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Abstract

Let M (1) be the vertex algebra for a single free boson. We classify irreducible modules of
certain vertex subalgebras of (1) generated by two generators. These subalgebras correspond to
theW(2, 2p — 1)-algebras with central charge-16(p — 1)2/ p wherep is a positive integerp > 2.

We also determine associated Zhu'’s algebras.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let M (1) be the vertex algebra generated by a single free boson. For geey this
vertex algebra contains a Virasoro vertex operator subalgebra with central chafdgz?
(cf. [20,25]). ThereforeM (1) can be treated as a vertex operator algebra of rank 2:2.

The vertex operator algebi (1) has a family of irreduciblé& > o-graded (untwisted)
modulesM (1, 1), » € C, and aZ-twisted irreducible modul@/(1)?. Some subalgebras
of M (1) have property that any irreducible module for such subalgebra can be constructed
from twisted or untwisted modules fa¥/ (1). In particular, this is true for the orbifold
vertex operator algebra/ (1)t (cf. [6]). Another interesting example of such vertex
operator algebra was studied by W. Wang in [29,30]. He showedWh@ 3)-algebra
with central charge-2 can be realized as a subalgebraffl), and that every irreducible
W(2, 3)-module is obtained fromM (1)-modulesM (1, 1).

Recall that for any vertex operator algebra Zhu in [31] constructed an associative
algebraA (V) such that there is one-to-one correspondence between the irredveite
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dules and the irreduciblei(V)-modules. In the cases mentioned above the authors
explicitly determine corresponding Zhu'’s algebras as certain quotients of the polynomial
algebraClx, y].

In the present paper we shall investigate certain vertex subalgeb#glpfgenerated
by two generators. Let us describe these algebrasy st the Virasoro element it (1)
which generates a subalgebra isomorphic to the simple Virasoro vertex operator algebra
Wo = L(cp,1,0) (cf. [15,28]) wherer, 1 =1 —6(p — 1)2/p, p > 2. This vertex operator
algebra can be extended by the primary veéfor M (1) of level 2p — 1 which is defined
using Schur polynomials. This new extended vertex operator algebra, which we denote by
M (1), is known in the physics literature &¥(2, 2p — 1)-algebra (cf. [7,8,19]).

We also study another description of the vertex operator algéhi®. It is well-
known (cf. [9,12]) that some vertex subalgebrasifl) can be defined as kernels of
screening operators. In our particular case we consider two screening opePaiors
O defined using the formalism of (generalized) vertex operator algebras (see Section 2).
Then Keliy 1) Q is isomorphic to the vertex operator algeldréc, 1, 0), and Kefy (g é
is isomorphic toM (1). These cohomological characterizations provide some deeper
information on the structure af/(1). It turns out thatM (1) is a completely reducible
module for the Virasoro algebra with central charga. This is important since the larger
vertex operator algebr#® (1) is not completely reducible.

We prove, as the main result, that every irreducitflel)-module can be obtained as an
irreducible subquotient of a certaif (1)-moduleM (1, 1). In order to prove this result,
we determine explicitly Zhu's algebra (M (1)). It is isomorphic to the commutative,
associative algebr&|x, y]/(P(x, y)) where(P(x, y)) is the ideal inC[x, y] generated
by polynomial

_ -2 . 2
., @p¥? (p— D2\ | i .
Px,y)=y _(2p—1)!2 X+ 4 ll:!] x+5(2p—2—1) .

This implies that the irreduciblZ>o-gradedM-modules are parameterized by the
solutions of the equatio®(x, y) = 0. The determination of the polynomi&l(x, y) is
the central problem of our construction. Whgn= 2 (cf. [30]), this polynomial can be
constructed from a level-six singular vector in a generalized Verma modulé/B¢&r3)-
algebra. In general case, the complicated structund’&?, 2p — 1)-algebras (cf. [7,19])
makes also the calculation of singular vectors extremely difficulty.

Since we are primary concentrated to the problem of classification of irreducible
representations, we only want to understand the structure of Zhu's algebfal)).
Fortunately, this structure can be described without explicit knowledge of relations among
generators oM (1).

In order to find relations im (M (1)), we use a characterization of the subalgelyga
as the kernel of the operat@|M (1). Using this, we show that the elemenisH for
i > —2p belong to the subalgebfp. It turns out that these facts completely determine
all relations in Zhu's algebrd (M (1)) (cf. Section 6).

It is interesting, that the irreducible representations of Zhu's algelyrd (1)), and
therefore of the vertex operator algebva(1) are parameterized by points of a rational
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curve. Similar structures were found for some other irrational vertex operator (su-
per)algebras (cf. [2]).

2. Latticeand free boson vertex algebras

We make the assumption that the reader is familiar with the axiomatic theory of vertex
(operator) algebras and their representations (cf. [4,13-15,24,31]).

In this section, we shall recall some properties of the lattice and free boson vertex
algebras. The details can be found in [3-5,14,20,25,26]. Using language of generalized
vertex operator algebras (cf. [4,18,26]), we construct screening opetatans Q acting
on the vertex algebra/ (1). Moreover, we choose the Virasoro element M (1) such
that M (1) becomes a vertex operator algebra of rapk. At the end of this section we
shall present a result describing the structur#f@l) as a module for the Virasoro algebra
with central charge,, 1.

Letp € Z>o, p > 2. LetL = Zp be a rational lattice of rank one with nondegenerate
bilinear form(, -) given by

<18’:8>=_

Leth = C ®z L. Extend the form( JonLtoh. Leth=Clr,r ] ®h & Cc be the
affinization off. Seth* =rC[r]® b; h~ =1~*C[r}]1 ® h. Thenh* andh~ are abelian
subalgebras df. LetU(b ) = S(h™) be the universal enveloping algebrahof. Let € b.
Consider the induceg-module

M(1,2) =U(h) ®ucieneco Cr=S(h7)  (linearly),

wheretC[t] ® b acts trivially onC, h acting as(h, 1) for h € h and ¢ acts onC as
multiplication by 1. We shall writeV/ (1) for M (1, 0). Forh € h andn € Z write h(n) =
" Qh.Seth(z) =),z h(n)z~"~1. ThenM (1) is a vertex algebra which is generated by
the fieldsh(z), h € b, andM (1, 1), for A € b, are irreducible modules faw (1).

We shall choose the following Virasoro elemeitl):

Po 2 P=1,
= 2B+ 5B,

The subalgebra oM (1) generated byw is isomorphic to the simple Virasoro vertex
operator algebrdVy = L(cp,1,0) wherec, 1 =1—6(p — 1)2/p. Let

Y(@,2)=) Lmz "2

nez

ThusM (1) is a module for the Virasoro algebra (which we shall denoteibywith central
charge:, 1. In other wordsM (1) becomes a Feigin—Fuchs module for the Virasoro algebra
(cf. [21]).
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It is clear thatZ (0) defines aZ3o-graduation onM (1) = @me%o M(1),,. We shall
write wt(a) = m if v e M(1),,. ThusM (1) becomes a vertex operator algebra of rapk
with the Virasoro elemen.

Standard way for constructing vertex subalgebrag/fl) is given by the concept
of screening operators acting a(1) (cf. [9,12]). We shall construct some particular
screening operators using language of generalized vertex operator algebras (cf. [4]).

As in [4,26] (see also [14,20]), we have the generalized vertex algebra

Vi =M1 ®C[L],

whereC[L] is a group algebra af with a generatoef. Forv e V7 let

V,2)= ) vzt

1
seE+T
EP

be the corresponding vertex operator (for precise formulae see [4]).

Clearly, M (1) is a vertex subalgebra &f;.

The Virasoro elemenb € M (1) C V5 is also a Virasoro element iWi; implying that
Vi has a structure of a generalized vertex operator algebra otgank

We have the following decomposition:

szeaM(l)@emﬁ.

mez

Remark 2.1. If p =2 thenVy is a vertex operator superalgebra which can be constructed
using Clifford algebras (cf. [9,20]).

Define o = pB. Then (o, a) = 2p, implying that L = Za C L is an even lattice.
Therefore the subalgebfg, C V5 has a structure of a vertex operator algebra with the
Virasoro elemend. In particular, forv, w € V., we haveY (v, )w =Y, _, vawz "L

Clearly,

nez

MQ)cCV,CV;.

Define the Schur polynomial$, (x1, x2,...) in variablesxy, x2, ... by the following
equation:

oo o0

X

exp(z ;”y”) =D S (axz )y (2.2)
n=1 r=0

For any monomiaty*x;?- - -x,;” we have an element

h(=1)"h(=2)"2 . h(—r)" 1
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in M (1) for h € h. Then for any polynomialf (x1, x2,...), f(h(=1),h(—-2),...)1is a
well-defined element i/ (1). In particular,S, (h(—=1), h(=2),...)1 e M(1) for r € Zxo.
SetS, (h) for S, (h(—1), h(—2),...)1.
We shall now list some relations in the generalized vertex operator alffgbra
Lety,§ e L. Instead of recalling the exact Jacobi identityip, we shall only say that
in the case

(y,é) € 2Z,

the Jacobi identity gives the following formulas (cf. [4,18,26]):

Y(ey,z)e‘S =) el (2.2)
nez
A (n
[e%,e‘s]=2<i> (ez?/es)nerfi (m,neZ). (2.3)
i=0

The following relations in the generalized vertex operator algdljreare of great
importance:

ele® =0 fori>—(y,s). (2.4)
Especially, if(y, 8) > 0, we haver! ¢* =0 fori € Z>o, and if (y, §) = —n < 0, we get
egl_le‘s =S,_i(y)e" T forief0,...,n}. (2.5)

From the Jacobi identity in the (generalized) vertex operator algebraand Vi
follows:

(L), ey ] = —mej . (2.6)
(L0, e,°]= (2p(r +1) = m)e, L, (2.7)
L(n)e* =68,,0¢" (n=0), (2.8)
L(n)e™ =8, 02p —De™ (n>0), (2.9)
Lnye P =8,0e (n>0), (2.10)
[Lin), e f]=—ref, (r e %Z). (2.11)

Define

=e§ =Res Y(e*,

9

,2).

™ =
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From (2.6) and (2.11) we see that the operai@rand 0 commute with the Virasoro
operatord.(n). We are interested in the action of these operator® ¢1). In fact, Q andé
are the screening operators, and thereforggrQ and Kery(1, O are vertex subalgebras
of M (1) (for details see Section 14 in [9] and reference therein).

Some properties of the screening opera@mnd O are given by the following lemma.

Lemma 2.1. For p > 1 we have:

() [Q.0]1=0.
(i) Qe™ #0,n € Zo.
(i) Qe™* =0,n € Zxo.

Proof. First we note thatw, 8) = 2 € Z. Then the commutator formulae (2.3) gives that

[0. 0] =[e§.¢6"] = (ehe ™)y = (a(~D)e* #) = ﬁ(u—l)e“*ﬂ)o.
Since (L(—Du)o = 0 in every generalized vertex operator algebra, we conclude that
[Q, O] = 0. This proves (i).
Relation (ii) follows from (2.5), and relation (iii) from (2.4).0

We shall now investigate the action of the operaforSince operator®)/, j € Z-o,
commute with the action of the Virasoro algebra, they are actually intertwiners between
Feigin—Fuchs modules inside the vertex operator alg&pra

Recall that a vector if¥ is called primary if it is a singular vector for the action of the
Virasoro algebra.

Sincee ™ is a primary vector inV,, for everyn € Zxo, we have thap’/e " is either
zero or a primary vector. Fortunately, the question of non-triviality of intertwiners between
Feigin—Fuchs modules is well studied in the literature. So using arguments from [8,21]
together with the methods developed in [27] and [10] one can see that the following lemma
holds.

LemmaZ22. Q/e " £0ifandonlyif j € {0,..., 2n}.

Next, we shall present the theorem describing a structure of the vertex operator algebra
M (1) as a module for the Virasoro vertex operator algehbia, 1, 0). Again, the theorem
can be proved using a standard analysis in the theory of Feigin—Fuchs modules (see [8,10,
11,21)).
Theorem 2.1.

(i) The vertex operator algebra M (1), as a module for the vertex operator algebra

L(cp.1,0), isgenerated by the family of singular and cosingular vectors Sngu CSing,
where

SNg={uy |n€Zso;  CING= {wy|n € Zeo).
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These vectors satisfy the following relations:
u, = Q"e "¢, Q"w, =e"*, U(\ﬂr)un§L(cp,1,n2p+np—n).

(if) The submodule generated by vectorsu,,, n € Zxo, isisomorphic to

9]

[Sng] = @L(cl,,l, n?p+np — n)
n=0

(iiiy The quotient moduleisisomorphic to

e¢]

M(1)/1Singl = @ L(cp.1.n’p —np +n).

n=1

(iv) Quo=Q1=0,and Qu, #0, Qw, #0for everyn > 1.
Theorem 2.1 immediately gives the following result.
Proposition 2.1. We have

L(cp,1,0) = Wo=Kery ) Q.

3. Thevertex operator algebra M (1)

Recall that the Virasoro vertex operator algebra,, 1, 0) is the kernel of the screening
operatorQ. But we have already seen that there is another screening op@rafding on
M (1). Define the following vertex algebra

M(1) =Kerya é
SinceQ commutes with the action of the Virasoro algebra, we have that
L(cp1,00=Woc M(D).

This implies thatM (1) is a vertex operator subalgebraMf(1) in the sense of [13] (i.e.,
M (1) has the same Virasoro elementisl)).

The following theorem will describe the structure of the vertex operator algehia
as aL(cp,1, 0)-module.

Theorem 3.1. The vertex operator algebra M (1) isisomorphic to [Sing] asa L(cp,1, 0)-
module, i.e.,

o
MO =P L(cpa.n®+np—n).
n=0



122 D. Adamovit / Journal of Algebra 270 (2003) 115-132

Proof. By Theorem 2.1 we know that the(c, 1, 0)-submodule generated by the §3fg
is completely reducible. So to prove the assertion, it suffices to show that the op@rator

annihilates vecton € ShgU CSing if and onlyifv € Sing. Letv € Sing, thenv = Qe ™"
for certainn € Zxo. Since by Lemma 2.1Qe~"* = 0, we have that

év — éQnefna — Qnéefna —0.

Let nowv € E§n/g Then there is € Z- ¢ such thatQ"v = ¢"*. Assume thaQv = 0.
Then we have that

0=0Q"0v=00Q"v=0¢",
contradicting Lemma 2.1(ii). This proves the theorerm

Remark 3.1. It is very interesting that althougi (1) is not completely reducible
L(cp,1, 0)-module, its subalgebr# (1) is completely reducible.

Next we shall prove that the vertex operator algebfél) is generated by only two
generators.

Motivated by formulae (18) in [21], we define the following three (non-zero) elements
in V.

From relations (2.6)—(2.9) we see that
L(E =8,02p—DE, Ln)F=8,02p—DF.
L(n)H =8,02p—1DH (n=0),
i.e., E, F andH are primary vectors itvy. In fact, H is a primary vector in/ (1).
Lemma 3.1. In the vertex operator algebra V. the following relations hold:
(i) Q3F =0.
(i) E;E=F;F=0,foreveryi > —2p.
(i) Q(H;H)=0,foreveryi > —2p.
(iv) H=S2p-1(a).
Proof. Relation (i) is a special case of Lemma 2.2. Let nowZ, i > —2p. From (2.4)

we have tha#; F =e; “e ™ =0.
Next we observe thap acts as a derivation ovi; , that is

0(anb) = (Qa)ub + an(Qb) foreverya,be Vi, neZ. (3.1)
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Then using (i) and (3.1) we see thBLE is proportional toQ*4(F; F), which implies
that E; E = 0. This proves (ii).

Relation (iii) follows form (ii) and the fact tha® (H; H) is proportional toQ3(F; F).

Relation (iv) is a direct consequence of (2.5)1

Theorem 3.2. The vertex operator algebra M (1) is generated by w and H = Sz, _1().

Proof. Let U be the vertex subalgebra af (1) generated byw and H. We need to
prove thatU = M (1). Let W, by the (irreducibleMr-submodule ofM (1) generated by
vectoru,. ThenW, = L(cp.1, n?p +np —n). Using Lemma 2.2 we see that

n—1

Kerm o= @ W;.
i=0

It suffices to prove that, € U for everyn € Zxo. We shall prove this claim by induction.
By definition we have thatio, u1(= H) € U. Assume that we havke € Z3o such that
u, € U forn < k. In other words, the inductive assumptior@f:0 W, eU.

We shall now prove that;; € U. Setj = —2kp — 1. By Lemma 2.2 we have

Q2k+267(k+l)a — Q2k+2(ejfolefkol) ?é 0.

Next we notice that

1
Q" (Hjup) = Qe (@) =

=512 e ™),

J
which implies that
Q" (Hjup) #0.
So we have found vectd¥;u; € U such that
Wt(Hjup) = 2p — D+ (KPp+kp —k) — j—1=(k + D?p+ (k+Dp — (k+ 1)
= Wt(u+1)-

This implies that

k+1 k
HjukE@W,' and H/uk¢®Wi.
i=0 i=0

SinceQ*1(@X_, W) = 0 and Wt Huz) = Wt(uy 1) we conclude that there is a constant
C, C #0, such that
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k
Hjuszuk+1+u/, M’E@Wi cUu.
i=0

SinceH;u; € U, we conclude that,1 € U.
Therefore, the claim is verified, and the proof of the theorem is complete.

Remark 3.2. If p =2, then the elementg, F, H span the triplet algebra studied by
M. Gaberdiel and H. Kausch (cf. [16,17,22]). In this ca$€l) is isomorphic toV-algebra
W(2, 3) with ¢ = —2. Its irreducible modules were classified by W. Wang in [29,30].

In general,E, F and H span thelW(2,2p — 1,2p — 1, 2p — 1) algebra with central
chargec), 1 (cf. [8,21]). Our vertex operator algeb(1) is isomorphic to thé/V algebra
W(2,2p — 1) investigated in a number of physics papers (cf. [7,8,19]).

The following lemma will imply that foé > —2p vector H; H can be constructed using
only the action of the Virasoro operatat$n) on the vacuum vectdr.

Lemma 3.2. e have:
H;HeWog=L(cp1,0) foreveryi>—-2p.

In particular, H_1H € Wp.
Proof. The proof follows from Proposition 2.1 and Lemma 3.1(iii)a

Remark 3.3. In the casep = 2, the fact thatH_1 H € Wp can be proved directly using
a singular vector of level 6 in a generalized Verma module associatéd(203)-algebra
with central charge: = —2 (cf. [16,30]). This singular vector implies that i (1) the
following relation holds:

N T PP B P NN od A
H_lH_4<36L( 32+ 5L(=2°+ S L=DL(~4 - 5 L( 6))1.

Lemma 3.2 indicates the existence of similar relation of ley2p2- 1) in the general
case, but we don't now the explicit formulae. Instead of looking for such formulae, we
use the realization of the vertex operator algebfél) inside the lattice vertex operator
algebraV;, and the description of the Virasoro vertex operator algehg, 1,0) from
Proposition 2.1.
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4. Spanning setsfor M (1) and A(M (1))

In this section shall find a spanning set (1) and for Zhu's algebrai (M (1)). First
we recall the definition of Zhu's algebra for vertex operator algebras(WeY, 1, w) be a
vertex operator algebra. We shall always assume that

V=P V.. whereV,={aeV|L(0O)a=nv).

11€Z>0

Fora € V,,, we shall write wta) = n.

Definition 4.1. We define the bilinearmaps V® V — V,0:V ® V — V as follows:

1 wt(a) S
axbi=Res Y(a. 0 p=Y" (W‘”) ai-1b,
< i=0 !

1 wt(a) o0
aob:=Res Y(a, z)%b = Z (th.(a))aizb.
i=0

Extend toV ® V linearly, denoteD (V) C V the linear span of elements of the fotm b,
and byA (V) the quotient spac¥&/0 (V).
Denote by{a] the image ot in V under the projection o¥ into A(V). We have:

Theorem 4.1 [31].

(i) Thequotient space (A(V), x) isan associative algebra with unit element [1].

(i) Let M =D, 7., M(n) beaZxo-graded V-module. Then the top level M (0) of M
isa A(V)-modu/le under the action [a] — o(a) = awt)—1 for homogeneousa € V.

(iii) Let (U, m) be an irreducible A(V)-module. Then there exists an irreducible Zxo-
graded V-module L(U) = @nez>o L(U)(n) suchthat thetop level L(U)(0) of L(U)
isisomorphicto U asA(V)-modGIe.

(iv) There is one-to-one correspondence between the irreducible A(V)-modules and the
irreducible Z>o-graded V-modules.

We shall need some information about the commutdtéys H,,] for m,n € Z.

Lemma 4.1. For any m, n € Z, commutators [H,, H,] are expressed as (infinite) linear
combination of

L(pl)L(pS)s plv'“vpsezs sgzp—l
In particular, for every vector v € M (1) we have

[H,, Hylv= fv, forcertain f € U(Vir).
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Proof. By the commutator formulae in vertex (operator) algebras follows:

o0

[Hma Hn] = Z (’ln) (HiH)m+n—i~

i=0

From Lemma 3.2 follows thakl; H € Wy for every nonnegative integér Thus, H; H is
an element of the Virasoro vertex operator algeBbs= L(c, 1, 0). In fact, Wi(H; H) <
2(2p — 1), which implies thatH; H can be expressed as (finite) linear combination

L(—n1)---L(—ny)l, n;i =2, ni+---+n;<2@2p—-1, s<2p—1
Therefore[H,,, H,] can be expressed as (infinite) linear combination of
L(p1)---L(ps), p1,...,ps€ZL, s<2p—1
This proves the first assertion. The second assertion follows from the first assertion and

from the simple observation that if € M (1), andm,n € Z, then[H,,, H,]v is well-
defined. O

Remark 4.1. Using different arguments, a result similar to our Lemma 4.1 was noticed in
the physics literature (cf. [7,19,23]).

Lemma 4.1 shows that the structure of the vertex operator algélitais similar to the
structure of the vertex operator algelda1)™ studied in [6].

So, using this lemma and a completely analogous proofs to the proofs of Proposition 3.4
and Theorem 3.5 in [6], one obtains the following theorem.
Theorem 4.2.
(i) The vertex operator algebra M (1) is spanned by the following vectors

L(=mi)---L(=ms)H_p, --- H_p,1,

wheremy >mp>--->mg>2andny >nz>--->2n; > 1.
(iiy Zhu'salgebra A(M (1)) isspanned by the set

{[w]® « [H]* | 5,1 >0}.

In particular, Zhu's algebra A(M (1)) is isomorphic to a certain quotient of the
polynomial algebra C[x, y], where x and y correspond [w] and [H].

The fact that Zhu's algebrd (M (1)) is commutative, enable us to study irreducible
highest weight representations of the vertex operator algeftgia. For given(r, s) € C?,
let C,.,; be the one dimensional module afM (1)), with [»] acting as the scalar and
[H] as the scalat. Therefore every irreduciblé (M (1))-module is one-dimensional, and
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it is isomorphic to a modul€&, ; for certain(r, s) € C2. Then Theorem 4.1 implies that
every irreducibleZo-gradedM (1)-module is isomorphic to a certain modulgC, ;).
So irreducible representations &f(1) are parameterized by certain subseC8f In the
following sections we will prove that this subset is a rational curve.

5. Representationsof M (1)

In this section we identify a family of irreducibl&f (1)-modules. These modules are
parameterized by points, s) € C2 satisfying one algebraic equation.

By construction, the vertex operator algelal) is a subalgebra/ (1). We now that
for every 1 € h(= C), M(1, 1) is an irreducibleM (1)-module with the highest weight
vectorv;. ThusM (1, A) is aM (1)-module. Denote by, the M (1)-submodule generated
by vectorv.

SetH (n) = Hy12p—2, andH (z) = Y_,,cz H(n)z"~2P+1,

First we recall the following result proved by the author in [1] for the purpose of
studyingWi;+~-algebra.

Proposition 5.1 [1, Proposition 3.1]Let i € h, and r € Zxo. Let u = S, (h(=1), h(=2),
LSt Y (u,2) =3, unz "L Then we have

(1) upv, =0forn >r —1,
(2) up_1v) = (O‘r’h))vx.

Now Proposition 5.1 directly implies the following result.

Proposition 5.2. For every A € b, V; isa Z>o-graded M (1)-module. The top level V; (0)
is one-dimensional and generated by v;. Let t = (A, o). For every n € Z>0, we have

1
L(n)v, = 5n,05t(t —2(p — 1))1))“ (5.1
Hn)vs, = 80 (zp‘_ 1) vi. (5.2)

By slightly abusing language, we can say thais a highest weightZ (1)-module with
respect to the Cartan subalgebfd0), H (0)), and the highest weight (& (z), v(¢)) where
t={Ar,a)eCand

1 t
u(t) = 1(t=2p = 1), v(r)=(2p_1>. (5.3)
It is important to notice that for everye C

u@®=u2(p-1-1), v@O)=—v(2p-1—1).
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Moreover, the mapping— (u(z), v(t)) is a injectiorL

Now we naotice that the top level @ff (1)-moduleV, (0) = Cv,, has to be an irreducible
module for Zhu's algebrai (M (1)). We have the following isomorphism of(M (1))-
modules:

Vi(0) = C,s, wherer =u(t), s=v(r), t = (1, a).
Then one can show that the induced irreducibél)-module L(VA(O)) = L(C,y) is

isomorphic to the irreducible quotient of .
Define P(x, y) € C[x, y] by

(p=DI\T( 2
P(x,y):yz—Cp(x—i— i )n<x+5(2p—2—i)>, (5.4)
i=0

whereC, = (4p)?P~1/(2p — 1)12.
In the following lemma we shall see that the highest weightd/qfl)-modulesV;,
(A € ) coincide with the solutions of the equatid(x, y) = 0. The proof is similar to
the proof of Lemma 4.4 in [30].
Lemma 5.1. Solutions of the equation
Px,y)=0 (5.5)
are parameterized by

(x,y) = (u(®),v(@)), teC. (5.6)

Proof. Itis easy to verify that for everye CP (u(t), v(¢)) = 0.
Let now(x, y) be any solution of (5.5). Then theretise C such that

x =u(tp) =u(2(p -1 - to).

By substitutingy = u (1) in Eq. (5.5) we get thag? = (2;0_1)2, which implies that

y= (zpto_ 1) =v(tg) Or y=-— (zpto_ 1) =v(2(p—1) —10).

So there is a uniguee C such that (5.6) holds. O
Theorem 5.1. Assume that (r, s) € C2 so that P(r, s) = 0. Then

(i) C,sisanirreducible A(M (1))-module.
(i) L(C,;)isanirreducible M (1)-module.
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Proof. Using Lemma 5.1 we see that there is a unigueh so thatC, ; = V,(0), where
V,.(0) is an A(M(1))-module constructed in Proposition 5.2. 89, is an irreducible
A(M (1))-module. Assertion (ii) follows from Theorem 4.10

6. Zhu'salgebra A(M (1)) and the classification of irreducible modules

In this section we shall prove our main result saying that the modules constructed in
Section 5 provide all irreducib>o-gradedM—modules. Our proof will use the theory
of Zhu's algebras.

We are now going to determine Zhu’s algebra for the vertex operator alg&tira We
have already proved that(M (1)) is isomorphic to a certain quotient of the polynomial
algebraClx, y], wherex corresponds tgw] andy to [ H]. Now we shall find all relations
in A(M (D).

Lemma 6.1. In Zhu'salgebra A(M (1)), we have:
P(lw], [H])=0.
Proof. Lemma 3.2 implies that for evety> —2p
Hi—1H = fi(L(=2),L(-3),...)1
for certain polynomialf; € C[x1, x2, . ..]. This implies that inA (M (1)), we have
[Hi-1H]=gi([L(~21]) = gi([w])

for certain polynomialg; € C[x] such that de@;) < 2p — 1. The definition of the
multiplication in A(M (1)) gives that

2p-1 2p-1

=3 (27 )it = Y (2770 ) alio.

i=0 i=0

Let g(x) = Zf:pgl(zl’l_*l)gi (x). So we have proved that there is polynomgat C[x] so
that

[H1*[H]=[H)?=g(»]), dedg)<2p—1. (6.1)

Now we shall determine the polynomiglexplicitly. Recall that if(r, s) € C? such that
P(r,s) =0, thenC, is an irreducibleA(M (1))-module (Theorem 5.1). Let us now
evaluate both sides of (6.1) oh(M (1))-modulesC, ;. We get thats? = g(r) for every
(r, s) € C? such thatP(r, s) = 0. This implies that for every € C

g(r) =s2=52—P(r,s)=C (r—i— (p— 1)2)li_[2<r+ L(Zp—Z—i))z
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whereC, = (4p)?’~1/(2p — 1)!2. In this way we have proved that

(p—D\T( i 2
g(x)=y2—P(x,y)=Cp(x+ p4p >D)(x+41—p(2p—2—z)>.

Using (6.1) we get
P([w], [H]) = [H]* - g(w]) =0,
as desired. O
Now we are in the position to find all relations in Zhu’s algelr@/ (1)).

Theorem 6.1. Zhu's algebra A(M (1)) is isomorphic to the commutative, associative
algebra Clx, y1/(P(x, y)).

Proof. By Theorem 4.2 we have a surjective algebra homomorphism

@:Clx, yl - A(M(D),
X (w],

y [H].

It suffices to prove that Keb = (P (x, y)).

Lemma 6.1 gives thatP (x, y)) € Kerd.

Assume now tha (x, y) € Ker®. Note thatP(x, y) has degree 2 iry. Using the
division algorithm we get

K(x,y)=Ax,y)P(x,y)+ R(x,y),

whereA(x, y), R(x, y) € C[x, y] so thatR(x, y) has degree at mo%in y. So we can write
R(x,y) = B(x)y + C(x), whereB(x), C(x) € C[x]. SinceP(x, y), K(x,y) € Ker® we
have thatR(x, y) € Ker®. We now evaluate polynomiat(x, y) on A(M(1))-modules
and obtain

R(u(t),v()) =0 foreveryr € C,
where polynomial&(¢), v(¢) are defined by (5.3). Therefore
B(u(t))v(t) = —C(u(t)) foreveryr € C. (6.2)

Assume thaiB(x) # 0. Then polynomial

1 t
B(u(t))v(t) = B<Et(t —2p+ 2)) (Zp _ 1)
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has odd degree in On the other hand, if polynomialC (u(¢)) is nontrivial, it must have
even degree in. This is a contradiction because of (6.2). B¢) = 0. Using (6.2) we also
get thatC(u(z)) = O for everyt € C, which implies thatC(x) = 0. In this way we have
proved that

R(x,y)=B(x)y+ C(x) =0,
and therefore
K(x,y)=P(x,)A(x,y) €(P(x,y)).
So Ker@ = (P(x, y)), and the theorem holds.O
Theorem 6.2. The set
[L(C,.y) | (r,5) € C%, P(r,s) =0} (6.3)

provides all non-isomorphic irreducible Zxo-graded modules for the vertex operator
algebra M (1).

Proof. Since Zhu'’s algebra (M (1)) is commutative, Theorem 6.1 implies that the set
{Crs1(r,5) €C?, P(r,s) =0}

provides all irreducible modules for Zhu's alget4&M (1)). Then Theorem 4.1 implies
that the set (6.3) provides all irreducildlg.o-gradedM (1)-modules. O

Remark 6.1. Theorem 6.2 shows that the irreducibi(1)-modules are parameterized
by the solutions of the equatiab(x, y) = 0. We have observed that all solutions of this
equation can be written in the fortgu(z), v(z)) (+ € C) which are exactly the highest
weights of M (1)-submodules oM (1, 1) constructed in Proposition 5.2. This leads to the
conclusion (as in [30]) that every irreduciblé(1)-module can be identified starting from
modules for the vertex operator algeldfg1).
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