(R)(q−1) = g(R)/(q − 1)g(R).

By abuse of notations, for any M ∈ R we still use uM , [M] to denote the corresponding residues in
g(R)(q−1) . Now define a bilinear operation [−,−] on g(R)(q−1) as follows.

(a) For any indecomposable objects X, Y ∈R,

[u X , uY ] =
∑

L∈indR

(
F L

Y X − F L
XY

)
uL − δX,ΣY

[X]
d(X)

,

where δX,ΣY = 1 for X ∼= ΣY and 0 else.
(b) [h,h] = 0.

(c) For any objects X, Y ∈R with Y indecomposable,

[[X], uY
] = IR

([X], [Y ])uY ,
[
uY , [X]] = −[[X], uY

]
.

The following remarkable theorem is due to Peng and Xiao (Theorem 3.4 of [24], cf. also [34]).

Theorem 4.4. Together with the operation [−,−], g(R)(q−1) is a Lie algebra over Z/(q − 1)Z.

Let us mention that, for an arbitrary finite-dimensional algebra A over C, Xiao, Xu and Zhang [34]
have proposed to study the homotopy category H2(P) of 2-periodic complexes of finitely generated
projective A-modules and have given a geometric construction of a Lie algebra over C directly instead
of over finite fields like in [24].

A triangulated category T is called proper, if for any non-zero indecomposable object X ∈ T , [X] is
non-zero in the Grothendieck group G0(T ). If the 2-periodic triangulated category R is proper, then
[u X , uΣ X ] = − [X]

d(X)
, which coincides the origin definition in [24]. Note that the proof in [24] is still

valid for non-proper 2-periodic triangulated category for the Lie bracket defined above (cf. [34]).
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We have the following functorial property of g(R)(q−1) (cf. Corollary 1.16 of [30]).

Lemma 4.5. Let R1 and R2 be 2-periodic triangulated categories over k and G : R1 → R2 a fully faithful
triangle functor. Then G induces a homomorphism of Lie algebras G̃ : g(R1)(q−1) → g(R2)(q−1) .

Proof. Let h1 (resp. h2) be the subgroup of G0(R1)⊗ZQ (resp. G0(R2)⊗ZQ) generated by [M]
d(M)

with
M ∈ indR1 (resp. M ∈ indR2). Let n1 and n2 be the free abelian groups with bases {u X | X ∈ indR1}
and {uY | Y ∈ indR2} respectively. We have

g(R1)(q−1) = h1/(q − 1)h1 ⊕ n1/(q − 1)n1 and g(R2)(q−1) = h2/(q − 1)h2 ⊕ n2/(q − 1)n2.

Let G∗ : G0(R1) → G0(R2) be the homomorphism of groups induced by G : R1 → R2. Since G is
fully faithful, it is not hard to see that G∗ induces a homomorphism of abelian groups G̃ : h1/(q −
1)h1 → h2/(q − 1)h2. We extend G̃ linearly to the whole Z/(q − 1)Z-space g(R1)(q−1) by setting
G̃(u X ) = uG X for X ∈ indR1. This is well-defined, since {u X | X ∈ indR1} form a Z/(q − 1)Z-basis of
n1/(q − 1)n1 and G is fully faithful.

In order to show that G̃ is a homomorphism of Lie algebras, it suffices to show that G̃ preserves
the Lie operations (a), (b), (c). This is obvious for (b). Since G is fully faithful, we infer that for any
X, Y ∈ R1, we have IR1 ([X], [Y ]) = IR2 ([G X], [GY ]). This implies in particular that G̃ preserves the
operation (c). For (a), let X, Y ∈ indR1, by the definition of G̃ we have

G̃
([u X , uY ]) =

∑
L∈indR1

(
F L

Y ,X − F L
X,Y

)
uGL − δX,ΣY

[G X]
d(X)

,

[
G̃(u X ), G̃(uY )

] =
∑

N∈indR2

(
F N

GY ,G X − F N
G X,GY

)
uN − δG X,ΣGY

[G X]
d(G X)

.

Again by G is fully faithful, we have d(X) = d(G X). Therefore, to show G̃[u X , uY ] = [G̃(u X ), G̃(uY )], it
suffices to prove

∑
L∈indR1

(
F L

Y ,X − F L
X,Y

)
uGL =

∑
N∈indR2

(
F N

GY ,G X − F N
G X,GY

)
uN .

Since G is fully faithful, one can view R1 as a triangulated subcategory of R2. For any X, Y , L ∈
indR1, we have F L

X,Y = F GL
G X,GY . On the other hand, if F N

G X,GY �= 0, there exists M ∈ R1 such that

GM ∼= N and F M
X,Y = F N

G X,GY . Hence G induces a bijection between {L ∈ indR1 | F L
Y ,X − F L

X,Y �= 0} and

{N ∈ indR2 | F N
GY ,G X − F N

G X,GY �= 0}. Moreover, we have F L
Y ,X − F L

X,Y = F GL
GY ,G X − F GL

G X,GY , which implies
the desired result. �

We now turn to the ‘integral’ version of Ringel–Hall Lie algebras for finite-dimensional k-algebras.
Let A be a finite-dimensional k-algebra of finite global dimension. Let E be a field extension of k and
set V E = E ⊗k V for any k-space V . Then AE is a finite-dimensional E-algebra and, for M ∈ mod A,
M E has a canonical AE -module structure. The field E is called conservative [26] for an indecomposable
A-module X if (EndA(X)/rad EndA(X))E is a field again.

Let k be the algebraic closure of k and set

Ω = {E | k ⊆ E ⊆ k is a finite field extension and conservative for all simple A-modules}.

For any E ∈ Ω , one can show that AE has finite global dimension (cf. e.g. Section 2 of [9]). Let RAE

be the root category of AE which is a 2-periodic triangulated category. By Theorem 4.4, we have
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a Lie algebra g(RAE )(|E|−1) over Z/(|E| − 1)Z. Now consider the direct product
∏

E∈Ω g(RAE )(|E|−1)

of Lie algebras and let LC(RA) be the Lie subalgebra of
∏

E∈Ω g(RAE )(|E|−1) generated by uSi :=
(uS E

i
)E∈Ω and uΣ Si := (uΣ S E

i
)E∈Ω for all simple A-modules Si . We call LC(RA) the integral Ringel–

Hall Lie algebra of A. It is clear that LC(RA) has a gradation given by the Grothendieck group G0(RA),
namely,

LC(RA) =
⊕

α∈G0(RA)

LC(RA)α,

such that deg uSi = [Si] and deg uΣ Si = [Σ Si]. By the Lie operation (a), one gets that hi :=
[uSi , uΣ Si ] ∈LC(RA)0.

Now we can state the main result of Peng and Xiao (Theorem 4.7 in [24]).

Theorem 4.6. Let A be a finite-dimensional hereditary k-algebra with symmetrizable generalized Cartan ma-
trix C . Let RA be the root category of A. Let gcm(C)C be the derived Kac–Moody algebra over C associated to
the generalized Cartan matrix C . Then we have an isomorphism of Lie algebras gcm(C)C ∼= C⊗Z LC(RA).

We end up this subsection with the ‘integral’ version of Lemma 4.5.

Lemma 4.7. Let A be a basic finite-dimensional k-algebra of finite global dimension. Let e be an idempotent
element of A and B = A/Ae A. Suppose that B has finite global dimension and for every finite field extension E

of k, the derived functor F E := ?
L⊗B E B E

AE : Db(mod B E ) → Db(mod AE) is an embedding. Then the functor

F := ?
L⊗B B A induces a homomorphism of Lie algebras F̃ :LC(RB) →LC(RA).

Proof. Since A is basic, we deduce that

Ω := {E | k ⊆ E ⊆ k is a finite field extension and conservative for all simple A-modules}
= {E | k ⊆ E ⊆ k is a finite field extension of k}
= {E | k ⊆ E ⊆ k is a finite field extension and conservative for all simple B-modules}.

By Lemma A.2, the functor F E induces an embedding F E : RB E → RAE for each E ∈ Ω . Hence we
have the induced homomorphisms of Lie algebras

F̃ E : g(RB E )(|E|−1) → g(RAE )(|E|−1)

for any E ∈ Ω by Lemma 4.5. Consider the product of ( F̃ E )E∈Ω ,

∏
E∈Ω

F̃ E :
∏
E∈Ω

g(RB E )(|E|−1) →
∏
E∈Ω

g(RAE )(|E|−1).

Let F̃ be the restriction of
∏

E∈Ω F̃ E to the subalgebra LC(RB). It suffices to show that the image of F̃
is contained in the subalgebra LC(RA) of

∏
E∈Ω g(RAE )(|E|−1) . Let Si , i = 1, . . . ,m be the pairwise

non-isomorphic simple B-modules. Since LC(RB) is generated by uSi and uΣ Si for 1 � i � m, we
only need to check that F̃ (uSi ) and F̃ (uΣ Si ) belong to LC(RA). It is clear that F E (S E

i ) = F (Si)
E are

simple AE -modules. We have

F̃ (uSi ) = (
F̃ E(uS E )

) = (uF (S )E )E∈Ω = uF (Si) ∈ LC(RA)

i E∈Ω i
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and

F̃ (uΣ Si ) = (
F̃ E(uΣ S E

i
)
)

E∈Ω
= uΣ F (Si) ∈ LC(RA), 1 � i �m.

This completes the proof. �
4.4. A class of finite-dimensional k-algebras

Let Q be the following quiver

0

αδ

n n − 1 2 1
β

γ
n + 1 ◦ n + m.

We assume m � 1, n � 2. Let A be the quotient of path algebra kQ by the ideal generated by β ◦ α,
γ ◦ α. It has global dimension 2. Let Si , i = 0,1, . . . ,m + n be the simple A-modules corresponding
to the vertices i and χA the Euler bilinear form of A. Let C A be the Cartan matrix of A. Namely,
C A = (ci j)(m+n+1)×(m+n+1) , where

ci+1, j+1 = χA
([Si], [S j]

) + χA
([S j], [Si]

)
, 0 � i, j �m + n.

Note that C A is a generalized intersection matrix but not a generalized Cartan matrix.
Let RA be the root category of A and LC(RA) the corresponding integral Ringel–Hall Lie al-

gebra. In the rest of this paper, we show that dimC (LC(RA) ⊗Z C)0 � m + n + 2 and there exists
a surjective morphism gim(C A)′ → LC(RA) ⊗Z C. Consequently, the equality of Question 4.1 does
not hold for the generalized intersection matrix algebra gim(C A) (cf. Corollary 4.12). We remark that
the surjective morphism gim(C A)′ → LC(RA) ⊗Z C does not factor through the canonical projection
πC A : gim(C A)′ → im(C A)′ .

The following lemma gives a lower bound for the dimension of (LC(RA) ⊗Z C)0.

Lemma 4.8. Let RA be the root category of A and LC(RA) the integral Ringel–Hall Lie algebra of RA . Set
hi = [uSi , uΣ Si ], 0 � i � m + n and let h̃ be the subspace of LC(RA) spanned by hi , 0 � i � n + m. Let M
be the unique indecomposable A-module with composition series S0 , S1 , S2 , Sn+1 . Then uM = (uM E )E∈Ω ∈
LC(RA) and 0 �= [uM , uΣM ] /∈ h̃. As a consequence, we have dimC(LC(RA) ⊗Z C)0 � m + n + 2.

Proof. Since A is basic, we have Ω = {k ⊆ E ⊆ k | E is a finite field extension of k}. A directly com-
putation shows hi = [uSi , uΣ Si ] = ([S E

i ])E∈Ω . On the other hand, one can easily check that uM E =
[[[uS E

0
, uS E

1
], uS E

2
], uS E

n+1
] for any E ∈ Ω by using Lemma 4.3. Thus, both uM , uΣM belong to LC(RA).

Let Pi be the indecomposable projective A-modules corresponding to vertex i. Let

0 → P0
l−→ P1 → P2 ⊕ Pn+1 → M → 0

be the projective resolution of M . We clearly have that

RA(M, M) = Db(mod A)(M, M) ⊕Db(mod A)
(
M,Σ2M

)
.

Moreover, dimk RA(M, M) = 2 and dimk radRA(M, M) = 1.
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In order to compute [uM , uΣM ], it remains to compute F L
ΣM,M and F L

M,ΣM for any indecomposable

L ∈ indRA . Let M → L → ΣM
f−→ ΣM be a triangle in RA , then we can write f = f0 + f1, where

f0 ∈Db(mod A)(ΣM,ΣM) and f1 ∈Db(mod A)(ΣM,Σ3M). If f0 �= 0, then f is an isomorphism and
L ∼= 0. Hence, we assume that f0 = 0, i.e. 0 �= f1 = f ∈ radRA(M, M), and then the triangle M → L →
ΣM

f−→ ΣM is induced by a triangle Σ2M → L → ΣM
f1−−→ Σ3M in Db(mod A). By computing the

mapping cone of f in Db(mod A), we deduce that L is isomorphic to the complex

· · · → 0 → P0
( f ,l)−−→ M ⊕ P1 → P2 ⊕ Pn+1 → 0 · · · ,

where P2 ⊕ Pn+1 lies in the −1th component.
We claim that L is indecomposable in Db(mod A). Indeed, suppose L ∼= X ⊕ Y in Db(mod A). We

have H∗(L) ∼= H∗(X) ⊕ H∗(Y ), where H∗(−) is the homology groups of corresponding complex. On
the other hand, the only non-zero homology groups of L are H−1(L) ∼= H−2(L) ∼= M , which are in-
decomposable A-modules. Thus, we may assume X ∼= Σ2M and Y ∼= ΣM . Note that in the root

category RA , we have Σ2M ∼= M . In particular, we can rewrite the triangle M → L → ΣM
f−→ ΣM

as M → M ⊕ ΣM → ΣM
f−→ ΣM . By Lemma 3 of [24], we deduce that this triangle is split and

f = 0, a contradiction. Thus L is indecomposable. Moreover, for any non-zero f , h in radRA(M, M),
the mapping cones of f and h are isomorphic to each other since dimk radRA(M, M) = 1. Therefore
there is a unique indecomposable L such that F L

ΣM,M is non-zero.

Let ΣM → N → M
g−→ Σ2M be a triangle in RA . Similarly, one can show that N is indecompos-

able if and only if 0 �= g ∈ Db(mod A)(M,Σ2M). Moreover, we have N ∼= Σ−1 L. A direct calculation
implies that dimk RA(M, L) = 1. By Lemma 4.3, we know that F L

ΣM,M = F Σ−1 L
M,ΣM = 1. Now by the

definition of the Lie bracket, in g(RA)(|k|−1) , we have

[uM , uΣM ] = −[M] +
∑

X∈indRA

(
F X

ΣM,M − F X
M,ΣM

)
u X

= −[M] + F L
ΣM,M uL − F Σ−1 L

M,ΣM uΣ−1 L

= −[M] + uL − uΣ L .

It is not hard to show that L � Σ L in the root category RA . Hence we have uL − uΣ L �= 0. Note that
the proof above is valid for any finite field extension of k. Thus, in the integral Ringel–Hall Lie algebra
LC(RA), we still have [uM , uΣM ] = −[M] + uL − uΣ L . On the other hand, the degree of [uM , uΣM ] is
zero since [M] + [ΣM] = 0 ∈ G0(RA). Therefore we have [uM , uΣM ] ∈ LC(RA)0 and it is not in the
space spanned by hi , i = 0, . . . ,m + n. �
Remark 4.9. Let Mij , i � 2, j � 1 be the unique indecomposable A-module with composition series
S0, S1, S2, . . . , Si, Sn+1, . . . , Sn+ j . Similar to the proof of Lemma 4.8, one can show uMij ∈ LC(RA)

and 0 �= [uMij , uΣMij ] is not in the space spanned by the hi , i = 0, . . . ,m + n.

As a byproduct of the proof, we have the following

Corollary 4.10. The root category RA is not triangle equivalent to the root category of a finite-dimensional
hereditary k-algebra.

Proof. Let B be any finite-dimensional hereditary k-algebra. It is well-known that the root cate-
gory RB is proper (cf. e.g. [24]). Suppose that there is a triangle equivalence RA ∼= RB , then the root
category RA is proper. That is for every non-zero indecomposable X ∈RA , one has 0 �= [X] ∈ G0(RA).
But the proof above shows that there is an indecomposable object L ∈ RA fitting into a triangle
M → L → ΣM → ΣM , which implies [L] = [M] + [ΣM] = 0 ∈ G0(RA). �
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Recall that gim(C A) is the generalized intersection matrix algebra associated to the GIM-root basis
(H,�,�). Let gim(C A)′ := [gim(C A),gim(C A)] be the derived subalgebra of gim(C A). As mentioned
at the end of Section 4.1, the derived subalgebra gim(C A)′ can be presented by generators α∨

i , i =
0, . . . ,m + n, and eα , α ∈ �= {αi | i = 0, . . . ,m + n} with the same relations of gim(C A).

Theorem 4.11. There is a surjective homomorphism φ : gim(C A)′ → LC(RA) ⊗Z C of Lie algebras defined
by

α∨
i �→ hi = [uSi , uΣ Si ],

eαi �→ uSi ,

e−αi �→ −uΣ Si , 0 � i � n + m.

Moreover, φ keeps the gradations.

Proof. The relations (1), (2), (3) for GIM-Lie algebra follow from the definition of Lie bracket of
Ringel–Hall Lie algebra. It suffices to show uSi , uΣ S j , 0 � i, j � m + n satisfy the Serre relations (4)
and (5). We separate the proof into 4 cases.

Case 1: i, j ∈ {0,1}. We consider the quotient algebra B = A/A(e2 + e3 + · · · + en+m)A, where ei is
the idempotent associated to the vertex i. Note that B is projective as a right A-module.
Then the algebras A and B satisfy all the assumptions of Lemma 4.7 by Theorem 3.1 in [8].
In particular, we have a homomorphism LC(RB) → LC(RA) of Lie algebras. Moreover, this
homomorphism restricts to a surjective homomorphism LC(RB) � 〈uSi , uΣ Si | i = 0,1〉 ⊂
LC(RA). In order to show uSi , uΣ Si , i = 0,1 satisfy the Serre relations (4), (5), it suffices to
prove that the preimage of uSi , uΣ Si , i = 0,1 satisfy the Serre relations.
Since the algebra B is hereditary of type Ã1, we infer that LC(RB)⊗ZC is isomorphic to the
derived affine Kac–Moody algebra of type Ã1 by Theorem 4.6. Therefore the preimages of uSi ,
uΣ Si , i = 0,1 satisfy the Serre relations.

Case 2: i, j ∈ {1,2, . . . ,n + m}. Let B = A/Ae0 A. It is easy to see that ExtiA(B A, B A) = 0 for i > 0.
Again by Theorem 3.1 of [8], we deduce that the algebras A, B satisfy all the assumptions of
Lemma 4.7. We have a surjective homomorphism of Lie algebras

LC(RB)� 〈uSi , uΣ Si | i = 1,2, . . . ,m + n〉 ⊂ LC(RA).

Note that in this case B is of Dynkin type Am+n . The Ringel–Hall Lie algebra LC(RB) ⊗Z C is
isomorphic to the simple Lie algebra of type Am+n . Now the result follows similarly.

Case 3: i = 0, j �= 1,2,n + 1. In particular, by the definition of Lie bracket we only need to show that
[uS0 , uS j ] = 0 and [uS0 , uΣ S j ] = 0. This follows from the fact that S j has projective dimen-
sion 2 and the projective resolution of S j does not involve P0.

Case 4: i, j ∈ {0,2,n + 1}. For the case i = 0, j = 2, we consider the quotient algebra B1 = A/A(e3 +
· · · + em+n)A and B2 = A/A(e2 + · · · + en + en+2 + · · · + en+m)A for the case i = 0, j = n + 1.
Clearly, the algebra B2 is isomorphic to B1. By Theorem 3.1 of [8], we deduce that A and B1
satisfy the whole assumptions of Lemma 4.7. The algebra B1 turns out to be a tilted algebra
of tame hereditary algebra of type Ã2. Thus the integral Ringel–Hall algebra LC(RC1 ) ⊗Z C

is isomorphic to the derived Kac–Moody algebra of type Ã2. The surjective homomorphism
of Lie algebras LC(RB1 ) ⊗Z C � 〈uSi , uΣ Si | i = 0,2,n + 1〉 ⊂ LC(RA) implies the desired
result.

Therefore φ is a homomorphism of Lie algebras. Note that LC(RA) is generated by uSi and uΣ Si , i =
0, . . . ,m + n, we deduce that φ is surjective. Furthermore, since φ is homogeneous on the generators,
we know that φ keeps the gradations. �
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Combine Theorem 4.11 with Lemma 4.8, we get the following.

Corollary 4.12.

1) Let C A be the Cartan matrix of the algebra A and (H,�,�) the GIM-root basis associated to C A .
Then dimC gim(C A)0 > dimC H ⊗Q C. In particular, this gives a negative answer to Slodowy’s Ques-
tion 4.1.

2) Let τ be the ideal of gim(C A) generated by all the elements in gim(C A)γ with (γ ,γ ) > 2. Then the ideal
τ �= {0} and hence im(C A) �= gim(C A).

Proof. 1) Since C A ∈ Mm+n+1(Z) and rank(C A) = m +n, we obtain that dimC H ⊗QC= 2(m +n +1)−
rank(C A) = m + n + 2. Therefore dimC gim(C A)0 = dimC gim(C A)′0 + 1 � dimC(LC(RA) ⊗Z C)0 + 1 �
m + n + 3 > dimC H ⊗Q C by Theorem 4.11 and Lemma 4.8.

2) Let β = α0 + α1 + α2 + αn+1. It is clear that (β,β) = 4, where (−,−) is the symmetric bilinear
form over the root lattice Γ of gim(C A). We have

gim(C A)β = gim(C A)′β
φ|gim(C A )′

β−−−−−−→ LC(RA)[M].

By Lemma 4.8, we have 0 �= uM ∈LC(RA)[M] , which implies gim(C A)β �= {0}. Hence τ �= {0}. �
We end up this section with the following remark.

Remark 4.13. Let J be the ideal of kQ generated by β ◦α, γ ◦ δ. The quotient algebra kQ / J is derived
equivalent to the hereditary algebra kÃm+n (cf. [5]) and its Cartan matrix CkQ / J coincides with C A .
Let (H,�,�) be a GIM-root basis associated to CkQ / J = C A . It is not hard to see that (H,�,�)

is braid equivalent to a GCM-root basis (H,�′,�′) whose structural matrix is the generalized Car-
tan matrix C Ãm+n

of affine type Ãm+n . Note that for the generalized Cartan matrix C Ãm+n
, we have

gim(C Ãm+n
) = im(C Ãmn

). Applying Theorem 4.2, Theorem 4.6 and Theorem 4.11, we have the following
commutative diagram of Lie algebras

gim(C A)′

φ

πC A

gim(CkQ / J )
′

πCkQ / J

φ◦πCkQ / J
gim(C Ãm+n

)′

im(C A)′ im(CkQ / J )
′

∼= η−1◦τ◦θ

∼=
θ

im(C Ãm+n
)′

∼=μ

LC(RA) ⊗Z C LC(RkQ / J ) ⊗Z C ∼=
η

LC(R Ãm+n
) ⊗Z C,

where the isomorphism θ is a consequence of Theorem 4.2, μ follows from Theorem 4.6 and η follows
from the fact that kQ / J is derived equivalent to kÃm+n . However, the surjective morphism φ does
not factor through the canonical morphism πC A : gim(C A)′ → im(C A). There is nothing to surprise,
since we have shown that RA is not triangle equivalent to RkQ / J and the integral Ringel–Hall Lie
algebra LC(RA) is quite different to LC(RkQ / J ). By 2) of Corollary 4.12, we know that the canonical
morphism πC A = πCkQ / J is not injective and gim(C A)′ = gim(CkQ / J )

′ � gim(C Ãm+n
)′ . This also provides

a class of examples that braid equivalent GIM-root bases can give rise to non-isomorphic GIM-Lie
algebras.
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Appendix A. Recollement lives in root categories

In this appendix, we show that a recollement of bounded derived categories lives in the corre-
sponding root categories under suitable assumption. This allows us to construct inductively various
algebras whose 2-periodic orbit categories are not triangulated with the inherited triangle structure
from the one of the bounded derived categories.

A.1. The induced functors

Let A and B be finite-dimensional k-algebras of finite global dimension. Let F : Db(mod A) →
Db(mod B) be a standard functor, i.e. F ∼= ?

L⊗A XB for some complex of Aop ⊗k B-module. Note that for
any triangle functor L : Db(mod A) → Db(mod B), we have L ◦ Σ2

A
∼= Σ2

B ◦ L. By the universal property
of dg orbit category (cf. Section 9.4 in [17]), F naturally induces a triangle functor F : RA → RB and
we have the following commutative diagram

Db(mod A)

πA

F Db(mod B)

πB

RA
F RB ,

where πA , πB are the canonical functors. In the following, we will study the induced functor F
explicitly.

Let A XB be K-projective as an Aop ⊗k B-module. Clearly, X has finite total homology. Moreover,
A XB is compact as a left A-module and a right B-module respectively for the reason that A and B

are of finite global dimension. Then we have the canonical isomorphism RHomB(A XB ,?) ∼= ?
L⊗B

RHomB(A XB , B)A . Let B Y A →B RHomB(A XB , B)A be a K-projective resolution of B RHomB(A XB , B)A

as a Bop ⊗k A-module. Thus, the right adjoint G of F is naturally isomorphic to ?
L⊗B Y A .

Let A be the dg category of bounded complexes of finitely generated projective A-modules and B
the dg category of bounded complexes of finitely generated projective B-modules. The tensor products

by X and Y define dg functors ?
L⊗A X : A → B and ?

L⊗B Y : B → A. By abuse of notation, we
denote these dg functors by F and G as well. Similarly, one can lift the square of the shift functors
Σ2

A : Db(mod A) → Db(mod A) and Σ2
B : Db(mod B) → Db(mod B) to dg functors Σ2

A : A → A and
Σ2

B : B → B.
Let RA be the dg orbit category (cf. Section 5 of [17]) of A respects to Σ2

A . Let RB be the dg
orbit category of B respects to Σ2

B . We have canonical dg functors πA : A → RA , πB : B → RB and
natural isomorphisms Σ2

B ◦ F ∼= F ◦Σ2
A , Σ2

A ◦G ∼= G ◦Σ2
B of dg functors. Thus, by the universal property

of dg orbit categories, F and G induce dg functors F :RA →RB and G :RB →RA . Clearly, F yields
an Rop

A ⊗k RB-module X F

X F (B, A) �→ RB
(

B, F (A)
)
.
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Similarly, G induces an Rop
B ⊗k RA-module YG

YG(A, B) �→ RA
(

A, G(B)
)
.

Let LT X F
: D(RA) → D(RB) be the derived tensor functor of X F and LTYG

: D(RB) → D(RA) the
derived tensor functor of YG . In the following, we identify the objects of A with the ones of RA and
the objects of B with the ones of RB respectively.

Lemma A.1. LT X F
is left adjoint to LT YG

.

Proof. Clearly, X Ã
F

= X F (?, Ã) is K-projective for any Ã ∈ A and LT X F
is left adjoint to RH X F

. It

suffices to show that LT YG
∼= RH X F

. For any Ã ∈ A, X F (?, Ã) ∼= RB(?, F ( Ã)) which is compact in

D(RB). By Lemma 6.2 (a) in [16], we have LT X T
F

∼= RH X F
, where X T

F
is defined by

X T
F
( Ã, B̃) = DifRB

(
X F (?, Ã), B̃∧)

.

Thus, it suffices to show that we have a quasi-isomorphism YG → X T
F

of Rop
B ⊗k RA-modules. For

any Ã ∈A and B̃ ∈ B, we have

X T
F
( Ã, B̃) = DifRB

(
X F (?, Ã), B̃∧)

= DifRB
(

F ( Ã)∧, B̃∧)
∼= RB

(
F ( Ã), B̃

)
∼=

⊕
n∈Z

B
(

F ( Ã),Σ2n
B B̃

)
∼=

⊕
n∈Z

RHomB
(

Ã ⊗A XB ,Σ2n
B B̃

)
∼=

⊕
n∈Z

RHomA
(

Ã,RHomB
(

X,Σ2n
B B̃

))
.

Recall that we have a quasi-isomorphism Σ2n
B B̃

L⊗B RHomB(X, B) → RHomB(A XB ,Σ2n
B B̃) and Ã is

K-projective as a right A-module. It follows that we have a quasi-isomorphism

⊕
n∈Z

RHomA
(

Ã,Σ2n
B B̃

L⊗B RHomB(X, B)
) q.is−−→

⊕
n∈Z

RHomA
(

Ã,RHomB
(

A XB ,Σ2n
B B̃

))
.

On the other hand, we also have a quasi-isomorphism Σ2n
B B̃ ⊗B Y → Σ2n

B B̃
L⊗B RHomB(X, B), which

implies

⊕
n∈Z

RHomA
(

Ã,Σ2n
B B̃ ⊗B Y

) q.is−−→
⊕
n∈Z

RHomA
(

Ã,Σ2n
B B̃

L⊗B RHomB(X, B)
)
.

Moreover, we have canonical isomorphisms
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⊕
n∈Z

RHomA
(

Ã,Σ2n
B B̃ ⊗B Y

) ∼=
⊕
n∈Z

RHomA
(

Ã,Σ2n
A (B̃ ⊗B Y )

)
∼=

⊕
n∈Z

A
(

Ã,Σ2n
A G(B̃)

)
∼= RA

(
Ã, G(B̃)

)
= YG( Ã, B̃).

In other words, we get a quasi-isomorphism YG( Ã, B̃) → X T
F
( Ã, B̃), which is natural in both Ã and B̃ .

This completes the proof. �
We also have the following

Lemma A.2. If F : Db(mod A) → Db(mod B) is fully faithful, then LT X F
: D(RA) → D(RB) is fully faith-

ful.

Proof. It follows from Lemma 4.2 (a) and (b) of [16] directly. �
Let RA be the perfect derived category of RA and RB the perfect derived category of RB . In

other words, RA and RB are the root categories of A and B respectively. Clearly, the triangle functors
L T X F

and LTYG
restrict to an adjoint pair of triangle functors

RA

L T X F

RB .

LTYG

For simplicity, we still denote by F the functor LT X F
: RA → RB and by G the functor LT YG

:
RB →RA .

A.2. Recollement lives in root categories

Suppose we are given triangulated categories D′ , D, D′′ with triangle functors

D′ i∗=i! D

i!

i∗

j∗= j!
D′′

j∗

j!

such that

◦ (i∗, i∗, i!) and ( j!, j∗, j∗) are adjoint triples;
◦ i∗ , j! , j∗ are fully faithful;
◦ j∗ ◦ i∗ = 0;
◦ for any X in D, there are distinguished triangles

i!i! X → X → j∗ j∗ X → Σ i!i! X and j! j! X → X → i∗i∗ X → Σ j! j! X,

where the morphisms i!i! X → X , X → j∗ j∗ X , etc. are adjunction morphisms.
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Then we say that D admits a recollement relative to D′ and D′′ . This notation was first introduced by
Beilinson, Bernstein and Deligne [7] in geometric setting with the idea that D can be viewed as being
glued together from D′ and D′′ . It is not hard to show that if both D′ and D′′ are Krull–Schmidt
categories, so is D. Recollement in algebraic setting was studied extensively due to its close relation
with tilting theory (see e.g. [13,20]).

Let A, B , C be finite-dimensional k-algebras of finite global dimension. Suppose that the bounded
derived category Db(mod B) admits a recollement relative to Db(mod A) and Db(mod C). In particular,
we have the following diagram of triangulated categories and triangle functors

Db(mod A)
i∗=i! Db(mod B)

i!

i∗

j∗= j!
Db(mod C).

j∗

j!

Assume further that both the functors i∗ and j! are standard. Then we have the following

Theorem A.3. Keep the notations above. Let A, B and C be finite-dimensional k-algebras of finite global dimen-
sion such that the derived category Db(mod B) admits a recollement relative to Db(mod A) and Db(mod C).
Assume that the functors i∗ and j! are standard. Then the root category RB admits a recollement relative to
RA and RC . Moreover, we have the following commutative diagram of recollements

Db(mod A)

πA

i∗=i! Db(mod B)

πB
i!

i∗

j∗= j!
Db(mod C).

πC
j∗

j!

RA
i∗=i! RB

i!

i∗

j∗= j!
RC .

j∗

j!

Proof. Since i∗ and j! are standard, then all the functors i∗ , i! , j∗ , j∗ are standard for the reason that
A, B , C are all of finite global dimension. Thus, we have the corresponding induced functors i∗ , i∗ ,
i! , j! , j∗ , j∗ . The commutativity of the above diagram follows from the universal property of the root
categories. It remains to show that RB admits a recollement relative to RA and RC together with
the functors i∗ , i∗ , i! , j! , j∗ , j∗ . By Lemma A.1, we deduce that (i∗, i∗, i!) and ( j!, j∗, j∗) are adjoint
triples. On the other hand, Lemma A.2 implies that i∗ , j! , j∗ are fully faithful. Since RA is generated
by πA(A), to show that j∗ ◦ i∗ = 0, it suffices to show j∗ ◦ i∗(πA(A)) = 0. By the commutativity of the
above diagram, this result follows from j∗ ◦ i∗ = 0. It remains to show that for any X ∈ RB there are
distinguished triangles

i!i! X → X → j∗ j∗ X → Σ i!i! X, j! j! X → X → i∗i∗ X → Σ j! j! X .

We prove the existence of the first triangle, the second one is similar.
If X ∈ imπB , then there is an object Y ∈ Db(mod B) such that X = πB(Y ). By the definition of

recollement in Db(mod B), we have the following triangle

i!i!Y → Y → j∗ j∗Y → Σ i!i!Y .



C. Fu / Journal of Algebra 370 (2012) 233–265 263
Applying the triangle functor πB , we get a triangle in RB

πB
(
i!i!Y

) → πB(Y ) → πB
(

j∗ j∗Y
) → ΣπB

(
i!i!Y

)
.

By the commutativity of the functors, we have

i!i!πB(Y ) → πB(Y ) → j∗ j∗πB(Y ) → Σ i!i!πB(Y ).

Clearly, this triangle is isomorphic to

i!i!πB(Y )
ηX−→ πB(Y )

εX−→ j∗ j∗πB(Y ) → Σ i!i!πB(Y ),

where ηX , εX are adjunction morphisms, which implies that the later one is a distinguished triangle.

Let f : X → Y be the morphism fitting into the triangle X
f−→ Y → Z → Σ X , where X, Y ∈ imπB .

We consider the following commutative square

i!i! X

j∗ j∗ f

ηX
X

f

j∗ j∗Y
ηY

Y ,

from which one gets the following commutative diagram of triangles

i!i! X

j∗ j∗ f

ηX
X

f

εX
j∗ j∗ X

j∗ j∗ f

i!i!Y

i! g1

ηY
Y

g

εY
j∗ j∗Y

j∗ g2

i!U Z
u

Z
v

j∗V Z

by nine lemma.
Let φ(u) : U Z → i! Z be the morphism corresponding to u and φ(v) : j∗ Z → V Z the morphism

corresponding to v under the natural isomorphisms. It is clear that φ(u) and φ(v) are isomorphisms.
Thus, one gets the following commutative diagram

i!U Z

i!φ(u)

u
Z

v
j∗V Z

j∗(φ(v)−1)

w
Σ i!U Z

Σ i!φ(u)

i!i! Z
ηZ

Z
εZ

j∗ j∗ Z
δ

Σ i!i! Z ,

where δ = j∗φ(v) ◦ w ◦ Σ i!φ(u). Hence we deduce that

i!i! Z
ηZ−→ Z

εZ−→ j∗ j∗ Z → Σ i!i! Z

is a distinguished triangle. Now this holds true for any Z ∈RB by ‘devissage’. �
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Corollary A.4. Keep the assumptions in Theorem A.3. If the canonical functor πB is dense, then both πA and πC

are dense.

Proof. Let X be any object in RA . By the density of πB , there is an object Y ∈ Db(mod B) such that
πB(Y ) ∼= i∗ X . In Db(mod B), we have the distinguished triangle

i!i!Y → Y → j∗ j∗Y → Σ i!i!Y .

Applying the functor πB , we get

πB
(
i!i!Y

) → πB(Y ) → πB
(

j∗ j∗Y
) → ΣπB

(
i!i!Y

)
,

which is isomorphic to the distinguished triangle

i!i!(i! X) → i! X → 0 → Σ i!i!(i! X).

It follows that X ∼= πA(i!Y ). In particular, πA is dense. Similar proof implies that πC is dense too. �
Remark A.5. If only one of i∗ and j! is standard, say i∗ is standard, then Lemmas A.1, A.2 and Theo-
rem 2.4 (a) of [22] imply that there is a recollement

RA
i∗=i! RB

i!

i∗

j∗= j!
RB/i∗RA .

j∗

j!

Corollary A.4 also holds in this case (one should replace the functor πC ).

The following is quite obvious.

Corollary A.6. Let A and B be finite-dimensional k-algebras of finite global dimension. Assume the 2-periodic
orbit category of A is not triangulated with the inherited triangle structure. For any finite-dimensional
Bop ⊗k A-module M, the 2-periodic orbit category of the triangular extension of A and B by M is not tri-
angulated with the inherited triangle structure.
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