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Abstract

Let M(1) be the vertex algebra for a single free boson. We classify irreducible modul
certain vertex subalgebras ofM(1) generated by two generators. These subalgebras correspo
theW(2,2p− 1)-algebras with central charge 1− 6(p − 1)2/p wherep is a positive integer,p � 2.
We also determine associated Zhu’s algebras.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let M(1) be the vertex algebra generated by a single free boson. For everyz ∈ C, this
vertex algebra contains a Virasoro vertex operator subalgebra with central charge 1− 12z2

(cf. [20,25]). Therefore,M(1) can be treated as a vertex operator algebra of rank 1− 12z2.
The vertex operator algebraM(1) has a family of irreducibleZ�0-graded (untwisted

modulesM(1, λ), λ ∈ C, and aZ2-twisted irreducible moduleM(1)θ . Some subalgebra
of M(1) have property that any irreducible module for such subalgebra can be const
from twisted or untwisted modules forM(1). In particular, this is true for the orbifol
vertex operator algebraM(1)+ (cf. [6]). Another interesting example of such vert
operator algebra was studied by W. Wang in [29,30]. He showed thatW(2,3)-algebra
with central charge−2 can be realized as a subalgebra ofM(1), and that every irreducibl
W(2,3)-module is obtained fromM(1)-modulesM(1, λ).

Recall that for any vertex operator algebraV , Zhu in [31] constructed an associati
algebraA(V ) such that there is one-to-one correspondence between the irreducibleV -mo-
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dules and the irreducibleA(V )-modules. In the cases mentioned above the aut
explicitly determine corresponding Zhu’s algebras as certain quotients of the polyn
algebraC[x, y].

In the present paper we shall investigate certain vertex subalgebras ofM(1) generated
by two generators. Let us describe these algebras. Letω be the Virasoro element inM(1)
which generates a subalgebra isomorphic to the simple Virasoro vertex operator a
W0 ∼= L(cp,1,0) (cf. [15,28]) wherecp,1 = 1 − 6(p − 1)2/p, p � 2. This vertex operato
algebra can be extended by the primary vectorH ∈M(1) of level 2p − 1 which is defined
using Schur polynomials. This new extended vertex operator algebra, which we den
M(1), is known in the physics literature asW(2,2p − 1)-algebra (cf. [7,8,19]).

We also study another description of the vertex operator algebraM(1). It is well-
known (cf. [9,12]) that some vertex subalgebras ofM(1) can be defined as kernels
screening operators. In our particular case we consider two screening operatorsQ and
Q̃ defined using the formalism of (generalized) vertex operator algebras (see Sect
Then KerM(1) Q is isomorphic to the vertex operator algebraL(cp,1,0), and KerM(1) Q̃

is isomorphic toM(1). These cohomological characterizations provide some de
information on the structure ofM(1). It turns out thatM(1) is a completely reducibl
module for the Virasoro algebra with central chargecp,1. This is important since the large
vertex operator algebraM(1) is not completely reducible.

We prove, as the main result, that every irreducibleM(1)-module can be obtained as
irreducible subquotient of a certainM(1)-moduleM(1, λ). In order to prove this resul
we determine explicitly Zhu’s algebraA(M(1)). It is isomorphic to the commutative
associative algebraC[x, y]/〈P(x, y)〉 where〈P(x, y)〉 is the ideal inC[x, y] generated
by polynomial

P(x, y) = y2 − (4p)2p−1

(2p − 1)!2
(
x + (p − 1)2

4p

) p−2∏
i=0

(
x + i

4p
(2p − 2− i)

)2

.

This implies that the irreducibleZ�0-gradedM(1)-modules are parameterized by t
solutions of the equationP(x, y) = 0. The determination of the polynomialP(x, y) is
the central problem of our construction. Whenp = 2 (cf. [30]), this polynomial can be
constructed from a level-six singular vector in a generalized Verma module overW(2,3)-
algebra. In general case, the complicated structure ofW(2,2p − 1)-algebras (cf. [7,19]
makes also the calculation of singular vectors extremely difficulty.

Since we are primary concentrated to the problem of classification of irredu
representations, we only want to understand the structure of Zhu’s algebraA(M(1)).
Fortunately, this structure can be described without explicit knowledge of relations a
generators ofM(1).

In order to find relations inA(M(1)), we use a characterization of the subalgebraW0
as the kernel of the operatorQ|M(1). Using this, we show that the elementsHiH for
i � −2p belong to the subalgebraW0. It turns out that these facts completely determ
all relations in Zhu’s algebraA(M(1)) (cf. Section 6).

It is interesting, that the irreducible representations of Zhu’s algebraA(M(1)), and
therefore of the vertex operator algebraM(1) are parameterized by points of a ration
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curve. Similar structures were found for some other irrational vertex operator
per)algebras (cf. [2]).

2. Lattice and free boson vertex algebras

We make the assumption that the reader is familiar with the axiomatic theory of v
(operator) algebras and their representations (cf. [4,13–15,24,31]).

In this section, we shall recall some properties of the lattice and free boson
algebras. The details can be found in [3–5,14,20,25,26]. Using language of gene
vertex operator algebras (cf. [4,18,26]), we construct screening operatorsQ̃ andQ acting
on the vertex algebraM(1). Moreover, we choose the Virasoro elementω ∈ M(1) such
thatM(1) becomes a vertex operator algebra of rankcp,1. At the end of this section w
shall present a result describing the structure ofM(1) as a module for the Virasoro algeb
with central chargecp,1.

Let p ∈ Z�0, p � 2. Let L̃ = Zβ be a rational lattice of rank one with nondegener
bilinear form〈·, ·〉 given by

〈β,β〉 = 2

p
.

Let h = C ⊗Z L̃. Extend the form〈·, ·〉 on L̃ to h. Let ĥ = C[t, t−1] ⊗ h ⊕ Cc be the
affinization ofh. Setĥ+ = tC[t] ⊗ h; ĥ− = t−1C[t−1] ⊗ h. Thenĥ+ and ĥ− are abelian
subalgebras of̂h. LetU(ĥ−) = S(ĥ−) be the universal enveloping algebra ofĥ−. Letλ ∈ h.
Consider the induced̂h-module

M(1, λ) = U
(
ĥ
)⊗U(C[t ]⊗h⊕Cc) Cλ � S

(
ĥ−) (linearly),

where tC[t] ⊗ h acts trivially on C, h acting as〈h,λ〉 for h ∈ h and c acts onC as
multiplication by 1. We shall writeM(1) for M(1,0). Forh ∈ h andn ∈ Z write h(n) =
tn ⊗ h. Seth(z) =∑

n∈Z
h(n)z−n−1. ThenM(1) is a vertex algebra which is generated

the fieldsh(z), h ∈ h, andM(1, λ), for λ ∈ h, are irreducible modules forM(1).
We shall choose the following Virasoro elementM(1):

ω = p

4
β(−1)2 + p − 1

2
β(−2).

The subalgebra ofM(1) generated byω is isomorphic to the simple Virasoro verte
operator algebraW0 ∼= L(cp,1,0) wherecp,1 = 1− 6(p − 1)2/p. Let

Y (ω, z) =
∑
n∈Z

L(n)z−n−2.

ThusM(1) is a module for the Virasoro algebra (which we shall denote byVir) with central
chargecp,1. In other words,M(1) becomes a Feigin–Fuchs module for the Virasoro alge
(cf. [11]).
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It is clear thatL(0) defines aZ�0-graduation onM(1) =⊕
m∈Z�0

M(1)m. We shall
write wt(a)= m if v ∈M(1)m. ThusM(1) becomes a vertex operator algebra of rankcp,1
with the Virasoro elementω.

Standard way for constructing vertex subalgebras ofM(1) is given by the concep
of screening operators acting onM(1) (cf. [9,12]). We shall construct some particu
screening operators using language of generalized vertex operator algebras (cf. [4]

As in [4,26] (see also [14,20]), we have the generalized vertex algebra

VL̃ = M(1)⊗ C
[
L̃
]
,

whereC[L̃] is a group algebra of̃L with a generatoreβ . Forv ∈ VL̃ let

V (v, z) =
∑
s∈ 1

p
Z

vsz
−s−1

be the corresponding vertex operator (for precise formulae see [4]).
Clearly,M(1) is a vertex subalgebra ofVL̃.
The Virasoro elementω ∈ M(1) ⊂ VL̃ is also a Virasoro element inVL̃ implying that

VL̃ has a structure of a generalized vertex operator algebra of rankcp,1.
We have the following decomposition:

VL̃ =
⊕
m∈Z

M(1)⊗ emβ.

Remark 2.1. If p = 2 thenVL̃ is a vertex operator superalgebra which can be constru
using Clifford algebras (cf. [9,20]).

Define α = pβ . Then 〈α,α〉 = 2p, implying that L = Zα ⊂ L̃ is an even lattice
Therefore the subalgebraVL ⊂ VL̃ has a structure of a vertex operator algebra with
Virasoro elementω. In particular, forv,w ∈ VL, we haveY (v, z)w =∑

n∈Z
vnwz−n−1.

Clearly,

M(1)⊂ VL ⊂ VL̃.

Define the Schur polynomialsSr(x1, x2, . . .) in variablesx1, x2, . . . by the following
equation:

exp

( ∞∑
n=1

xn

n
yn

)
=

∞∑
r=0

Sr (x1, x2, . . .)y
r . (2.1)

For any monomialxn1
1 x

n2
2 · · ·xnrr we have an element

h(−1)n1h(−2)n2 · · ·h(−r)nr 1
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in M(1) for h ∈ h. Then for any polynomialf (x1, x2, . . .), f (h(−1), h(−2), . . .)1 is a
well-defined element inM(1). In particular,Sr(h(−1), h(−2), . . .)1 ∈ M(1) for r ∈ Z�0.
SetSr(h) for Sr(h(−1), h(−2), . . .)1.

We shall now list some relations in the generalized vertex operator algebraVL̃.
Let γ, δ ∈ L̃. Instead of recalling the exact Jacobi identity inVL̃, we shall only say tha

in the case

〈γ, δ〉 ∈ 2Z,

the Jacobi identity gives the following formulas (cf. [4,18,26]):

Y
(
eγ , z

)
eδ =

∑
n∈Z

e
γ
n e

δz−n−1, (2.2)

[
e
γ
n , e

δ
m

]=
∞∑
i=0

(
n

i

)(
e
γ
i e

δ
)
n+m−i

(m,n ∈ Z). (2.3)

The following relations in the generalized vertex operator algebraVL̃ are of great
importance:

e
γ
i e

δ = 0 for i � −〈γ, δ〉. (2.4)

Especially, if〈γ, δ〉 � 0, we haveeγi e
δ = 0 for i ∈ Z�0, and if 〈γ, δ〉 = −n < 0, we get

e
γ

i−1e
δ = Sn−i (γ )e

γ+δ for i ∈ {0, . . . , n}. (2.5)

From the Jacobi identity in the (generalized) vertex operator algebrasVL and VL̃

follows: [
L(n), eαm

]= −meαm+n, (2.6)[
L(n), e−α

m

]= (
2p(n+ 1)−m

)
e−α
n+m, (2.7)

L(n)eα = δn,0e
α (n� 0), (2.8)

L(n)e−α = δn,0(2p − 1)e−α (n� 0), (2.9)

L(n)e−β = δn,0e
−β (n� 0), (2.10)[

L(n), e−β
r

]= −re
−β
r+n

(
r ∈ 1

p
Z

)
. (2.11)

Define

Q = eα0 = Resz Y
(
eα, z

)
,

Q̃ = e
−β = Resz Y

(
e−β, z

)
.
0



120 D. Adamović / Journal of Algebra 270 (2003) 115–132

s

.

t

that

tween

he

een
[8,21]
emma

lgebra

e [8,10,
From (2.6) and (2.11) we see that the operatorsQ and Q̃ commute with the Virasoro
operatorsL(n). We are interested in the action of these operators onM(1). In fact,Q andQ̃
are the screening operators, and therefore KerM(1) Q and KerM(1) Q̃ are vertex subalgebra
of M(1) (for details see Section 14 in [9] and reference therein).

Some properties of the screening operatorsQ andQ̃ are given by the following lemma

Lemma 2.1. For p > 1 we have:

(i) [Q,Q̃] = 0.
(ii) Q̃enα �= 0, n ∈ Z>0.
(iii) Q̃e−nα = 0, n ∈ Z�0.

Proof. First we note that〈α,β〉 = 2 ∈ Z. Then the commutator formulae (2.3) gives tha[
Q,Q̃

]= [
eα0 , e

−β
0

]= (
eα0e

−β
)
0 = (

α(−1)eα−β
)
0 = p

p − 1

(
L(−1)eα−β

)
0.

Since (L(−1)u)0 = 0 in every generalized vertex operator algebra, we conclude
[Q,Q̃] = 0. This proves (i).

Relation (ii) follows from (2.5), and relation (iii) from (2.4).✷
We shall now investigate the action of the operatorQ. Since operatorsQj , j ∈ Z>0,

commute with the action of the Virasoro algebra, they are actually intertwiners be
Feigin–Fuchs modules inside the vertex operator algebraVL.

Recall that a vector inVL is called primary if it is a singular vector for the action of t
Virasoro algebra.

Sincee−nα is a primary vector inVL for everyn ∈ Z�0, we have thatQje−nα is either
zero or a primary vector. Fortunately, the question of non-triviality of intertwiners betw
Feigin–Fuchs modules is well studied in the literature. So using arguments from
together with the methods developed in [27] and [10] one can see that the following l
holds.

Lemma 2.2. Qje−nα �= 0 if and only if j ∈ {0, . . . ,2n}.

Next, we shall present the theorem describing a structure of the vertex operator a
M(1) as a module for the Virasoro vertex operator algebraL(cp,1,0). Again, the theorem
can be proved using a standard analysis in the theory of Feigin–Fuchs modules (se
11,21]).

Theorem 2.1.

(i) The vertex operator algebra M(1), as a module for the vertex operator algebra

L(cp,1,0), is generated by the family of singular and cosingular vectors S̃ing∪C̃Sing,
where

S̃ing = {un | n ∈ Z�0}; C̃Sing = {wn | n ∈ Z>0}.
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These vectors satisfy the following relations:

un = Qne−nα, Qnwn = enα, U(Vir)un ∼= L
(
cp,1, n

2p + np − n
)
.

(ii) The submodule generated by vectors un, n ∈ Z�0, is isomorphic to

[Sing] ∼=
∞⊕
n=0

L
(
cp,1, n

2p + np − n
)
.

(iii) The quotient module is isomorphic to

M(1)/[Sing] ∼=
∞⊕
n=1

L
(
cp,1, n

2p − np + n
)
.

(iv) Qu0 = Q1 = 0, and Qun �= 0, Qwn �= 0 for every n � 1.

Theorem 2.1 immediately gives the following result.

Proposition 2.1. We have

L(cp,1,0) ∼= W0 = KerM(1) Q.

3. The vertex operator algebra M(1)

Recall that the Virasoro vertex operator algebraL(cp,1,0) is the kernel of the screenin
operatorQ. But we have already seen that there is another screening operatorQ̃ acting on
M(1). Define the following vertex algebra

M(1) = KerM(1) Q̃.

SinceQ̃ commutes with the action of the Virasoro algebra, we have that

L(cp,1,0) ∼= W0 ⊂ M(1).

This implies thatM(1) is a vertex operator subalgebra ofM(1) in the sense of [13] (i.e.
M(1) has the same Virasoro element asM(1)).

The following theorem will describe the structure of the vertex operator algebraM(1)
as aL(cp,1,0)-module.

Theorem 3.1. The vertex operator algebra M(1) is isomorphic to [Sing] as a L(cp,1,0)-
module, i.e.,

M(1)∼=
∞⊕
n=0

L
(
cp,1, n

2 + np − n
)
.
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Proof. By Theorem 2.1 we know that theL(cp,1,0)-submodule generated by the set̃Sing
is completely reducible. So to prove the assertion, it suffices to show that the operQ̃

annihilates vectorv ∈ S̃ing ∪ C̃Sing if and only if v ∈ S̃ing. Let v ∈ S̃ing, thenv = Qne−nα

for certainn ∈ Z�0. Since by Lemma 2.1,̃Qe−nα = 0, we have that

Q̃v = Q̃Qne−nα = QnQ̃e−nα = 0.

Let nowv ∈ C̃Sing. Then there isn ∈ Z>0 such thatQnv = enα . Assume that̃Qv = 0.
Then we have that

0= QnQ̃v = Q̃Qnv = Q̃enα,

contradicting Lemma 2.1(ii). This proves the theorem.✷
Remark 3.1. It is very interesting that althoughM(1) is not completely reducibl
L(cp,1,0)-module, its subalgebraM(1) is completely reducible.

Next we shall prove that the vertex operator algebraM(1) is generated by only two
generators.

Motivated by formulae (18) in [21], we define the following three (non-zero) elem
in VL:

F = e−α, H = QF, E = Q2F.

From relations (2.6)–(2.9) we see that

L(n)E = δn,0(2p − 1)E, L(n)F = δn,0(2p − 1)F,

L(n)H = δn,0(2p − 1)H (n � 0),

i.e.,E, F andH are primary vectors inVL. In fact,H is a primary vector inM(1).

Lemma 3.1. In the vertex operator algebra VL the following relations hold:

(i) Q3F = 0.
(ii) EiE = FiF = 0, for every i � −2p.
(iii) Q(HiH) = 0, for every i � −2p.
(iv) H = S2p−1(α).

Proof. Relation (i) is a special case of Lemma 2.2. Let nowi ∈ Z, i � −2p. From (2.4)
we have thatFiF = e−α

i e−α = 0.
Next we observe thatQ acts as a derivation onVL, that is

Q(anb)= (Qa)nb + an(Qb) for everya, b ∈ VL, n ∈ Z. (3.1)
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Then using (i) and (3.1) we see thatEiE is proportional toQ4(FiF ), which implies
thatEiE = 0. This proves (ii).

Relation (iii) follows form (ii) and the fact thatQ(HiH) is proportional toQ3(FiF ).
Relation (iv) is a direct consequence of (2.5).✷

Theorem 3.2. The vertex operator algebra M(1) is generated by ω and H = S2p−1(α).

Proof. Let U be the vertex subalgebra ofM(1) generated byω and H . We need to
prove thatU = M(1). Let Wn by the (irreducible)Vir-submodule ofM(1) generated by
vectorun. ThenWn

∼= L(cp,1, n
2p + np − n). Using Lemma 2.2 we see that

KerM(1) Q
n ∼=

n−1⊕
i=0

Wi.

It suffices to prove thatun ∈U for everyn ∈ Z�0. We shall prove this claim by induction
By definition we have thatu0, u1(= H) ∈ U . Assume that we havek ∈ Z�0 such that
un ∈U for n � k. In other words, the inductive assumption is

⊕k
i=0Wi ∈ U .

We shall now prove thatuk+i ∈ U . Setj = −2kp− 1. By Lemma 2.2 we have

Q2k+2e−(k+1)α = Q2k+2(e−α
j e−kα

) �= 0.

Next we notice that

Qk+1(Hjuk) = Qk+1(Qe−α
)
j

(
Qke−kα

)= 1

2k + 1
Q2k+2(e−α

j e−kα
)
,

which implies that

Qk+1(Hjuk) �= 0.

So we have found vectorHjuk ∈U such that

wt(Hjuk) = (2p − 1)+ (
k2p + kp − k

)− j − 1 = (k + 1)2p + (k + 1)p − (k + 1)

= wt(uk+1).

This implies that

Hjuk ∈
k+1⊕
i=0

Wi and Hjuk /∈
k⊕

i=0

Wi.

SinceQk+1(
⊕k

i=0Wi) = 0 and wt(Hjuk) = wt(uk+1) we conclude that there is a consta
C, C �= 0, such that
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or
Hjuk = Cuk+1 + u′, u′ ∈
k⊕

i=0

Wi ⊂ U.

SinceHjuk ∈U , we conclude thatuk+1 ∈U .
Therefore, the claim is verified, and the proof of the theorem is complete.✷

Remark 3.2. If p = 2, then the elementsE, F , H span the triplet algebra studied b
M. Gaberdiel and H. Kausch (cf. [16,17,22]). In this caseM(1) is isomorphic toW-algebra
W(2,3) with c = −2. Its irreducible modules were classified by W. Wang in [29,30].

In general,E, F andH span theW(2,2p − 1,2p − 1,2p − 1) algebra with centra
chargecp,1 (cf. [8,21]). Our vertex operator algebraM(1) is isomorphic to theW algebra
W(2,2p − 1) investigated in a number of physics papers (cf. [7,8,19]).

The following lemma will imply that fori � −2p vectorHiH can be constructed usin
only the action of the Virasoro operatorsL(n) on the vacuum vector1.

Lemma 3.2. We have:

HiH ∈ W0 ∼= L(cp,1,0) for every i � −2p.

In particular, H−1H ∈W0.

Proof. The proof follows from Proposition 2.1 and Lemma 3.1(iii).✷
Remark 3.3. In the casep = 2, the fact thatH−1H ∈ W0 can be proved directly usin
a singular vector of level 6 in a generalized Verma module associated toW(2,3)-algebra
with central chargec = −2 (cf. [16,30]). This singular vector implies that inM(1) the
following relation holds:

H−1H = 1

4

(
19

36
L(−3)2 + 8

9
L(−2)3 + 14

9
L(−2)L(−4)− 44

9
L(−6)

)
1.

Lemma 3.2 indicates the existence of similar relation of level 2(2p − 1) in the genera
case, but we don’t now the explicit formulae. Instead of looking for such formulae
use the realization of the vertex operator algebraM(1) inside the lattice vertex operat
algebraVL, and the description of the Virasoro vertex operator algebraL(cp,1,0) from
Proposition 2.1.



D. Adamović / Journal of Algebra 270 (2003) 115–132 125
4. Spanning sets for M(1) and A(M(1))

In this section shall find a spanning set forM(1) and for Zhu’s algebraA(M(1)). First
we recall the definition of Zhu’s algebra for vertex operator algebras. Let(V ,Y,1,ω) be a
vertex operator algebra. We shall always assume that

V =
⊕

n∈Z�0

Vn, whereVn = {a ∈ V | L(0)a = nv}.

Fora ∈ Vn, we shall write wt(a)= n.

Definition 4.1. We define the bilinear maps∗ :V ⊗ V → V , ◦ :V ⊗ V → V as follows:

a ∗ b := Resz Y (a, z)
(1+ z)wt(a)

z
b =

∞∑
i=0

(
wt(a)
i

)
ai−1b,

a ◦ b := Resz Y (a, z)
(1+ z)wt(a)

z2 b =
∞∑
i=0

(
wt(a)
i

)
ai−2b.

Extend toV ⊗V linearly, denoteO(V ) ⊂ V the linear span of elements of the forma ◦ b,
and byA(V ) the quotient spaceV/O(V ).

Denote by[a] the image ofa in V under the projection ofV into A(V ). We have:

Theorem 4.1 [31].

(i) The quotient space (A(V ),∗) is an associative algebra with unit element [1].
(ii) Let M =⊕

n∈Z�0
M(n) be a Z�0-graded V -module. Then the top level M(0) of M

is a A(V )-module under the action [a] �→ o(a)= awt(a)−1 for homogeneous a ∈ V .
(iii) Let (U,π) be an irreducible A(V )-module. Then there exists an irreducible Z�0-

graded V -module L(U) =⊕
n∈Z�0

L(U)(n) such that the top level L(U)(0) of L(U)

is isomorphic to U as A(V )-module.
(iv) There is one-to-one correspondence between the irreducible A(V )-modules and the

irreducible Z�0-graded V -modules.

We shall need some information about the commutators[Hn,Hm] for m,n ∈ Z.

Lemma 4.1. For any m,n ∈ Z, commutators [Hn,Hm] are expressed as (infinite) linear
combination of

L(p1) · · ·L(ps), p1, . . . , ps ∈ Z, s � 2p − 1.

In particular, for every vector v ∈ M(1) we have

[Hn,Hm]v = f v, for certain f ∈ U(Vir).
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Proof. By the commutator formulae in vertex (operator) algebras follows:

[Hm,Hn] =
∞∑
i=0

(
m

i

)
(HiH)m+n−i .

From Lemma 3.2 follows thatHiH ∈ W0 for every nonnegative integeri. Thus,HiH is
an element of the Virasoro vertex operator algebraW0 ∼= L(cp,1,0). In fact, wt(HiH) �
2(2p − 1), which implies thatHiH can be expressed as (finite) linear combination

L(−n1) · · ·L(−ns)1, ni � 2, n1 + · · · + ns � 2(2p − 1), s � 2p − 1.

Therefore,[Hm,Hn] can be expressed as (infinite) linear combination of

L(p1) · · ·L(ps), p1, . . . , ps ∈ Z, s � 2p − 1.

This proves the first assertion. The second assertion follows from the first assertio
from the simple observation that ifv ∈ M(1), andm,n ∈ Z, then [Hm,Hn]v is well-
defined. ✷
Remark 4.1. Using different arguments, a result similar to our Lemma 4.1 was notic
the physics literature (cf. [7,19,23]).

Lemma 4.1 shows that the structure of the vertex operator algebraM(1) is similar to the
structure of the vertex operator algebraM(1)+ studied in [6].

So, using this lemma and a completely analogous proofs to the proofs of Proposit
and Theorem 3.5 in [6], one obtains the following theorem.

Theorem 4.2.

(i) The vertex operator algebra M(1) is spanned by the following vectors

L(−m1) · · ·L(−ms)H−n1 · · ·H−nt 1,

where m1 � m2 � · · · � ms � 2 and n1 � n2 � · · · � nt � 1.
(ii) Zhu’s algebra A(M(1)) is spanned by the set{[ω]∗s ∗ [H ]∗t | s, t � 0

}
.

In particular, Zhu’s algebra A(M(1)) is isomorphic to a certain quotient of the
polynomial algebra C[x, y], where x and y correspond [ω] and [H ].

The fact that Zhu’s algebraA(M(1)) is commutative, enable us to study irreduci
highest weight representations of the vertex operator algebraM(1). For given(r, s) ∈ C2,
let Cr,s be the one dimensional module ofA(M(1)), with [ω] acting as the scalarr and
[H ] as the scalars. Therefore every irreducibleA(M(1))-module is one-dimensional, an
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it is isomorphic to a moduleCr,s for certain(r, s) ∈ C2. Then Theorem 4.1 implies tha
every irreducibleZ�0-gradedM(1)-module is isomorphic to a certain moduleL(Cr,s).
So irreducible representations ofM(1) are parameterized by certain subset ofC2. In the
following sections we will prove that this subset is a rational curve.

5. Representations of M(1)

In this section we identify a family of irreducibleM(1)-modules. These modules a
parameterized by points(r, s) ∈ C2 satisfying one algebraic equation.

By construction, the vertex operator algebraM(1) is a subalgebraM(1). We now that
for everyλ ∈ h(∼= C), M(1, λ) is an irreducibleM(1)-module with the highest weigh
vectorvλ. ThusM(1, λ) is aM(1)-module. Denote bỹVλ theM(1)-submodule generate
by vectorvλ.

SetH(n) = Hn+2p−2, andH(z) =∑
n∈Z

H(n)z−n−2p+1.
First we recall the following result proved by the author in [1] for the purpos

studyingW1+∞-algebra.

Proposition 5.1 [1, Proposition 3.1].Let h ∈ h, and r ∈ Z�0. Let u = Sr(h(−1), h(−2),
. . .)1. Set Y (u, z) =∑

n∈Z
unz

−n−1. Then we have

(1) unvλ = 0 for n > r − 1,
(2) ur−1vλ = ( 〈λ,h〉

r

)
vλ.

Now Proposition 5.1 directly implies the following result.

Proposition 5.2. For every λ ∈ h, Ṽλ is a Z�0-graded M(1)-module. The top level Ṽλ(0)
is one-dimensional and generated by vλ. Let t = 〈λ,α〉. For every n ∈ Z�0, we have

L(n)vλ = δn,0
1

4p
t
(
t − 2(p − 1)

)
vλ, (5.1)

H(n)vλ = δn,0

(
t

2p − 1

)
vλ. (5.2)

By slightly abusing language, we can say thatṼλ is a highest weightM(1)-module with
respect to the Cartan subalgebra(L(0),H(0)), and the highest weight is(u(t), v(t)) where
t = 〈λ,α〉 ∈ C and

u(t) = 1

4p
t
(
t − 2(p − 1)

)
, v(t) =

(
t

2p − 1

)
. (5.3)

It is important to notice that for everyt ∈ C

u(t) = u
(
2(p − 1)− t

)
, v(t) = −v

(
2(p − 1)− t

)
.
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Moreover, the mappingt �→ (u(t), v(t)) is a injection.

Now we notice that the top level ofM(1)-moduleṼλ(0) = Cvλ has to be an irreducibl
module for Zhu’s algebraA(M(1)). We have the following isomorphism ofA(M(1))-
modules:

Ṽλ(0) ∼= Cr,s, wherer = u(t), s = v(t), t = 〈λ,α〉.

Then one can show that the induced irreducibleM(1)-moduleL(Ṽλ(0)) ∼= L(Cr,s) is
isomorphic to the irreducible quotient of̃Vλ.

DefineP(x, y) ∈ C[x, y] by

P(x, y) = y2 −Cp

(
x + (p − 1)2

4p

)p−2∏
i=0

(
x + i

4p
(2p − 2− i)

)2

, (5.4)

whereCp = (4p)2p−1/(2p − 1)!2.
In the following lemma we shall see that the highest weights ofM(1)-modulesṼλ

(λ ∈ h) coincide with the solutions of the equationP(x, y) = 0. The proof is similar to
the proof of Lemma 4.4 in [30].

Lemma 5.1. Solutions of the equation

P(x, y) = 0 (5.5)

are parameterized by

(x, y) = (
u(t), v(t)

)
, t ∈ C. (5.6)

Proof. It is easy to verify that for everyt ∈ CP(u(t), v(t)) = 0.
Let now(x, y) be any solution of (5.5). Then there ist0 ∈ C such that

x = u(t0) = u
(
2(p − 1)− t0

)
.

By substitutingx = u(t0) in Eq. (5.5) we get thaty2 = ( t0
2p−1

)2, which implies that

y =
(

t0
2p − 1

)
= v(t0) or y = −

(
t0

2p − 1

)
= v

(
2(p − 1)− t0

)
.

So there is a uniquet ∈ C such that (5.6) holds. ✷
Theorem 5.1. Assume that (r, s) ∈ C2 so that P(r, s) = 0. Then

(i) Cr,s is an irreducible A(M(1))-module.
(ii) L(Cr,s) is an irreducible M(1)-module.
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Proof. Using Lemma 5.1 we see that there is a uniqueλ ∈ h so thatCr,s
∼= Ṽλ(0), where

Ṽλ(0) is an A(M(1))-module constructed in Proposition 5.2. SoCr,s is an irreducible
A(M(1))-module. Assertion (ii) follows from Theorem 4.1.✷

6. Zhu’s algebra A(M(1)) and the classification of irreducible modules

In this section we shall prove our main result saying that the modules construc
Section 5 provide all irreducibleZ�0-gradedM(1)-modules. Our proof will use the theo
of Zhu’s algebras.

We are now going to determine Zhu’s algebra for the vertex operator algebraM(1). We
have already proved thatA(M(1)) is isomorphic to a certain quotient of the polynom
algebraC[x, y], wherex corresponds to[ω] andy to [H ]. Now we shall find all relations
in A(M(1)).

Lemma 6.1. In Zhu’s algebra A(M(1)), we have:

P
([ω], [H ])= 0.

Proof. Lemma 3.2 implies that for everyi > −2p

Hi−1H = fi
(
L(−2),L(−3), . . .

)
1

for certain polynomialfi ∈ C[x1, x2, . . .]. This implies that inA(M(1)), we have

[Hi−1H ] = gi
([
L(−2)1

])= gi
([ω])

for certain polynomialgi ∈ C[x] such that deg(gi) � 2p − 1. The definition of the
multiplication inA(M(1)) gives that

[H ] ∗ [H ] =
2p−1∑
i=0

(
2p − 1

i

)
[Hi−1H ] =

2p−1∑
i=0

(
2p − 1

i

)
gi
([ω]).

Let g(x) =∑2p−1
i=0

( 2p−1
i

)
gi(x). So we have proved that there is polynomialg ∈ C[x] so

that

[H ] ∗ [H ] = [H ]2 = g([ω]), deg(g) � 2p − 1. (6.1)

Now we shall determine the polynomialg explicitly. Recall that if(r, s) ∈ C2 such that
P(r, s) = 0, thenCr,s is an irreducibleA(M(1))-module (Theorem 5.1). Let us no
evaluate both sides of (6.1) onA(M(1))-modulesCr,s . We get thats2 = g(r) for every
(r, s) ∈ C2 such thatP(r, s) = 0. This implies that for everyr ∈ C

g(r) = s2 = s2 −P(r, s) = Cp

(
r + (p − 1)2

4p

)p−2∏(
r + i

4p
(2p − 2− i)

)2

,

i=0
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whereCp = (4p)2p−1/(2p − 1)!2. In this way we have proved that

g(x) = y2 −P(x, y) = Cp

(
x + (p − 1)2

4p

) p−2∏
i=0

(
x + i

4p
(2p − 2− i)

)2

.

Using (6.1) we get

P
([ω], [H ])= [H ]2 − g

([ω])= 0,

as desired. ✷
Now we are in the position to find all relations in Zhu’s algebraA(M(1)).

Theorem 6.1. Zhu’s algebra A(M(1)) is isomorphic to the commutative, associative
algebra C[x, y]/〈P(x, y)〉.

Proof. By Theorem 4.2 we have a surjective algebra homomorphism

Φ :C[x, y] → A
(
M(1)

)
,

x �→ [ω],
y �→ [H ].

It suffices to prove that KerΦ = 〈P(x, y)〉.
Lemma 6.1 gives that〈P(x, y)〉 ⊆ KerΦ.
Assume now thatK(x,y) ∈ KerΦ. Note thatP(x, y) has degree 2 iny. Using the

division algorithm we get

K(x,y)= A(x,y)P (x, y)+R(x, y),

whereA(x,y),R(x, y)∈ C[x, y] so thatR(x, y) has degree at most1 in y. So we can write
R(x, y) = B(x)y + C(x), whereB(x),C(x) ∈ C[x]. SinceP(x, y),K(x, y) ∈ KerΦ we
have thatR(x, y) ∈ KerΦ. We now evaluate polynomialR(x, y) on A(M(1))-modules
and obtain

R
(
u(t), v(t)

) = 0 for everyt ∈ C,

where polynomialsu(t), v(t) are defined by (5.3). Therefore

B
(
u(t)

)
v(t) = −C

(
u(t)

)
for everyt ∈ C. (6.2)

Assume thatB(x) �= 0. Then polynomial

B
(
u(t)

)
v(t) = B

(
1
t (t − 2p + 2)

)(
t

2p − 1

)

4p
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has odd degree int . On the other hand, if polynomial−C(u(t)) is nontrivial, it must have
even degree int . This is a contradiction because of (6.2). SoB(x) = 0. Using (6.2) we also
get thatC(u(t)) = 0 for everyt ∈ C, which implies thatC(x) = 0. In this way we have
proved that

R(x, y) = B(x)y +C(x) = 0,

and therefore

K(x,y)= P(x, y)A(x, y) ∈ 〈P(x, y)
〉
.

So KerΦ = 〈P(x, y)〉, and the theorem holds.✷
Theorem 6.2. The set {

L(Cr,s) | (r, s) ∈ C2, P (r, s) = 0
}

(6.3)

provides all non-isomorphic irreducible Z�0-graded modules for the vertex operator
algebra M(1).

Proof. Since Zhu’s algebraA(M(1)) is commutative, Theorem 6.1 implies that the set{
Cr,s | (r, s) ∈ C2, P (r, s) = 0

}
provides all irreducible modules for Zhu’s algebraA(M(1)). Then Theorem 4.1 implie
that the set (6.3) provides all irreducibleZ�0-gradedM(1)-modules. ✷
Remark 6.1. Theorem 6.2 shows that the irreducibleM(1)-modules are parameterize
by the solutions of the equationP(x, y) = 0. We have observed that all solutions of t
equation can be written in the form(u(t), v(t)) (t ∈ C) which are exactly the highes
weights ofM(1)-submodules ofM(1, λ) constructed in Proposition 5.2. This leads to
conclusion (as in [30]) that every irreducibleM(1)-module can be identified starting fro
modules for the vertex operator algebraM(1).
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