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a b s t r a c t

In this paper we introduce generalized S-estimators for the multivariate regression model.
This class of estimators combines high robustness and high efficiency. They are defined
by minimizing the determinant of a robust estimator of the scatter matrix of differences
of residuals. In the special case of a multivariate location model, the generalized S-
estimator has the important independence property, and can be used for high breakdown
estimation in independent component analysis. Robustness properties of the estimators
are investigated by deriving their breakdown point and the influence function. We also
study the efficiency of the estimators, both asymptotically and at finite samples. To obtain
inference for the regression parameters, we discuss the fast and robust bootstrap for
multivariate generalized S-estimators. The method is illustrated on a real data example.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we introduce a new class of estimators for the multivariate regression model, called Generalized S-
estimators (GS). Generalized S-estimators are defined by minimizing the determinant of a robust estimator of the scatter
matrix of differences of residuals. Using differences instead of the residuals themselves has the advantage that at most
models this will lead to an increase in statistical efficiency, while the robustness of the estimators, as measured by their
breakdown point, remains the same. The breakdown point of an estimator is the highest possible percentage of outliers
than an estimator can withstand. It turns out that it is possible to achieve the highest possible value for the breakdown
point, 50%, even when working with differences of residuals. GS-estimators estimate the slope and the scatter matrix of the
error terms of the multivariate regression model without needing to estimate the intercept first. The intercept is treated as
a nuisance parameter, and the resulting estimator is therefore considered to be ‘‘intercept free’’.
The multivariate regressionmodel encompasses both the multivariate location-scale model, as a multivariate regression

model with only an intercept, and the univariate regression model. While GS-estimators were already considered for
univariate regression [1], they were not studied yet for the multivariate location-scale model. In the latter model, the
‘‘intercept free’’ property of the GS estimator translates into ‘‘location free’’ estimation. Hence, GS-estimators allow for
estimation of scatter while not needing to estimate the location. More important, since the GS-estimator is based on
differences, it has the independence property, meaning that when the components of a random vector are independent,
the scatter matrix estimate is diagonal [2]. This is not true for S-estimators of scatter in general. The independence property
is highly important in independent component analysis (ICA). Briefly, the ICA problem consists of finding an original random
vectorwith independent componentswhen only an unknown linearmixture is observed [3]. Oja et al. [4] proposed amethod
for ICA that is based on the use of two different scatter matrices that are required to have the independence property; see
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also Tyler et al. [2]. By using the GS-estimator, a high breakdown approach to robust ICA is obtained. Other scatter matrix
estimators, based on differences of observations were proposed by [5,6]. They are of the M-type and their breakdown point
decreases with the dimension [7], and thus do not have a high degree of robustness. The GS-estimators are estimators that
can have a 50% breakdown point and at the same time the independence property.
Consider the multivariate linear regression model given by

y = α +BTu+ ε (1)

where u is the p-variate predictor, y the q-variate response and ε the q-variate error term which has center zero and a
positive definite scatter matrix Σ . The unknown parameters θ = (α,BT)T ∈ R(p+1)×q and Σ ∈ Rq×q are to be estimated
from the observations Zn = {zi := (xTi , y

T
i )
T
= (1,uTi , y

T
i )
T, i = 1, . . . , n} ⊂ Rp+q+1. The classical estimator for this model

is the least squares estimator, but it is well-known that this estimator can be highly influenced by outliers.
In the univariate regression case a lot of research has been done to construct more robust estimators. Classes of robust

estimators in this setting include M-estimators [8], least median of squares and least trimmed squares estimators [9],
S-estimators [10], MM-estimators [11], CM-estimators [12] and τ -estimators [13]. Croux et al. [1] introduced a class of
regression estimators, called generalized S-estimators or GS-estimators. While an S-estimator of regression minimizes an
M-estimator of scale of the residuals, a GS-estimator minimizes an M-estimator of scale applied on the pairwise differences
of the residuals, instead of on the residuals themselves. It has been shown that for bounded loss functions these univariate
GS-estimators have nice properties such as a high breakdown point and a higher efficiency than the original S-estimators.
Moreover, they do not require the assumption of symmetric errors (see also [14–16]). In the univariate regressionmodel we
also mention the rank-based regression estimates of [17], which are also based on the differences of the residuals. In this
paper, we extend the definition of GS-estimates to multivariate regression.
Recently, several robust estimators for multivariate regression have been introduced. Methods based on robust

estimators for multivariate location and scatter applied to the joint distribution of responses and explanatory variables have
been proposed by Ollila et al. [18] using sign covariance matrices, Ollila et al. [19] using rank covariance matrices and [20]
using the minimum covariance determinant estimator. An alternative approach is to define a robust regression estimator
by minimizing a robust estimate of the covariance matrix of the residuals. Agulló et al. [21] proposed the multivariate
least trimmed squares estimator, Van Aelst and Willems [22] considered multivariate regression S-estimators, while [23]
introduced τ -estimators formultivariate regression. Also note that the idea of univariate least absolute deviation estimation
has been extended to the multivariate case by [24–26]. All these procedures, however, are not based on differences of
residuals.
GS-estimators generalize S-estimators in the sense that they are identical to S-estimators, but computed fromdifferences

zi−zj, instead of using the original observations zi. This is the same idea as used in the definition of generalized L-, M-, and R-
estimators [27] for the location model. It should be stressed that S-estimators are not included in the class of GS-estimators.
Another suitable name for GS-estimators may be ‘‘Symmetrized S-estimators’’.
The remainder of the paper is organized as follows. In Section 2 we introduce the multivariate regression GS-estimators

and determine their breakdown point. Section 3 describes the algorithm for computing the GS-estimators. In Section 4
we define the functional form of the estimator. We show that the GS-functional is Fisher-consistent if the differences of
the errors have an elliptical distribution. We also derive the influence function of the GS-functional. Asymptotic variances
and corresponding efficiencies are given in Section 5. Section 6 discusses the fast and robust bootstrap method for GS-
estimators. Section 7 presents a real data example and Section 8 concludes. Proofs are omitted and can be found in the
technical report [28].

2. Definition and breakdown point

We now define Generalized S-estimators for the multivariate regression model given in (1).

Definition 1. LetZn = {zi := (xTi , y
T
i )
T
= (1,uTi , y

T
i )
T, i = 1, . . . , n} ⊂ Rp+q+1. The GS-estimates ofmultivariate regression

(B̂n, Σ̂n)minimizes among all (B, C) ∈ Rp×q × PDS(q), with PDS(q) the set of positive definite symmetric q × qmatrices,
the determinant |C |, subject to the condition(n

2

)−1∑
i<j

ρ([(ri − rj)TC−1(ri − rj)]1/2) = k (2)

where ri = yi − BTui − α.

Note that the objective function does not depend on the interceptα. The constant k can be chosen as k = EF×F [ρ(‖ε1−ε2‖)],
which ensures consistency at themodelwith error distribution F (see Section 4). The choice ρ(u) = u2 yields the non-robust
least squares (LS) estimator. To obtain robust estimates, we impose the following properties on the loss function ρ:

• ρ is twice continuously differentiable and ρ(0) = 0
• ρ is strictly increasing on [0, c] and constant on [c,∞) for some c <∞.
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Throughout this paper we use the well-known class of Tukey biweight ρ-functions given by:

ρc(t) =


t2

2
−
t4

2c2
+
t6

6c4
, |t| ≤ c

c2

6
, |t| ≥ c.

Similarly as in [29], it can be shown that Definition 1 implies thatmultivariate GS-estimators satisfy the following first-order
conditions:∑

i<j

u(dij)(ui − uj)(yi − yj − B
T(ui − uj))T = 0 (3)

∑
i<j

{qu(dij)(yi − yj − B
T(ui − uj))(yi − yj − B

T(ui − uj))T − v(dij)C} = 0 (4)

with d2ij = (yi−yj−BT(ui−uj))TC−1(yi−yj−BT(ui−uj)), u(t) = ψ(t)/t and v(t) = ψ(t)t−ρ(t)+k, whereψ(t) = ρ ′(t).
To study the global robustness of the multivariate GS-estimators, we derive their finite-sample breakdown point. For a

given data setZn, the finite-sample breakdown point ε∗n of an estimator Tn is the smallest fraction of observations ofZn that
need to be replaced by arbitrary values to carry the estimate Tn beyond all bounds [30]. Formally,

ε∗n (Tn,Zn) = min

{
m
n
; sup

Z′n,m

D(Tn(Zn), Tn(Z′n,m)) = ∞

}

where the supremum is over all possible collections Z′n,m that differ from Zn in at most m data points and D is a metric
on the parameter space. For the regression estimators one has the usual distance D(B1,B2) = ‖B1 − B2‖. For covariance
estimators, the breakdownpoint is the smallest fraction of outliers that canmake the largest eigenvalue tend to infinity or the
smallest eigenvalue tend to zero. Thismotivates the choice of themetricD(Σ1,Σ2) = max{|λ1(Σ1)−λ1(Σ2)|, |λq(Σ1)−1−
λq(Σ2)

−1
|} where λ1(Σ) ≥ · · · ≥ λq(Σ) are the ordered eigenvalues of a matrix Σ . We derive the breakdown point for

data sets that satisfy the following general position condition.

Condition 1. The differences of the observations (uTi , y
T
i )
T are in general position, meaning that no

(
p+q+1
2

)
of the differences

((ui − uj)T, (yi − yj)T)T with i < j belong to the same hyperplane in Rp+q.

Note that if the differences of the (uTi , y
T
i )
T are in general position, then the points (uTi , y

T
i )
T themselves are also in general

position. The latter means that no p + q + 1 of the (uTi , y
T
i )
T lie on the same hyperplane of Rp+q. If the observations are

sampled from a continuous distribution, then Condition 1 holds with probability 1.
The breakdown point of multivariate regression GS-estimators, given next, extends the results for the univariate

regression case in [1].

Theorem 1. Let Zn ⊂ Rp+q+1. Denote r := k/ sup(ρ). If Zn satisfies Condition 1 and
( n
2

)
(1 − r) ≥

(
p+q+1
2

)
then the

breakdown point of the multivariate GS-estimator is given by

ε∗n (B̂n,Zn) = ε
∗

n (Σ̂n,Zn) =
1
n
min(dn− 1/2−

√
1+ (1− r)(4n2 − 4n)/2e,

d1/2− p− q+
√
1+ (1− r)(4n2 − 4n)/2e).

Themaximal breakdownpoint is achieved for r = 1−((n−1+p+q)2−1)/(4n2−4n), inwhich case ε∗n = d(n−p−q)/2e/n.
The asymptotic breakdown point ε∗ = lim

n→∞
ε∗n equals

ε∗ = min(1−
√
1− r,

√
1− r).

Taking r = 0.75 yields an asymptotic breakdown point of ε∗ = 0.5. Hence, GS-estimators can attain the highest possible
value for the breakdown point. In practice, if the GS-estimator needs to achieve a specified breakdown point ε∗, for example
ε∗ = 0.5, and to have consistency at a model with error distribution F , typically the normal distribution, the constant c in
Tukey’s biweight function needs to be taken as the solution of 1−

√
1− EF×F [ρc(‖ε1 − ε2‖)]/(c2/6) = ε∗.
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3. Algorithm

The algorithm we propose is analogous to the fast S-algorithm of [31] for univariate regression. For any sequence of
values e1, . . . , eñ, the corresponding scale s is given by the solution of

1
ñ

ñ∑
i=1

ρ
( ei
s

)
= k.

The fast S-algorithm uses local improvement steps (I-steps) to update an initial estimate of the regression coefficients. In
our algorithm, the I-steps are based on the scale of the norm of the pairwise differences of the residuals ‖ri − rj‖C =
((ri − rj)TC−1(ri − rj))1/2 and ñ = n(n− 1)/2. The actual algorithm can be described as follows:
1. Draw N random sub-samples of size p+ q+ 1. (We advise N = 1000.) For each sub-sample calculate the least squares
estimate B̂0m, m = 1, . . . ,N , and the corresponding shape matrix Γ̂

0
m of the residuals, i.e. the covariance matrix Σ̂

0
m of

the residuals is rescaled to have determinant equal to 1. Denote the residuals by ri(B̂0m), for i = 1, . . . , n.
2. For each sub-sample, apply κ I-steps (we take κ = 2) as follows. Set v = 1.
a. Calculate an approximate solution of Eq. (2), as

sv =

√√√√s2v−1 ×
(∑
i<j

ρ(‖ri(B̂v−1
m )− rj(B̂v−1

m )‖
Γ̂
v−1
m
/sv−1)/

(n
2

)
k

)

with s0 the median absolute deviation of the norms ‖ri(B̂v−1
m )− rj(B̂v−1

m )‖
Γ̂
v−1
m
.

b. Determine the weights wij = u(‖ri(B̂v−1
m ) − rj(B̂v−1

m )‖
Γ̂
v−1
m
/sv) and calculate B̂v

m as the weighted least squares
fit based on the differences of the observations. Compute then Σ̂v

m =
∑
i<jwij(ri(B̂

v−1
m ) − rj(B̂v−1

m ))(ri(B̂v−1
m ) −

rj(B̂v−1
m ))T with corresponding shape estimate Γ̂ v

m .
c. Calculate the pairwise differences of the residuals corresponding to B̂v

m.
d. Repeat steps a, b and c for v = 2, . . . , κ .
Each sub-sample thus yields an improved estimate (B̂κ

m, Γ̂
κ
m ),m = 1, . . . ,N .

3. We now select the τ best solutions (we take τ = 5) in an efficient way. For m = 1, . . . , τ , we calculate the scale
sm = s(‖ri(B̂κ

m) − rj(B̂κ
m)‖Γ̂ κm ),m = 1, . . . , τ . For m ≥ τ , we denote by Im the set containing the τ optimal solutions

found after examining the firstm candidates, and Am denotes the maximum of the scales of the solutions in Im. The next
solution (B̂κ

m+1, Γ̂
κ
m+1)will be included in Im+1 if and only if s(‖ri(B̂

κ
m+1)− rj(B̂κ

m+1)‖Γ̂ κm+1
) < Am which is equivalent to

1( n
2

) ∑
i<j

ρ(‖ri(B̂κ
m+1)− rj(B̂κ

m+1)‖Γ̂ κm+1
/Am) < k. (5)

If condition (5) holds, then we compute the scale s(‖ri(B̂κ
m+1) − rj(B̂κ

m+1)‖Γ̂ κm+1
) and we correspondingly update Im

and Am to obtain Im+1 and Am+1. If inequality (5) does not hold, then Im+1 = Im and Am+1 = Am. Let us denote
(B̂Bm, Γ̂

B
m, s

B
m),m = 1, . . . , τ the τ optimal solutions and s

B
m their corresponding scales, form = 1, . . . , τ .

4. Apply further I-steps to each of the optimal solutions (B̂Bm, Γ̂
B
m, s

B
m), m = 1, . . . , τ , until convergence, which yields the

fully iterated solutions (B̂Fm, Γ̂
F
m, s

F
m), m = 1, . . . , τ , where s

F
m = s(‖ri(B̂

F
m) − rj(B̂Fm)‖Γ̂ Fm). The final estimate is the

solution (B̂Fm, Γ̂
F
m) associated with the smallest scale s

F
m and the corresponding estimate of the covariance matrix of

the residuals is obtained as Σ̂Fm = (sFm)
2Γ̂ Fm . In our experience, convergence is obtained rather quickly for most data

configurations.

The recommended choices ofN , κ and τ are in agreementwith those of the fast LTS-algorithmof [32] and the fast S-algorithm
of [31]. In our experience they also give satisfactory results in the multivariate regression setting. Note that there is no
guarantee that the algorithm converges to a global minimum but in our experience it gives a good approximation to the
GS-estimator.

4. Fisher-consistency and influence function

LetH denote the class of all distributions onRp+q. We define the GS-functionalGS:H → (Rp×q×PDS(q)) as the solution
GS(H) = (BGS(H),ΣGS(H)) of the problem of minimizing |C | subject to∫ ∫

ρ([(y1 − y2 − B
T(u1 − u2))TC−1(y1 − y2 − B

T(u1 − u2))]1/2)dH(z1)dH(z2) = k

among all (B, C) ∈ Rp×q×PDS(q) andwhere zl = (uTl , y
T
l )
T for l = 1, 2. It can be easily seen that the resulting GS-functional

is affine equivariant. We assume that the following two conditions are satisfied for the distribution H of z = (uT, yT)T in
model (1).
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Condition 2. We assume that the differences of the errors εi − εj in model (1) have a distribution FΣ with density fΣ (x) =
g(xTΣ−1x)/

√
|Σ |, with Σ ∈ PDS(q) the scatter matrix. Furthermore, the function g is assumed to have a strictly negative

derivative g ′.

Condition 2 requires that the error terms have a unimodal elliptically symmetric distribution around the origin. Note that
the distribution of the difference of two independent and elliptically symmetric error terms, remains elliptically symmetric
[33]. We need another regularity condition on the model distribution H .

Condition 3. For all β ∈ Rp and γ ∈ Rq not both equal to zero at the same time, it holds that PH(βT(u1−u2)+ γ T(y1− y2) =
0) < 1− r.

Theorem 2. The functionalsBGS andΣGS are Fisher-consistent estimators of the parametersB andΣ at any model distribution
H satisfying Conditions 2 and 3:

BGS(H) = B and ΣGS(H) = Σ .

The influence function of a functional T at a distribution H measures the effect on T of an infinitesimal contamination at
a single point [8]. If we denote a point mass distribution at z = (uT, yT)T by∆z, and consider the contaminated distribution
Hε,z = (1− ε)H + ε∆z, then the influence function is given by

IF(z; T ,H) = lim
ε↓0

T (Hε,z)− T (H)
ε

=
∂

∂ε
T (Hε,z)|ε=0.

Due to affine equivariance of the GS-functional, it suffices to look at model distributions H0 that satisfy Conditions 2 and 3
and for whichB = 0, andΣ = Iq. Denote F0 = FIq and let G be the distribution of u.

Theorem 3. For model distributions H0 satisfying the above conditions, the influence functions of the GS-estimators for
multivariate regression at z0 = (uT0, y

T
0)
T are given by

IF(z0;BGS,H0) = [Cov(u)]−1(u0 − EG[u])
ψ̄(y0)T

β
(6)

IF(z0;ΣGS,H0) = IF(y0;ΣGS, F0)

=
2
γ1
qEF0

[
ψ(‖y1 − y0‖)‖y1 − y0‖

(
(y1 − y0)(y1 − y0)T

‖y1 − y0‖2
−
1
q
Iq

)]
+
4EF0

[
ρ(‖y1 − y0‖)− k

]
γ3

Iq (7)

where

ψ̄(y0) = EF0

[
ψ(‖y0 − y1‖)
‖y0 − y1‖

(y0 − y1)
]
,

andβ = EF0×F0
[
1
qψ
′(‖y1 − y2‖)+

(
1− 1

q

)
u(‖y1 − y2‖)

]
, γ1 = EF0×F0 [ψ

′(‖y1−y2‖)‖y1−y2‖2+(q+1)ψ(‖y1−y2‖)‖y1−
y2‖]/(q+ 2) and γ3 = EF0×F0 [ψ(‖y1 − y2‖)‖y1 − y2‖].

For the model with only a constant term, the expression of the influence function of ΣGS is equivalent to the influence
function of the symmetrized M-estimators of multivariate scatter of [6]. If q = 1, then the influence function of BGS is
identical to the influence function of the univariate GS-estimator (see [1]). Since ψ̄ is a bounded function, it can be seen that
the influence function of BGS is bounded in y0 but unbounded in u0. Hence good leverage points can have a high effect on
the GS-estimator, but bad leverage points will have a bounded influence.

5. Efficiency

Under regularity conditions, the asymptotic variance-covariancematrix of the GS-estimator at themodel distributionH0
can be computed by means of the influence function, as

ASV (BGS,H0) = E[IF(z;BGS,H0)⊗ IF(z;BGS,H0)T]
(see [8]), where⊗ stands for the Kronecker product. We do not give a proof of asymptotic normality in this paper, but we
conjecture that the GS-estimator is asymptotic normal under the same conditions as in [29,14] and that a formal proof will
go along the same lines as in these papers. DenotingΣu := Cov[u], it follows from (6) that

ASV (BGS,H0) = Kpq

(
diag

(
EF0 [ψ̄(y0)⊗ ψ̄(y0)

T
]

β2

)
⊗Σ−1u

)
, (8)



E. Roelant et al. / Journal of Multivariate Analysis 100 (2009) 876–887 881

Table 1
Asymptotic relative efficiencies for S- and GS-estimators with respect to the LS estimator at normal and Student distributions

ε∗ 25% 50%
GS q = 1 q = 2 q = 3 q = 5 q = 10 q = 1 q = 2 q = 3 q = 5 q = 10

Nq(0, Iq) 0.818 0.912 0.940 0.974 0.973 0.683 0.719 0.770 0.843 0.923
T8 0.982 1.077 1.103 1.138 1.162 0.798 0.885 0.944 1.031 1.151
T3 1.902 2.061 2.125 2.235 2.342 1.603 1.872 2.070 2.196 2.445

S q = 1 q = 2 q = 3 q = 5 q = 10 q = 1 q = 2 q = 3 q = 5 q = 10

Nq(0, Iq) 0.759 0.912 0.951 0.976 0.990 0.287 0.580 0.722 0.846 0.933
T8 0.894 1.059 1.108 1.141 1.162 0.390 0.739 0.897 1.038 1.153
T3 1.738 2.035 2.137 2.222 2.289 0.904 1.601 1.903 2.177 2.140

where Kpq is the commutationmatrix, a (pq×pq)matrix consisting of pq blocks of size (q×p). For 1 ≤ l ≤ p and 1 ≤ m ≤ q
the (l,m)th block of Kpq equals the (q× p)matrix∆ml which is 1 at entry (m, l) and 0 everywhere else.
From (6) and (8) we find that the asymptotic variance of (BGS)jk is

ASV ((BGS)jk,H0) = (Σ−1u )jj
EF0 [ψ̄(y0)

2
k]

β2
(9)

while the asymptotic covariances, for j 6= j′, are given by

ASC((BGS)jk, (BGS)j′k,H0) = (Σ−1u )jj′
EF0 [ψ̄(y0)

2
k]

β2

and all other asymptotic covariances (for k 6= k′) equal 0.
Since we assumed, w.l.o.g. due to affine equivariance, that Σu = Ip at H0, we have that all asymptotic covariances are

zero. Furthermore ASV ((BGS)jk,H0) = EF0 [ψ̄(y0)
2
k]/β

2 does not depend on k and j. Hence, we can compute the asymptotic
relative efficiency of the GS-estimator with respect to the least-squares estimator as:

ARE(BGS,H0) =
ASV ((BLS)jk,H0)
ASV ((BGS)jk,H0)

for all j = 1, . . . , p and k = 1, . . . , q. The asymptotic relative efficiency of a multivariate regression GS-estimator does not
depend on the dimension p or the distribution of the carriers, but only on the dimension q and the distribution of the errors
terms.
Table 1 shows the relative asymptotic efficiencies forH0 amultivariate normal distribution, and for amultivariate Student

distributions Tν with ν = 3 and 8 degrees of freedom. Results are presented for both GS- and S-estimators (see Table 3.1 in
[22] for the efficiencies of S-estimators), based on a Tukey biweight loss function. The reported values in Table 1 are based
on numerical integration of the analytic expression in (9). From Table 1 we see that the efficiencies for the GS-estimator
are high for the 25% as well as for the 50% breakdown point case. For the T3 distribution, the GS-estimator is far more
efficient than the least squares estimator. For the T8 distribution the GS-estimator still outperforms the LS-estimator in
higher dimensions. Comparing the GS-estimator with the S-estimator, we see that using the pairwise differences generally
results in a higher efficiency, in particular for the 50% breakdown point estimates. Note that in some cases the S-estimator
can be more efficient than the GS-estimator, in particular for larger values of q, even at the normal model. This is somehow
surprising, and might be explained by the following heuristical reasoning. Working with differences of residuals may lead
to a gain in efficiency because the number of differences is larger than the original sample size. On the other hand, the
distribution of the differences has a larger spread, leading to less precise regression estimators. For a least squares approach,
both effects perfectly counterbalance, and there is no gain inworkingwith differences.When the value of q increases, S- and
GS-estimators tend to resemble more and more the classical estimators if no outliers are present, as it witnessed by their
efficiency getting closer to 100%. Then it is not clear which of the two effects of working with differences will dominate.
We also performed a simulation study to investigate the finite-sample efficiency of the GS-estimator. We generated

m = 1000 random samples with predictors drawn from the multivariate standard normal distribution. The errors were
generated from the multivariate normal distribution or from the multivariate T3 distribution. We considered multivariate
regression models with p + 1 = 2 and q = 2 and p + 1 = 5 and q = 5. The matrix (α,BT)T was set to zero. For each
sample we calculated both the S-estimates (including an intercept term) and GS-estimates. The Monte Carlo variance of B̂n
is measured as navej,k(V̂ar((B̂n)jk)) for j = 1, . . . , p and k = 1, . . . , q, where V̂ar((B̂n)jk) is the empirical variance over the
m simulated estimates. The finite-sample relative efficiency is then computed as the inverse of this variance estimate for
the normal distribution, and as ν/(ν − 2) divided by the variance estimate for the Tν distribution. Table 2 lists these finite-
sample relative efficiencies for the 25% breakdown S- and GS-estimator for the normal and T3 model. The finite-sample
relative efficiencies are generally slightly lower than the asymptotic relative efficiencies of Table 1. If we compare the GS-
estimator with the S-estimator we see that the relative efficiencies are comparable at the normal distribution, but at the T3
distribution the relative efficiencies of the GS-estimator are always higher.
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Table 2
Finite-sample relative efficiencies for B̂GS and B̂S (25% breakdown) with respect to the LS estimator at the normal and T3 distribution

n = 30 n = 50 n = 100 n = 200 n = ∞

GS

Nq(0, Iq) q = 2 0.881 0.901 0.858 0.867 0.912
q = 5 0.797 0.859 0.921 0.941 0.974

T3 q = 2 1.809 1.859 1.901 2.025 2.061
q = 5 1.415 1.669 1.861 1.960 2.235

S

Nq(0, Iq) q = 2 0.875 0.901 0.859 0.867 0.912
q = 5 0.798 0.862 0.924 0.945 0.976

T3 q = 2 1.788 1.838 1.882 2.005 2.035
q = 5 1.407 1.656 1.846 1.943 2.222

6. Robust inference

6.1. Fast and robust bootstrap

We now consider the issue of statistical inference for the regression parameterB. We use the fast and robust bootstrap
procedure introduced by [34] for univariate regressionMM-estimators. The bootstrap principle is to generate a large number
of samples from the original data set, and to recalculate the estimates for each of these resamples. Then, the distribution,
of
√
n(B̂n − B) can be approximated by the sample distribution of

√
n(B̂∗n − B̂n) where B̂∗n is the value of the resampled

estimator. When there are outliers present in the data, this method can be expected to be more accurate than using the
asymptotic variance. However, the standard bootstrap procedure is non-robust, as some bootstrap samples may contain
a fraction of outliers that exceeds the breakdown point of the robust estimates, and computationally demanding, due to
the high computation time of robust estimators. Both these problems are resolved by the fast and robust bootstrap (FRB)
procedure.
For S-estimators in multivariate models, inference based on FRB has been developed by [22,35,36]. The FRB procedure

computes bootstrap values of B̂n without explicitly calculating the actual estimate for each resample. The FRB gains a
considerable amount of computation time by approximating B̂∗n in each resample based on a fixed-point representation
of the estimator. Because a reweighted representation of the estimator is bootstrapped, the method will be more robust
since outliers downweighted in the original sample, will also be downweighted in each resample, regardless the fraction of
outliers in each resample.
Suppose that an estimator of the parameter Θ can be represented by a smooth fixed-point equation gn(Θ̂n) = Θ̂n. We

assume that Θ̂n is a root-n consistent estimator ofΘ . Then, using the smoothness of gn, we can calculate a Taylor expansion
about the limiting value of the estimate Θ̂n:

Θ̂n = gn(Θ)+∇gn(Θ)(Θ̂n −Θ)+ Rn
where Rn is a remainder term and ∇gn(.) is the matrix of partial derivatives. Supposing that the remainder term is small,
this equation can be rewritten as

√
n(Θ̂n −Θ) ≈ [I −∇gn(Θ)]

−1√n(gn(Θ)−Θ).

Taking bootstrap equivalents at both sides and estimating the matrix [I −∇gn(Θ)]−1 by [I −∇gn(Θ̂n)]−1 yields
√
n(Θ̂∗n − Θ̂n) ≈ [I −∇gn(Θ̂n)]

−1√n(g∗n(Θ̂n)− Θ̂n). (10)

For each bootstrap sample, we can calculate the right-hand side of this equation instead of the left-hand side. Hence, we
approximate the actual estimate in each sample by computing the function g∗n in Θ̂n and then apply a linear correction given
by [I −∇gn(Θ̂n)]−1.
We now apply this procedure to the multivariate GS-estimator. We can rewrite the estimating equations (3) and (4) as

B̂n = An(B̂n, Σ̂n)−1Bn(B̂n, Σ̂n)
Σ̂n = Vn(B̂n, Σ̂n)+ wn(B̂n, Σ̂n)Σ̂n

where

An(B, C) =
∑
i<j

u(dij)(ui − uj)(ui − uj)T

Bn(B, C) =
∑
i<j

u(dij)(ui − uj)(yi − yj)
T

Vn(B, C) =
1( n
2

)
k

∑
i<j

qu(dij)(yi − yj − B
T(ui − uj))(yi − yj − B

T(ui − uj))T

wn(B, C) =
1( n
2

)
k

∑
i<j

w(dij)
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Table 3
Expected upper breakdown values for FRB using maximal breakdown GS-estimators

p = 2, q = 1 p = 8, q = 2
n 10 30 50 100 20 30 50 100

Q ∗0.05 εEn 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Q ∗0.005 εEn 0.30 0.50 0.50 0.50 0.40 0.50 0.50 0.50

withw(t) = ρ(t)− ρ ′(t)t . Write

Θ :=

(
vec(B)
vec(Σ)

)
, Θ̂n :=

(
vec(B̂n)
vec(Σ̂n)

)
,

and for any matrices B and C , put

gn

(
vec(B)
vec(C)

)
:=

(
vec(An(B, C)−1Bn(B, C))
vec(Vn(B, C)+ wn(B, C)C)

)
.

The expression for the matrix ∇gn(.) of partial derivatives can be found in the technical report [28].
Now, for a bootstrap sample {((u∗i )

T, (y∗i )
T)T, i = 1, . . . , n}we have that

g∗n(Θ̂n) =
(
vec(A∗n(B̂n, Σ̂n)

−1B∗n(B̂n, Σ̂n))
vec(V∗n(B̂n, Σ̂n)+ w

∗

n(B̂n, Σ̂n)Σ̂n)

)
where A∗n , B

∗

n , V
∗

n and w
∗
n are the bootstrap versions of the quantities An, Bn, Vn and wn, that is with (u

T
i , y

T
i )
T replaced by

((u∗i )
T, (y∗i )

T)T. Thus, in order to get the values of
√
n(Θ̂∗n − Θ̂n) for each bootstrap sample, we calculate g∗n(Θ̂n), apply

the linear correction given by the matrix of partial derivatives and use approximation (10). We use casewise resampling
to generate the bootstrap samples, which means that we draw with replacement from the observations {(uTi , y

T
i )
T, i =

1, . . . , n}.
We now focus on confidence intervals resulting from the FRB procedure. We investigate the robustness of the bootstrap

confidence interval by deriving the breakdown point of bootstrap quantile estimates. For a statistic Tn, and t ∈ [0, 1], let Q ∗t
denote the tth quantile of the bootstrap sample distribution of T ∗n :

Q ∗t = min
{
x :
1
R
× #{T ∗jn ≥ x; j = 1, . . . , R} ≤ t

}
where R is the number of bootstrap samples drawn. Singh [37] defined the upper breakdown point of a statistic as
the minimum proportion of asymmetric contamination that can carry the statistic over any bound. The expected upper
breakdown point of the bootstrap quantile Q ∗t is defined as the minimum proportion of asymmetric contamination that is
expected to be able to carry Q ∗t over any bound, where the expectation is taken over the distribution of drawing R samples
with replacement. For the FRB, if we look at the pairwise differences of the observations in a bootstrap sample, then this
sample of differences must contain at least p differences of two good observations. Hence, we need in the bootstrap sample
at least cp good observations such that

( cp
2

)
≥ p to obtain at least p differences of good observations among the differences of

the bootstrap sample. An easy calculation yields cp = d 12 +
1
2

√
1+ 8p e. Let B(n, δ) be the number of distinct non-outlying

observations in a resample of size n, drawn with replacement from a sample of size nwith a proportion δ of outliers.

Theorem 4. Let Zn ⊂ Rp+q+1 and assume that the data satisfies Condition 1. Let ε∗n be the breakdown point of a GS-estimate B̂n.
Then the expected upper breakdown point of the t-th fast bootstrap quantile for any regression parameter Bjk, j = 1, . . . , p; k =
1, . . . , q is given bymin(ε∗n , ε

E
n ) where

εEn = inf{δ ∈ [0, 1] : P(B(n, δ) < cp) ≥ t}.

Table 3 lists values for εEn for different dimensions and samples sizes, for the GS-estimator with maximal breakdown point.
Two different quantiles Q ∗0.05 and Q

∗

0.005 are considered, which can, respectively, be used to construct 90% and 99% percentile
confidence intervals.We see that only for the smallest sample sizes the expected upper breakdown point for the FRB is lower
than 50%, in all other cases the maximum breakdown point is reached.
We now show that the FRB converges to the same limiting distribution as the GS-estimator. We need the following

assumptions on ρ:
(A.1) The following functions are bounded and almost everywhere continuous:

ρ ′(x)
x
,
ρ ′′(x)
x2
−
ρ ′(x)
x3

,
ρ ′′′(x)
x3
− 3

ρ ′′(x)
x4
+ 3

ρ ′(x)
x5

, ρ ′′(x) and
ρ ′′′(x)
x

.

(A.2) EG×G[
ρ′(d)
d (u1 − u2)(u1 − u2)T]−1 exists.
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Theorem 5. Let ρ be a loss function satisfying (A.1). Let (B̂n, Σ̂n) be the multivariate GS-estimators and assume that B̂n
P
→B

and Σ̂n
P
→Σ . Then, given that assumption (A.2) is satisfied, the distributions of

√
n(B̂∗n−B̂n) and

√
n(Σ̂∗n−Σ̂n) convergeweakly

to the same limit distributions as those of
√
n(B̂n − B) and

√
n(Σ̂n − Σ), respectively, conditional on the first n observations

and along almost all sample sequences.

6.2. Simulation results

We investigate the performance of confidence intervals for the regression coefficients based on FRB. Simulations were
performed for sample sizes n = 30, 50, 100 and 200 for amultivariate regressionmodel with p = 4 and q = 5. The predictor
variables were generated from a multivariate normal distribution Np(0, Ip). The true value of the parameter B was set to
1p,q, the p× qmatrix having 1 for each entry. We consider the following simulations schemes:

• normal errors: generated from Nq(0, Iq)
• long-tailed errors: generated from a multivariate Student distribution with 3 degrees of freedom (T3)
• vertical outliers: a proportion 1 − δ of the errors is generated from Nq(0, Iq), and a proportion δ generated from

Nq(5
√
χ2q,.991q,1, 1.5Iq), for δ = 0.15 and δ = 0.25

• bad leverage points: a proportion 1 − δ of the errors is generated from Nq(0, Iq), and a proportion δ of the responses
generated fromNq(−101q,1, 10Iq)with corresponding predictors replaced by predictors generated fromNp(101p,1, 10Ip),
for δ = 0.15 and δ = 0.25.

We computed both the 25% and 50% GS-estimators for 1000 data sets generated as described above and applied the FRB
procedure with B = 1000 recalculated values (B̂∗n , Σ̂

∗
n ).

Bootstrap confidence intervals for the componentsBjk were constructed using the bias corrected and accelerated (BCA)
method (see e.g. [38]). The bootstrap intervals are compared with confidence intervals based on the asymptotic normality
of the GS-estimator. The latter 100(1− α)% confidence intervals are of the form[

(B̂n)jk − Φ
−1
(
1−

α

2

)√
V̂jk/n, (B̂n)jk + Φ−1

(
1−

α

2

)√
V̂jk/n

]
where V̂jk denotes the empirical version of the asymptotic variance (EASV) of the (j, k)-th component of B̂n. The estimates
V̂jk are obtained by replacingΣ by Σ̂n, replacing F0 by the empirical distribution of the vectors Σ̂

−1/2
n (yi− B̂Tnui), and finally

replacingΣu by the corresponding sample moment.
Fig. 1 shows the coverage for 95% confidence intervals computed by FRB and EASV. From Fig. 1 we clearly see that

the coverage of the EASV-based intervals is generally lower than 95%. As the sample size grows, the EASV-based intervals
converge to a 95% coverage, except in the case of bad leverage points. The FRB performs better than the EASV method. For
small sample sizes the FRB is generally somewhat conservative except for bad leverage points. However, also in that case
the coverage converges quickly to 95%when the sample size increases. Besides the coverage we also considered the average
length of the intervals and found that the length of the FRB interval is comparable to the length of the intervals based on the
EASV (for details see the technical report [28]).

7. Example

School data

This example considers data of n = 70 school sites in the US [39]. We fit a multivariate regression model with 3
response variables: total reading score measured by theMetropolitan Achievement Test, total mathematics score measured
by the Metropolitan Achievement Test and the Coopersmith self-esteem inventory. There are 5 explanatory variables:
education level ofmother, highest occupation of a familymember, number of parental visits to the school, parent counseling
concerning school-related topics and the number of teachers at the school. The model parameters were estimated with the
least squares estimator andwith 50% breakdownGS-estimator.We considered amodelwith intercept. For the GS-estimator,
the intercept was estimated afterwards by applying an efficient robust estimator of multivariate location on the residuals
of the GS-estimator yi − B̂tnui, for i = 1, . . . , n. An appropriate choice is the M-type estimator of location of [40]. This
estimator is highly robust and highly efficient but requires a preliminary estimate of the scatter matrix. The GS-estimator,
however, delivers a residual scatter matrix estimate of the residuals, along with the slope estimator, which we then use in
the procedure of [40].
The diagnostic plots in Fig. 2 show the Mahalanobis distances of the residuals versus the Mahalanobis distances of

the explanatory variables (see also [20]). The left panel presents this plot for the least squares estimator, the right panel
for the multivariate GS. For the diagnostic plot based on the robust GS, the Mahalanobis distances are computed using
the robust GS-estimator of Σ , and are therefore called robust distances. The horizontal and vertical lines correspond,
respectively, to

√
χ2q,.975 and

√
χ2p,.975, and enable us to classify data points into regular observations, vertical outliers,
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Fig. 1. Coverage for 95% confidence intervals, for FRB (–) and EASV (– –): p = 4; q = 5.

good and bad leverage points. The least squares estimator detects one small vertical outlier and 5 small to moderate
good leverage points. On the other hand, the GS-estimator reveals one very large bad leverage point (59), two moderate
to large bad leverage points (35 and 44) and two moderate to large vertical outliers (12 and 21). Moreover, there are
at least five good leverage points (10, 67, 1, 66, 50). The least squares estimator is thus clearly attracted by the bad
leverage points. Table 4 gives 95% confidence intervals, computed with the fast and robust bootstrap discussed in Section 6,
for the slope matrix based on S- and GS-estimates. The confidence limits using GS-estimates are in bold whenever
this interval is shorter than the corresponding interval based on S-estimates. We see that for almost all parameters
the GS-estimates yield more precise confidence intervals. This is without surprise, since GS is in general more efficient
than S.
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Fig. 2. Diagnostic plots for the school data; (a) Least squares estimator; (b) 50% breakdown GS-estimator.

Table 4
95% confidence limits for the school data based on S- and GS-estimates

S-estimate Lower Upper GS-estimate Lower Upper

B11 0.109 −0.064 0.265 0.112 −0.052 0.267
B21 4.441 1.660 6.826 4.542 1.980 6.980
B31 0.056 −0.523 0.571 0.019 −0.562 0.490
B41 −0.637 −1.150 −0.202 −0.632 −1.082 −0.219
B51 −0.128 −0.591 0.107 −0.129 −0.513 0.155
B12 0.057 −0.161 0.228 0.053 −0.158 0.223
B22 4.952 2.374 7.913 5.131 2.444 8.304
B32 0.141 −0.625 0.798 0.094 −0.639 0.746
B42 −0.726 −1.295 −0.261 −0.726 −1.190 −0.282
B52 −0.147 −0.575 0.071 −0.147 −0.522 0.084
B13 −0.021 −0.070 0.027 −0.021 −0.065 0.025
B23 1.573 0.884 2.385 1.602 0.861 2.444
B33 0.270 0.099 0.476 0.258 0.075 0.437
B43 0.013 −0.240 0.232 0.018 −0.211 0.223
B53 0.041 −0.049 0.132 0.039 −0.053 0.126

The GS-estimator can also be used as a high-breakdown scatter estimator in a multivariate location-scale model, taking
p = 0 in model (1). Afterwards the location vector can be estimated using the robust and efficient M-estimator of [40]. We
illustrate this on an example of the Forbes data set in the technical report [28].

8. Conclusion

In this paper, we discussed generalized S-estimators, i.e. S-estimators applied to the pairwise differences of the
observations, in the multivariate regression context. We showed that they maintain the same good properties as in the
univariate case, such as a high breakdown point and a higher efficiency than the multivariate regression S-estimators. To
compute the GS-estimator, we constructed an algorithm based on improvement steps similar as in the fast S-algorithm for
univariate regression. Furthermore we developed a fast and robust bootstrap method for the multivariate GS-estimators to
obtain robust inference for the regression slopes. The example illustrated the robustness and efficiency of the GS-estimator
and its corresponding bootstrap inference.
GS-estimators estimate the regression slopes and the residual covariance matrix without needing to estimate the

intercept. In the special case of the multivariate location-scale model, this implies that we can estimate the scatter matrix
without needing to estimate the location of the observations. As illustrated in the example, the intercept can easily be
estimated afterwards by using the efficient and robust M-estimator of multivariate location of [40], using the residual
covariance matrix of the GS-estimator as an initial estimator. In fact, similarly as for MM-estimators [11,41] one can also
consider to re-estimate the regression slopes using a multivariate regression M-estimator based on an initial GS scatter
matrix estimate. However, such an M-step is intended to increase the low efficiency of the initial estimator. Since GS-
estimators already have a fairly high efficiency (Table 1),we do not expect that theM-step yieldsmuch further improvement.
Finally, let us stress that all the theoretical results obtained in this paper also apply to the multivariate location-scale

model, the latter being a special case of the multivariate regression model. The properties of the GS-estimator were not yet
investigated in the multivariate location-scale model. The major advantage of the GS-estimators of scatter with respect
to most existing robust estimators of scatter is that they have the independence property. Hence, as discussed in the
introduction, they are well suited for independent component analysis, and present a high breakdown alternative for the
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estimators considered by [6]. While the GS-estimators have several advantages with respect to the regular S-estimator, in
particular the independence property, they also have a shortcoming. Since the number of pairwise differences is of the order
n2, GS-estimators require much more computation time for large sample sizes. For smaller sample sizes, the computation
time remains reasonable. For example, for the School data we analyzed in Section 7, computation of the GS-estimator
requires 21.33 s (compared to 1.72 s for the S-estimator),which is still feasible. Constructing a faster algorithm for computing
GS-estimators is a topic for further research.
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