
Theoretical Computer Science 410 (2009) 1401–1412

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Note

A note on models for graph representationsI

Amos Korman, Shay Kutten ∗
Information Systems Group, Faculty of IE&M, The Technion, Haifa, 32000, Israel

a r t i c l e i n f o

Keywords:
Distributed algorithms
Informative labeling schemes
Compact routing schemes
Dynamic networks

a b s t r a c t

This paper is intended more to ask questions than give answers. Specifically, we consider
models for labeling schemes, and discuss issues regarding the number of labels consulted
vs. the sizes of the labels.
Recently, quite a few papers studied methods for representing network properties by

assigning informative labels to the vertices of a network. Consider a graph function f onpairs
of vertices (for example, f can be the distance function). In an f -labeling scheme, the labels
are constructed in such a way so that given the labels of any two vertices u and v, one can
compute the function f (u, v) (e.g. the graph distance between u and v) just by looking at
these two labels. Some very involved lower bounds for the sizes of the labels were proven.
Also, some highly sophisticated labeling schemes were developed to ensure short labels.
In this paper, we demonstrate that such lower bounds are very sensitive to the number

of vertices consulted. That is, we show several constructions of such labeling schemes that
beat the lower bounds by largemargins. Moreover, as opposed to the strong technical skills
that were needed to develop the traditional labeling schemes, most of our schemes are
almost trivial. The catch is that in ourmodel, one needs to consult the labels of three vertices
instead of two. That is, a query about vertices u and v can access also the label of some third
vertexw (w is determined by the labels of u and v). More generally, we address the model
in which a query about vertices u and v can access also the labels of c other vertices. We
term our generalized model labeling schemes with queries.
The main importance of this model is theoretical. Specifically, this paper may serve as a

first step towards investigating different tradeoffs between the amount of labels consulted
and the amount of information stored at each vertex. As we show, if all vertices can be
consulted then the problem almost reduces to the corresponding sequential problem. On
the other hand, consulting just the labels of u and v (or even just the label of u) reduces
the problem to a purely distributed one. Therefore, in a sense, our model spans a range of
intermediate notions between the sequential and the distributed settings.
In addition to the theoretical interest, we also show cases that schemes constructed

for our model can be translated to the traditional model or to the sequential model, thus,
simplifying the construction for those models as well. For implementing query labeling
schemes in a distributed environment directly, we point at a potential usage for some new
paradigms that became common recently, such as P2P and overlay networks.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Background:Network representations play amajor role inmanydomains of computer science, ranging fromdata structures,
graph algorithms, and combinatorial optimization to databases, distributed computing, and communication networks. In

I A preliminary version of this paper was presented in SIROCCO’2007.
∗ Corresponding author. Tel.: +972 4 829 4505; fax: +972 4 829 5688.
E-mail addresses: pandit@tx.technion.ac.il (A. Korman), kutten@ie.technion.ac.il (S. Kutten).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.10.036

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82563864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:pandit@tx.technion.ac.il
mailto:kutten@ie.technion.ac.il
http://dx.doi.org/10.1016/j.tcs.2008.10.036

1402 A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412

many traditional network representations, the names or identifiers given to the vertices reveal no useful information, and
they serve only as pointers to entries in the data structure, which form a global representation of the network. In some
cases, the identifiers do convey additional information, for example, one can often deduce the geographical location of
phone subscribers from their phone numbers; sometimes, one can deduce the organization to which a vertex belongs from
the vertex’s IP number.1 Recently, quite a few papers studied methods for representing network properties by assigning
informative labels to the vertices of the network (see e.g., [5,7,16,18,24]).
Informally, informative labeling schemes are schemes in which every vertex is assigned a label that stores some

information. Later, the labels of some vertices are used to compute a function f of these vertices (e.g. the graph distance
between two such vertices). The idea is to compute the function f (u, v)without consulting the rest of the graph (e.g., in the
distance case, there exists an algorithm that gets as an input only the labels of u and v and outputs the distance of u and
v). Some very involved lower bounds for the sizes of the labels were proved. (Of course, it is trivial to compute any graph
function using labels that are large enough, for example, if every label includes the description of the whole graph it is easy
to compute from even one label the distance of every two vertices). Also, some highly sophisticated labeling schemes were
developed to ensure small labels.
In this paper, we introduce a natural generalization of the above model. The idea is to distribute the global information

(relevant to f) to the vertices, in such a way that f (u, v) can be inferred by inspecting not only the labels of u and v but
possibly the labels of c other vertices. That is, given the labels of u and v, we first find c other vertices and then consult their
labels to derive f (u, v). We term our generalized model c-query labeling schemes. As in the traditional labeling schemes
model, we evaluate c-query labeling schemes by the maximum number of bits stored in a label.
Motivations: The main point of this model is theoretical. In particular, this paper may serve as a first step towards
investigating different tradeoffs between the number c of labels consulted and the amount of information stored at each
vertex. As we show later, if all the vertices can be consulted then the problem reduces to a sequential (non-distributed) one.
On the other hand, consulting just the labels of u and v (or even just the label of u) yields a distributed algorithm. Therefore,
in a sense, our model spans a range of intermediate notions between the sequential and the distributed settings, one for
each value of c.
We note that most of the constructions given in this paper, calculate f (u, v) by inspecting the labels of u and v, and

only one additional vertex w (i.e., 1-query labeling schemes). As we show, increasing the storage accessed by the query
by a constant factor (that is, by vertex w above) turns out to reduce the label size significantly. As opposed to the strong
technical skills that were needed to develop the traditional labeling schemes, most of our schemes are almost trivial. Still,
these 1-query labeling schemes beat the lower bounds of the corresponding traditional labeling scheme by large margins.
This demonstrates that the very involved lower bounds in the traditional setting of labeling schemes, are very sensitive to
the number of vertices consulted.
The fact that constructing query labeling schemes is sometimes easier, can help to identify the source of the difficulty

in constructing labels in the traditional model (with no queries). Moreover, the simplicity of the design of labeling schemes
with queries can sometimes help to construct labeling schemes for the traditional model. This can be done in two steps:
first design the simple scheme with queries, and then ‘‘simulate’’ this scheme in the traditional model. This method is
demonstrated in this paper, by considering the routing function in trees. (In our example, the ‘‘simulation’’ had some
associated cost, which made the resulting scheme work for an approximation routing scheme, rather than for the exact
routing scheme we would have liked).
The field of informative labeling schemes has applications also in the sequential setting (e.g., [7,24]). That is, the short

labels are used in order to save on the memory space and the time used for representing the graph and answering different
inquiries regarding it. Labeling schemes with queries can be used for the same purpose too. Note, that in the sequential
setting, if the labels of u and v dictate that the label ofwmust be consulted, then it is easy to accessw. Therefore, the notion
of labeling schemes with queries may be found particularly useful for the sequential setting.
In a distributed implementation, however, one needs to address the question of how to access the labels of the additional

consulted vertices (e.g., of w mentioned above). We point at some feasible directions for doing this in certain cases. For
example, in the case of the routing scheme we use, each consulted vertex w is a neighbor of the consulted vertex u, and
therefore, w can be accessed relatively easy. In fact, it may be easier for u to access w than to access its own secondary
memory, see, for example, [25].
Distributed implementations may also be feasible in the context of overlay networks (including many Peer to Peer

networks), see, e.g. [17]. A component of an overlay network, e.g. a link, may bemapped into parts of an underlying network,
e.g. into a longer route. For example, in the application layer network of [17], a link is mapped into a TCP connection of the
Internet. There, it is often the case that knowing the identifier of a vertex is enough to establish a TCP connection to it, and
then, to access it.
Note, that we do not require that u andw interact. All u needs is the label ofw, whichmay bemore easily accessible than

w itself. For example, the label may be available in some cache. Systems that follow a similar approach are used in practice.
For example, in the Domain Name Server system of the Internet, a vertex is given some designer name of an address (e.g.,
ie.technion.ac.il, is the designer name of the vertex whose fixed name is 132.68.160.4) [11]. A vertex uwho wishes to route

1 We use the term vertex to represent a network node, for consistency with the rest of the paper where we use graph theoretic terms.

A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412 1403

to ie.technion.ac.il first consults a third vertexw that is one of its domain name servers. Vertex umay then get as an answer
the fixed name 132.68.160.4. Alternatively, vertex u may then receive an answer that refers it to a forth vertex w′ that is
another domain name server. Vertex u can then consultw′.
Various papers suggested generalizations of this DNS approach. For example, there are many discussions of networks

in which each vertex belongs to several clusters, each with its cluster leader. Furthermore, the routing schemes do force
a vertex to consult its cluster leaders. The query algorithm in this case, will tell v which cluster leader w to consult. Such
schemes are even hierarchical- the cluster head may belong to several super clusters, and so forth (see, e.g. [8]).
Putting this even more generally, it makes sense that there exists a restricted subset of the network vertices such that

the query algorithm knows how to consult a vertex in this subset (in the DNS example, the DNS servers were in this set, and
in the clustering schemes, the cluster leaders). See an additional discussion of this issue in Section 7.
Related work: In this subsection, we mostly survey results concerning labeling schemes (with no queries). However, let us,
first, mention some studies concerning overlay and Peer to Peer networks that may serve as a practical motivation for our
work, and for some other studies concerning labeling schemes in a distributed network environment.
In the model for the complexity of algorithms in fast networks of [1], as well in many later studies of overlay networks,

it is argued that the main overhead in accessing a remote vertex w is finding w (which can be done in our constructions
by u using v’s label) and creating the connection to w. Such models are presented explicitly, e.g. in [1,4,17,28], where such
remote accesses are used to construct and use overlay data structures. In overlay networks, a vertex w is addressed by its
contents [15,28]. This may motivate common labeling schemes that assume content addressability. It also motivates the
model used here that assumes it is easy to access the label of a third vertexw as explained above.
Let F be some graph family and let f be a function on pairs of vertices in a graph. In an f -labeling scheme for the graph

familyF , it is required to label all vertices in all graphs inF , such that given the labels of two vertices u and v in some graph
G ∈ F , one can deduce f (u, v).
The concept of f -labeling schemes was implicitly introduced in [9] and then formalized in [24,27]. Labeling schemes

supporting the adjacency and ancestry functions on trees were investigated in [6,7,24].
Distance labeling schemes were studied in [16,26,30]. In particular, [26] showed that the family of n vertex weighted

trees with integer edge capacity of at most W , enjoys a scheme using O(log2 n + log n logW)-bit labels. This bound was
proven in [16] to be asymptotically optimal.
Labeling schemes for routing on trees were investigated in a number of papers (e.g., [12,29,32]), until finally optimized

in [13,14,31]. For the designer-port model, in which the designer of the scheme can enumerate the port numbers of the
vertices freely, [13] shows how to construct a routing scheme using labels of O(log n) bits on n-vertex trees. In the fixed-port
model, in which the port numbers are fixed by an adversary, they show how to construct a routing scheme using labels
of O(log2 n/ log log n) bits on n-vertex trees. In [14], they show that both of these label sizes are asymptotically optimal.
Independently, a routing scheme for trees using (1 + o(1)) log n-bit labels was introduced in [31] for the designer port
model.
Two variants of labeling schemes supporting the nearest common ancestor (NCA) function in trees, appear in the

literature. In an id-NCA labeling scheme, the vertices of the input graph are assumed to have disjoint identifiers (using
O(log n) bits) given by an adversary. The goal of an id-NCA labeling scheme is to label the vertices such that given the labels
of any two vertices u and v, one can find the identifier of the NCA of u and v. Static labeling schemes on trees supporting
the separation level and id-NCA functions were given in [27] using Θ(log2 n)-bit labels. The second variant considered is
the label-NCA labeling scheme, whose goal is to label the vertices such that given the labels of any two vertices u and v, one
can find the label (and not the pre-given identifier) of the NCA of u and v. In [5], they present a label-NCA labeling scheme
on trees enjoyingΘ(log n)-bit labels.
In [18], they give a labeling scheme supporting the flow function on n-vertex general graphs using Θ(log2 n +

log n logW)-bit labels, where W is the maximum capacity of an edge. In the restricted case of weighted trees, [21] gives
a labeling scheme supporting the flow function with label size Θ(log n logW). In [18], the authors also show a labeling
scheme supporting the k-vertex-connectivity function on general graphs using O(2k log n)-bit labels. This upper bound on
the label size was recently improved in [20] to k2 log n.
Most of the research concerning labeling schemes in the dynamic settings, considered the following two dynamicmodels

on tree topologies. In the leaf-dynamic tree model, the topological event that may occur is that a leaf is either added to or
removed from the tree. In the leaf-incremental tree model, the only topological event that may occur is that a leaf joins
the tree.
The study of dynamic distributed labeling schemes was initiated in [23,22]. In [23], a dynamic labeling scheme

is presented for distances in the leaf-dynamic tree model, with O(log2 n) label size and O(log2 n) amortized message
complexity (the number of messages, divided by the number of changes in the network), where n is the current tree size. β-
approximate distance labeling schemes (inwhich, given two labels, one can infer aβ-approximation to the distance between
the corresponding vertices) are presented [22]. Their schemes apply for dynamic models in which the tree topology is fixed
but the edge weights may change.
Two general translation methods for extending static labeling schemes on trees to the dynamic setting are considered

in the literature. Both approaches fit a number of natural functions on trees, such as ancestry, routing, label-NCA, id-NCA
etc. Given a static labeling scheme on trees, in the leaf-incremental tree model, the resulting dynamic scheme in [23],
incurs multiplicative overheads of O(log n) in both the label size and the communication complexity. Moreover, if an upper

1404 A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412

bound nf on the final number of vertices in the tree is known in advance, the resulting dynamic scheme in [23], incurs
multiplicative overheads (over the static scheme) of O(log2 nf / log log nf) in the label size and only O(log n/ log log n) in the
communication complexity. In the leaf-dynamic tree model, there is an extra additive factor of O(log2 n) to the amortized
message complexity of the resulted schemes.
In [19], it is shownhow to construct for any ‘‘reasonable’’ function k(x), a dynamic labeling scheme in the leaf-incremental

tree model, extending a given static scheme, such that the resulting scheme incurs multiplicative overheads (over the static
scheme) ofO(logk(n) n) in the label size andO(k(n) logk(n) n) in the communication complexity. As in [23], in the leaf-dynamic
tree model, there is an extra additive factor of O(log2 n) to the amortized message complexity of the resulted schemes.
In particular, by setting k(n) = nε , dynamic labeling schemes are obtained with the same asymptotic label size as the
corresponding static schemes and sublinear amortized message complexity, namely, O(nε).
In [10], a labeling scheme is given for a subgraph distance between two vertices. Given a graph G, labels of the form L(.)

are computed, such that given L(u), L(v), and L(X), X ⊂ G, one can compute the distance dG−X (u, v). In a sense, this is an
|X |-query scheme for that function, in our terminology.

1.1. Our contribution

We introduce the notion of f -labeling schemes with queries that is a natural generalization of the notion of f -labeling
schemes.
Using this notion, we demonstrate a source of the difficulty in schemes in the traditional model. That is, we demonstrate

that by increasing slightly (from two to three) the number of vertices whose labels are inspected, the size of the labels
decreases considerably. As examples, we show that there exist simple labeling schemes with a single query, supporting the
distance function on n-vertex trees as well as the flow function on n-vertex general graphs, with label size O(log n+ logW),
whereW is the maximum (integral) capacity of an edge. Recall, that the lower bound for labeling schemes without queries,
for each of these problems, is Ω(log2 n + log n logW) [16,18]. We also show that there exists a labeling scheme with one
query supporting the id-NCA function on n-vertex trees with label size O(log n). The lower bound for schemes without
queries is Ω(log2 n) [27]. In addition, we show a routing labeling scheme with one query in the fixed-port model using
O(log n)-bit labels, while the lower bound (see [14]) for the case of no queries is Ω(log

2 n
log log n). We note that all the schemes

we introduce have asymptotically optimal label size for schemes with one query. The matching lower bound proofs are
straightforward in most of the cases, and we present the proofs in the remaining cases.
The above examples concern consulting three vertices instead of two. On the other end of the spectrum, if all the vertices

can be consulted, we show that in a sense, the problem reduces to a sequential one. That is, essentially, the scheme is
designed so that the whole graph structure can be reconstructed by consulting the labels of all vertices, and then any query
is answered in a sequentialmanner. Specifically,we show that for any graph familyF and any (computable) function f , there
exists an (n − 2)-query f -labeling scheme with log |F |n + Θ(log n)-bit labels (though the decoder may not be polynomial).
On the other hand, for any graph familyF andmany functions f (for example, f can be the distance or adjacency functions),
any (n− 2)-query f -labeling scheme must have label size at least log |F |n .
Most of the results are obtained by simple constructions, which strengthens the motivation for this model. Somewhat

more involved are the dynamic schemes. We use model translation methods based on those of [19,23]. However, in order
to save on the message complexity, we needed to make some adaptations to those methods, as well as to one of the static
routing schemes of [13].
As an additional motivation for the model, we show that the study of the queries model can help with the traditional

model too. That is, using ideas from our routing labeling scheme with one query, we show how to construct a 3-
approximation routing schemewithout queries for unweighted trees in the fixed-portmodelwithΘ(log n)-bit labels. Finally,
wedemonstrate the usefulness of themodel for a non-distributed environment by showing that one canpreprocess a general
weighted graph using almost linear space so that flow queries can be answered in almost constant time.

2. Preliminaries

Let G = 〈V , E〉 be a graph, where V is the set of vertices in G and E is the set of edges. We assume that each edge e ∈ E is
associated with a positive integer weight, denoted by ω(e). A graph is called unweighted if all its edges have weight 1.
Let T be a tree with a designated vertex called the root. For a vertex v in T , let deg(v) denote the degree of v. For a non-

root vertex v ∈ T , let p(v) denote the parent of v in T . The depth of a vertex is defined as its weighted distance to the root.
The nearest common ancestor of u and w, NCA(u, w), is the common ancestor of both u and w of maximum depth. Let T (n)
denote the family of all n-vertex unweighted trees. Let T (n,W) (respectively, G(n,W)) denote the family of all n-vertex
trees (resp., connected graphs) with (integer) edge weights bounded from above byW .
Incoming and outgoing links from every vertex are identified by, so called, port-numbers. When considering routing

schemes, we distinguish between the following two variants of port models. In the designer portmodel, the designer of the
scheme can assign the port numbers of each vertex freely (as long as these port numbers are unique), and in the fixed-port
model, the port numbers at each vertex are assigned by an adversary. We assume that each port number is encoded using
O(log n) bits.

A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412 1405

2.1. The functions

We consider the following functions which are applied on pairs of vertices u and v in a graph G = 〈V , E〉. (When the
underlying graph is clear from the context we omit the corresponding subscript).

• Flow: denote by G′ the multigraph obtained by replacing each edge e in G with ω(e) parallel edges of capacity 1. A
set of paths P in G′ is edge-disjoint if each edge appears in no more than one path p ∈ P . Let Pu,v be the collection
of all sets P of edge-disjoint paths in G′ between u and v. Then, the maximum flow between u and v is defined as
flowG(u, v) = maxP∈Pu,v {|P|}, where |P| is the number of paths in P . See [18] for additional details.
• Distance: dG(u, v) is the weighted distance between u and v in G.
• Routing: function: routG(u, v) is the port number at u leading to the next vertex on the shortest path connecting u to v.

If the graph is a tree T then we consider also the following functions:

• Separation level: Sep-levelT (u, v) is the depth of NCA(u, v).
• We distinguish between the following two variants for the NCA function.
– Id-NCA: assume that identifiers containing O(log n) bits are assigned to the vertices by an adversary. Then,
Id-NCAT (u, v) is the identifier of NCA(u, v).

– Label-NCA: assuming each vertex can select its own identifier freely (as long as all identifiers remain unique),
Label-NCAT (u, v) is the identifier of NCA(u, v). (In this case, the identifiers may also be referred to as labels.)

2.2. Labeling schemes and c-query labeling schemes

Let f be a function defined on pairs of vertices of a graph. An f -labeling scheme π = 〈M,D〉 for a family of graphs F is
composed of the following components:

1. Amarker algorithmM that given a graph G ∈ F , assigns a labelM(v) to each vertex v ∈ G.
2. A (polynomial time)decoder algorithm D that given the labelsM(u) andM(v) of two vertices u and v in some graph
G ∈ F , outputs f (u, v).

The most commonmeasure used to evaluate a labeling scheme π = 〈M,D〉, is the label size, i.e., the maximum number
of bits used in a labelM(v) over all vertices v in all graphs G ∈ F .
Let c be some non-negative integer. Informally, in contrast to an f -labeling scheme, in a c-query f -labeling scheme, given

the labels of two vertices u and v, the decoder may also consult the labels of c other vertices (for some given positive integer
c). More formally, a c-query f -labeling scheme ϕ = 〈M,Q ,D〉 is composed of the following components:

1. A marker algorithmM that, given a graph G ∈ F , assigns a labelM(v) to each vertex v ∈ G. This label is composed of
two sublabels, namely,Mindex(v) andMdata(v), where it is required that the index sublabels are unique, i.e., for every
two vertices v and u,Mindex(v) 6=Mindex(u). (In other words, the index sublabels can serve as identifiers.)

2. A (polynomial time) query algorithmQ that given the labelsM(u) andM(v) of two vertices u and v in some graphG ∈ F ,
outputs Q (M(u),M(v))which is a set containing the indices (i.e., the first sublabels) of at most c vertices in G.

3. A (polynomial time) decoder algorithmD that given the labelsM(u) andM(v) of two vertices u and v and the labels of
the vertices specified by Q (M(u),M(v)), outputs f (u, v).

As in the case of f -labeling schemes, we evaluate a c-query f -labeling scheme ϕ = 〈M,Q ,D〉 by its label size, i.e, the
maximum number of bits used in a labelM(v) over all vertices v in all graphs G ∈ F . Note, that since the index sublabels
must be disjoint, any c-query f -labeling scheme on any family of n-vertex graphs must have label sizeΩ(log n).
See Section 7 for an alternative definition for query labeling schemes.

2.3. Routing schemes and β-approximation routing schemes

A routing scheme is composed of (1) a marker algorithmM for assigning each vertex v of a graph G with a labelM(v),
coupled with (2) a router algorithmR whose inputs are the header of a message,M(v), and the labelM(y) of a destination
vertex y. If a vertex xwishes to send a message to vertex y, it first prepares and attaches a header to the message. Then, the
router algorithm x outputs a port of x on which the message is delivered to the next vertex. This is repeated in every vertex,
until the message reaches the destination vertex y. Each intermediate vertex u on the route may replace the header of the
message with a new header and may perform a local computation. The requirement is that the length of the resulting path
connecting x and y is the same as the distance between x and y in G.
For a constant β , a β-approximation routing scheme is the same as a routing scheme except for the following change:

The requirement now is that the length of resulting route connecting x and y is a β-approximation of the distance between
x and y in G.
In addition to the label size, we also evaluate a routing scheme (and a β-approximation routing scheme) by the header

size, i.e., the maximum number of bits used in a header of a message.

1406 A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412

Note, that in a routing scheme, the router algorithm is the equivalent of the decoder algorithm in general labeling
schemes. A c-query routing scheme has a query algorithm too, beside themarker and the router algorithms. Similarly to the
case of the general c-query labeling scheme (where the query algorithm generates an input for the decoder algorithm), in a
c-query routing scheme, the output of the query algorithm is an additional input for the router algorithm.
In the routing example given in this paper, the routing information of each vertex is distributed among its neighbors.

When a vertex, v, wishes to send a message to another vertex, u, its query algorithm tells v which neighbor w to consult.
The neighbor is then consulted to find the next vertex on the route to u. In this case, accessingw in order to consult it is easy
since w is near to v. As mentioned under ‘‘motivation’’ in the introduction, it would be interesting to find useful schemes
wherew is far.

3. Labeling schemes with one query

In this section, we demonstrate that the query model allows for significantly shorter labels. In particular, we describe
simple 1-query labeling schemes with labels that beat the lower bounds in the following well studied cases: for the family
of n-vertex trees, schemes supporting the routing (in the fixed-port model), distance, separation level, and the id-NCA
functions; for the family of n-vertex general graphs, a scheme supporting the flow function. We note that all the schemes
we present use asymptotically optimal labels.
Most of the 1-query labeling schemes obtained in this section use the label-NCA labeling scheme πNCA = 〈MNCA,DNCA〉

described in [5] for the traditional model. There, the marker algorithmMNCA assigns each vertex v a distinct labelMNCA(v)
using O(log n) bits. Given the labels MNCA(v) and MNCA(u) of two vertices v and u in the tree, the decoder DNCA (of the
scheme of [5]) outputs the label of NCA(u, v).

3.1. Id-NCA function in trees

We describe first a trivial 1-query labeling scheme ϕid-NCA = 〈Mid-NCA,Qid-NCA,Did-NCA〉 that demonstrates how easy it
is to support the id-NCA function on T (n) using one query and O(log n)-bit labels. Recall that the lower bound on schemes
without queries isΩ(log2 n) [27].
The idea is to use, in the query model the known fact that solving label-NCA in the traditional model requires only O(logn)

bits. We use that to reduce the label size of id-NCA in the query model. Informally, the idea behind ϕid-NCA is to have the
labels of u and v (specifically, their first sublabels) include the labels given by the label-NCA labeling scheme πNCA(v) of [5].
Hence, their labels are enough for the query algorithm to find the πNCA label of their nearest common ancestorw using the
scheme of [5]. Then, the decoder algorithm (of the new scheme) findsw’s identifier simply in the second sublabel ofw.
To demonstrate the formalism, we now describe the 1-query labeling scheme ϕid-NCA more formally. Given a tree T ,

recall, that it is assumed that each vertex v is assigned a unique identifier id(v) by an adversary and that each such
identifier is composed of O(log n) bits. The marker algorithm Mid-NCA labels each vertex v with the label Mid-NCA(v) =
〈Mindex(v),Mdata(v)〉 = 〈MNCA(v), id(v)〉.2 (MNCA is computed by using the method of the scheme of [5].) Given the labels
Mid-NCA(v) andMid-NCA(u) of two vertices v and u in the tree, the query algorithm Qid-NCA uses the (scheme of [5]) decoder
DNCA applied on the corresponding first sublabels to output the sublabelMindex

id-NCA(w) = MNCA(w), where w is the NCA of v
and u. Given the labelsMid-NCA(v),Mid-NCA(u) andMid-NCA(w) where w is the NCA of v and u, the decoder Did-NCA simply
outputs the second sublabel ofw, i.e.,Mdata

id-NCA(w) = id(w). The fact that ϕid-NCA is a correct 1-query labeling scheme for the
id-NCA function on T (n) follows from the correctness of the label-NCA labeling scheme πNCA. Since the label size of πNCA(v)
is O(log n) and since the identifier of each vertex v is encoded using O(log n) bits, we obtain that the label size of ϕid-NCA is
O(log n). As mentioned before, since the index sublabels must be disjoint, any query labeling scheme on T (n) must have
label sizeΩ(log n). The following lemma follows.

Lemma 3.1. The label size of a 1-query id-NCA labeling scheme on T (n) isΘ(log n).

3.2. Distance and separation level in trees

The above method can be applied for other functions. For example, let us now describe 1-query labeling schemes ϕdist
and ϕsep-level supporting the distance and separation level functions respectively on T (n,W). Both of our schemes have label
sizes Θ(log n + logW). Recall, that any labeling scheme (without queries) supporting either the distance function or the
separation level function on T (n,W) must have label size Ω(log2 n + log n logW) [16,27]. We first show the following
lemma.

Lemma 3.2. Let c be a positive integer constant. Any c-query labeling scheme supporting either the separation level function or
the distance function on T (n,W)must have label sizeΩ(logW + log n).

2 To simlify the notations, we omit the id-NCA subscript when it is clear from the context. For example, we useMindex(v) instead ofMindex
id-NCA(v).

A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412 1407

Proof. Asmentioned above, any query labeling scheme on T (n)must have label sizeΩ(log n). We prove theΩ(logW) part
of the bound for the distance function. The proof for the separation level function is similar.
First note, that we may assume thatW ≥ ((c + 2) · nc)2, otherwise, the lower bound follows trivially, sinceΩ(log n) =

Ω(log n+ logW). Let ϕ = 〈M,Q ,D〉 be any c-query labeling scheme supporting the distance function. Let P be an n-vertex
path rooted at one of its end-vertices r . Let v be the (only) child of r . For every 1 ≤ i ≤ W , let Pi be the path P such that the
edge (r, v) has weight i and all the other edges have weight 1. For every 1 ≤ i ≤ W and every vertex u ∈ Pi, let Li(u) denote
the label given to u by the marker algorithmM applied on Pi. For every 1 ≤ i ≤ W , let Si be the set of c vertices given by the
query algorithm applied on the labels of r and v in Pi, i.e., Si = Q (Li(r), Li(v)). Since there are at most nc sets of c vertices,
there exists a set X ⊂ {1, 2, . . .W } such that |X | ≥ W/nc and for every i, j ∈ X , Si = Sj. Let S denote the set of c vertices
such that for every i ∈ X , Si = S. For each i ∈ X , given the labels Li(r), Li(v) and the labels of the vertices in S assigned byM
applied on Pi, the decoder outputs i, which is the distance between r and v in Pi. Since |X | ≥ W/((c + 2) · nc), there must
exist a vertex in u ∈ {r, v} ∪ S such that the set {Li(u) | i ∈ X} contains W

(c+2)·nc values. Therefore, there must exist an i ∈ X
such that Li(u) contains logW − log((c + 2) · nc) > 1

2 logW bits. The lemma follows. �

We now show how to construct 1-query labeling schemes supporting the separation level and distance functions using
a method that is very similar to the one described in Section 3.1. Recall, that in Section 3.1, the data sublabel of a vertex
contained the vertex’s id. Instead of that id, here, the second sublabel will contain the depth of the vertex in the tree. Recall,
that,

d(v, u) = depth(v)+ depth(u)− 2 · depth(NCA(v, u)). (1)

Based on the above equation, the reader can now construct, as an exercise, a 1-query labeling scheme for the distance
function. This scheme will use the depth in the second sublabel of the Nearest Common Ancestor (and will find the nearest
common ancestor using the first sublabels and the scheme of [5]), in a way that is very similar to the scheme of Section 3.1.
A similar exercise is constructing a scheme for the separation level function.

Lemma 3.3. The label size of a 1-query labeling scheme supporting either the separation-level or the distance function on
T (n,W) isΘ(log n+ logW).

3.3. An example in general graphs (Flow)

We now consider the family G(n,W) of connected n-vertex weighted graphs with maximum edge capacities W , and
present a 1-query flow labeling scheme ϕflow for this family using O(log n + logW)-bit labels. Recall, that any labeling
scheme (without queries) supporting the flow function on G(n,W)must have sizeΩ(log2 n+ log n logW) [18].

Lemma 3.4. The label size of a 1-query flow labeling scheme on G(n,W) isΘ(log n+ logW).

Sketch of the proof: The fact that any 1-query flow labeling scheme on G(n,W) must have label size Ω(log n + logW)
follows using similar arguments as in the proof of Lemma3.2.Wenowshowhow to construct a 1-query flow labeling scheme
on G(n,W) with label size O(log n + logW). As shown in [18], given a graph G ∈ G(n,W) with vertices u1, u2, . . . , un,
one can construct a weighted tree T ∈ T (m,Wn) such that m = O(n), T has n leaves v1, v2, . . . , vn and flowG(ui, uj) =
sep-levelT (vi, vj). Therefore, using our 1-query separation-level labeling scheme ϕsep-level on T , we obtain a 1-query flow
labeling scheme ϕflow with size O(logm+ logWn) = O(log n+ logW). �

3.4. Routing in trees using one query

In this subsection, we demonstrate that the use of queries can decrease the label size for routing schemes too. That is,
we demonstrate a 1-query routing labeling scheme ϕfix in the fixed-port model, using O(log n)-bit labels. (As mentioned
above, any 1-query routing labeling scheme on T (n)must have label sizeΩ(log n).) The query at a vertex v in this scheme
is made to some w that is a neighbor of v (that is, the network graph contains the edge (w, v)). Hence, this scheme even
looks feasible for a distributed implementation.
In [13], they give a routing scheme πdes = 〈Mdes,Ddes〉 for the designer port model in T (n). Given a tree T ∈ T (n), for

every vertex v ∈ T and every neighbor u of v, let portdes(v, u) denote the port number (assigned by the designer of routing
scheme πdes above) leading from v to u. In particular, the port number leading from each non-root vertex v to its parent p(v)
is assigned the number 1, i.e., portdes(v, p(v)) = 1. Given the labelsMdes(v) andMdes(u) of two vertices v and u in T , the
decoderDdes outputs the port number portdes(v,w) at v leading from v to the next vertexw on the shortest path connecting
v and u.
Let T be an n-vertex tree.We refer to a port number assigned by the designer of the routing scheme πdes as a designer port

number and to a port number assigned by the adversary as a fixed-port number. Let port be a port of a vertex in the fixed-port
model. Besides having a fixed-port number assigned by the adversary, we may also consider port as having a designer port
number, the number that would have been assigned to it had we been in the designer port model. For a port leading from
vertex v to vertex u, let portfix(v, u) denote its fixed-port number and let portdes(v, u) denote the designer port number we
would have liked it to have.

1408 A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412

We now describe a 1-query routing labeling scheme ϕfix = 〈Mfix,Qfix,Dfix〉 which operates in the fixed-port model.
Informally, we construct a translation from the known scheme of [13] for designer routing, to the desired fixed routing
scheme. In this translation, amessage forwarding froma vertex to its parent (in the scheme of [13]) is translated to amessage
forwarding to the parent here too. The harder case is when the next vertex on the route (from v to u) is a child z of v. In that
case, the scheme must encode enough information for the router algorithm to be able to choose between the children. The
designer scheme of [13] yields a pointer X to some child of v. That is, had the ports of v been numbered by the designer, the
desired child z would have been in port number X of v. Unfortunately, in the fixed-port model, the port number of v leading
to the desired child z is some Y that our translation needs to find out.
Informally, the marker algorithm prepares a translation table, where each entry gives the fixed port number Y of some

designer port number X . Each entry is given to one childw. To enable the query algorithm to find the right entry, Y is made
a part of the index sublabel of the childw holding the entry. This is enough to identifyw among the children of v. However,
the definition of the query algorithm requires us to identify w among all the vertices (not just the children of v), so, the
unique label of v (in the scheme of [13]) is also added to the index sublabel of every child of v. The entry of the translation
table is put in the data sublabel of the child.
Now, given the labels of above mentioned vertices v and u, the query algorithm finds w, the child of v whose index

sublabel contains X . Then, the decoder algorithm consults w’s data sublabel to find Y . (For the sake of simplicity, in the
formal description, we chosew to be the vertex to which fixed port Y of v leads, that is, we identifiedw abovewith z above).
We now give a formal description of the scheme.
Formal description of the routing scheme:Given a a tree T ∈ T (n) and a vertex v ∈ T , the index sublabel of v is composed
of two fields, namely,Mindex(v) = 〈Mindex

1 (v),Mindex
2 (v)〉 and the data sublabel of v is composed of three fields, namely,

Mdata(v) = 〈Mdata
1 (v),Mdata

2 (v),Mdata
3 (v)〉.

The index sublabel of the root r of T is 〈0, 0〉 and the data sublabel of r isMdata(r) = 〈Mdes(r), 0, 0〉. If v is not the root
then the index and data sublabels of v are,

Mindex(v) = 〈Mdes(p(v)), portdes(p(v), v)〉, Mdata(v) = 〈Mdes(v), portfix(p(v), v), portfix(v, p(v))〉.

Note, thatwe use the designer port number as a part of the label in the fixed-portmodel.Moreover, the designer port number
at the parent is used as a part of the label of the child in the fixed-port model.
Note also, thatMdes(x) must be unique for πdes to be a correct routing scheme. Therefore, if two vertices u and v share

the same first field in the index sublabel then they also share the same parent. Is this case, the second field in the index
sublabels of u and v must be different. It therefore follows that index sublabels are unique.
Given the labelsM(v) andM(u) of two vertices v and u, the decoderD first checks whetherDdes(Mdata

1 (v),Mdata
1 (u)) =

1, i.e., whether the next vertex on the shortest path leading from v to u is v’s parent. In this case, the query algorithm is
ignored and the decoderDfix simply outputsMdata

3 (v)which is the (fixed) port number at v leading to its parent.
Otherwise, ifDdes(Mdata

1 (v),Mdata
1 (u)) 6= 1, then the query algorithm Qfix outputs

〈Mdata
1 (v),Ddes(M

data
1 (v),Mdata

1 (u))〉 = 〈Mdata
1 (v),Ddes(Mdes(v),Mdes(u))〉

which is precisely the index sublabel 〈Mdata
1 (v), portdes(v,w)〉 ofw, wherew is the next vertex on the shortest path leading

from v to u (and a child of v). Therefore, given labelsMfix(v),Mfix(u) and labelMfix(w), the decoderDfix outputsMdata
2 (w)

which is the desired port number portfix(v,w). Since the label size of πdes is O(log n) and since each port number is encoded
using O(log n) bits, we obtain the following lemma.

Lemma 3.5. In the fixed-port model, the label size of a 1-query routing labeling scheme on T (n) isΘ(log n).

4. Examples for applications to traditional models

4.1. An application to traditional routing schemes

By applying the method described above to the traditional model, we now show how to construct a 3-approximation
routing scheme (without queries) on T (n). Our 3-approximation routing labeling scheme πapprox operates in the fixed-port
model, and it has label size and header size which are O(log n). Recall, that any (precise) routing scheme on T (n)must have
label size Ω(log2 n/ log log n) [14]. We note that our ideas for translating routing schemes from the designer port model
to the fixed-port model appear in [3] implicitly. (Still, a 3-approximation routing scheme (without queries) on T (n) is not
constructed there explicitly.)
Informally, the scheme operates as follows. Similar to the query case, we use the known scheme of [13] for designer

routing, and forward a message to the parent if that message would have been forwarded to the parent in the scheme of
[13]. Consider the case where the next vertex on the route (from v to u) is some child s of v. The designer scheme of [13]
yields a pointer X to s. That is, had the ports of v been numbered by the designer, the desired child swould have been pointed
by port number X . Let Y be the corresponding real port number, i.e., the port number leading from v to s. We note that the
port numbers assigned to v by the designer scheme of [13] are numbered from 1 to deg(v), where deg(v) is the degree of
v. Moreover, if v is not the root, then the assigned designer port numbers leading to its children, are numbered from 2 to

A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412 1409

deg(v). We store the value Y in the child w of v whose (fixed) port number is the X − 1’st smallest among the (fixed) port
numbers leading from v to its children. (In the case where v is the root, we store the value Y in the childw of v whose port
number is the X ’th smallest.) Therefore, the message from v can now go tow to obtain Y , go back to v and continue to s via
port number Y . The formal description of the 3-approximation routing labeling scheme πapprox as well as the proof of the
following lemma should be clear now from the informal description. For completeness, they are given in [2].
Lemma 4.1. πapprox is a correct 3-approximation routing scheme on T (n) operating in the fixed port model. Moreover, its label
size and header size areΘ(log n).

4.2. An application for flow queries in a non-distributed environment

As mentioned above, the query model may be found particularly useful for the sequential setting, since there, the issue
of physically finding the consulted vertices does not arise.We now show that general graphs can be preprocessed efficiently
to support flow queries in the sequential setting. (This is not very surprising, since we use NCA, which is known as a strong
tool in sequential processing.)
The label-NCA labeling scheme πNCA = 〈MNCA,DNCA〉 described in [5], answers NCA queries in constant time. By adding

a pointer from each vertex to its weighted depth and using Equation 1, their method can bemodified slightly to support also
separation level (or distance) queries in a weighted tree. The space used for storing these pointers is O(n · max{1, logWlog n })

and the query time will now be O(max{1, logWlog n }), ifW is the maximum weight in the tree. Applying this on the weighted

tree T̃G (of [18]) mentioned above (Section 3.3) yields the following.
Lemma 4.2. Any graphG ∈ G(n,W) can be preprocessed using O(n·max{1, logWlog n }) space such that flow queries can be answered

in O(max{1, logWlog n }) time.

5. Labeling schemes with n − 2 queries

Inspecting two labels, and inspecting three, are approaches that lie on one end of a spectrum. On the other end of the
spectrumwould be a representation for which the decoder inspects the labels of all the vertices before answering ((n− 2)-
query labeling schemes). In this section, we give very simple examples showing that in many case, inspecting all vertices
reduces the problem, in a sense, to a sequential one.
Lemma 5.1. Let Fk(n) be any family of n-vertex graph with degrees at most k. Then, for any (polynomially computable) function
f , there exist an (n− 2)-query labeling scheme on Fk(n) with label size O(k log n).
Proof. Given a graph G ∈ Fk(n), the marker algorithm first assigns each vertex v a unique identifier id(v) in the range
1, 2, . . . n, and then labels each vertex by its own identifier and by the identifiers of all its neighbors. Clearly, the label size
of such a scheme is O(k log n). Given a query about two vertices u and v, the decoder is allowed to consult the labels of all
the vertices, and therefore, can reconstruct in polynomial time, the whole graph G. Then, the decoder simply outputs the
value f (u, v) by calculating it on G. �

The above lemma may clarify why we say that n − 2 queries reduce a problem into a sequential one. This is because
the computation performed by the decoder algorithm is a traditional sequential computation, using the whole graph as an
input.
Lemma 5.2. Let F (n) be any family of n vertex graphs. For any (computable) function f , there exists an (n− 2)-query labeling
scheme on F (n) with label size log |F (n)|n + O(log n) (though the decoder may not be polynomial).
Proof. Let ρ be the number of graphs in F (n), i.e., ρ = |F (n)|. First, enumerate the graphs in F (n) by some arbitrary
method, known to both the marker and the decoder algorithms. Given a graph G ∈ F (n), let i be its index in the above
enumeration. Note, that i can be encoded using dlog |F (n)|e bits.
The marker algorithm distributes the value i among the vertices of G as follows. First, the marker assigns each vertex v

a unique identifier id(v) in the range 1, 2, . . . n. The marker algorithm now splits the encoding of i into at most n portions,
each of size at most d log |F (n)|n e. Let u be the j’th vertex in G, i.e., id(u) = j. The label given to u consists of two fields. The first
field contains j and the second field contains the j’th portion in the encoding of i. We let the first field in each label consist
of precisely dlog ne bits, padding enough zeros to the left of the encoding if necessary. It follows that the label size of the
scheme is log |F (n)|n + O(log n).
Given the labels of all vertices, the decoder can easily reconstruct the index i, and therefore can reconstruct G, since it

knows the enumeration of the graphs in F (n). (Note however, that for this reason, the decoder may not be polynomial.)
Once it has G, the decoder can now answer the desired query. �

The following lemma shows that the above lemma is in a sense, tight.
Lemma 5.3. Let F (n) be any family of graphs on the set of n vertices v1, v2, . . . vn. Let f any function such that for any two
different graphs G1 and G2 in F (n), there exists two vertices vi and vj such that fG1(vi, vj) 6= fG2(vi, vj). (For example, f can be
the distance function or the adjacency function). Then, the label size of any (n− 2)-query f -labeling scheme on F (n)must be at
least log |F (n)|n .

1410 A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412

Proof. For any graph G ∈ F (n), let L(G) denote the concatenation of all the labels given to the vertices in G, i.e.,
L(G) = L(v1) ◦ L(v2) ◦ · · · ◦ L(vn). By the assumption of f , given any two graphs G1 and G2 in F (n), the decoder, given
the labels of all vertices, must be able make a distinction between the two graphs. Therefore, for any two graphs G1 and G2
in F (n), L(G1) 6= L(G2). It follows, that there exists a graph G ∈ F (n) such that |L(G)| ≥ log |F (n)|. Therefore, there exists
a vertex v ∈ Gwhose label consists of at least log |F (n)|n bits. �

6. Dynamic labeling schemes with one query

In this section, we demonstrate that the reduction in the label sizes obtained by introducing a single query in the dynamic
scenario can be similar to the reduction in the static case. The specific dynamic schemes shown here are translations of the
1-query schemes of the previous sections to the limited dynamic models of leaf incremental and leaf dynamic [19,23].
The initial idea is to apply the methods introduced in [19,23], to convert labeling schemes for static networks to work on

dynamic networks too. Unfortunately, we cannot do this directly, since thesemethodswere designed for traditional labeling
schemes and not for 1-query labeling schemes.
The next idea is to perform the conversion indirectly. For that, recall (Section 3), that our 1-query labeling schemes utilize

known components. Those are schemes in the traditional model (with no queries). That is, some utilize πNCA, the label-NCA
labeling scheme of [5] and some utilizeπdes, the routing scheme of [13]. Hence, one can first convert these components to the
dynamic setting. Second, one can attempt to use the resulted dynamic components in a similar way that we used the static
components in Section 3. This turns out to be simple in the cases of the distance, separation level, and id-NCA functions, and
somewhat more involved in the case of the routing function.

6.1. Dynamic 1-query distance, separation-level and id-NCA labeling schemes

Recall, that in our (static) 1-query labeling schemes supporting the distance, separation level, and id-NCA functions, the
index sublabel of each vertex v is simply the label assigned to v by πNCA, the label-NCA labeling scheme of [5], and the data
sublabel of v is either v’s depth or v’s identifier . Therefore, we can maintain the index sublabel of each vertex dynamically,
using π̂NCA, the dynamic label-NCA labeling scheme resulted by applying either Theorem 4.16 of [23] or Theorems 1 and 2
of [19] on πNCA. In addition, the data sublabel of each vertex v can be maintained easily as follows. In case we consider the
id-NCA function, whenever a new vertex v joins the tree and an identifier id(v) is given to v by the adversary, this identifier
is stored at the data sublabel of v. If we consider, instead, either the distance or the separation level functions, the data
sublabel of the root is set to be 0, and whenever a new vertex v joins the tree, it communicates with its parent p(v) and sets
its data sublabel to be M̂data(v) = 1 + M̂data(p(v)), where M̂data(p(v)) is the data sublabel given to p(v) by our dynamic
1-query scheme. Therefore, each vertex v maintains its depth (or identifier) in the its data sublabel, with an extra constant
additive cost to the amortized message complexity of π̂NCA.
The query and decoder algorithms of the resulted dynamic 1-query labeling scheme relate to π̂NCA similarly to the way

the query and decoder algorithms of the corresponding static 1-query scheme relate to πNCA. It follows, that Theorem 4.16
of [23] and Theorems 1 and 2 of [19] imply the claims of Theorem 6.1 regarding the dynamic 1-query labeling schemes
supporting the distance, separation level and id-NCA functions.

6.2. Dynamic 1-query routing labeling schemes for the fixed port model

When trying to translate our 1-query routing labeling scheme to the dynamic settings, we again translate using updates.
We use two translations. Let us, first, explain the use of the translation of [23] in order to prove the second part of
Theorem 6.1. The use of this translation is rather immediate. After it,we explain the use of the translation of [19]. This
somewhat more involved translation application is used to prove the first and third part of Theorem 6.1.
Recall, that in ϕfix, our static 1-query routing labeling scheme, each non-root vertex ‘knows’ the label assigned to its

parent by another static routing scheme πdes (see Section 3). The natural translation is to enable the child to continue to
‘know’ the label of its parent as follows.
Update: whenever the label of a non-leaf vertex changes, it notifies the new label to all its children. When a child receives
such a notification message, it updates its ϕfix label accordingly (see Section 3 for the way the labels of ϕfix are computed).
The main technical issue is to show that the number of such updates is small.
Let us account for themessages used for the above update. This turns out to be relatively cheapwhenusing the translation

method of [23]. The relevant facts about [23] are the following

1. Theorem 4.16 of [23]: Consider the leaf-incremental model. If the final number of vertices nf is known in advance, then

there exists a dynamic routing labeling scheme π̂des for the designer port model, with label size O(
log3 nf
log log nf

) and message

complexity O(log nf
log log nf

).
2. In the above dynamic routing labeling scheme π̂des, the label of a vertex v changes only as a part of changes in all the
vertices of some subtree T ′.

A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412 1411

3. The changes in T ′mentioned in Item6.2 above involveΩ(|T ′|)messages anyhow (not including the newupdatemessages
we are introducing now from v to its children).

4. whenever a vertex v is included in T ′, all its children are included in T ′ as well.

By the above items, the cost of the new update messages can be amortized over the cost of the messages sent anyhow in
T ′ to perform the changes. Hence, we can (1) use the transformation of [23] to obtain the above dynamic routing scheme π̂des
for the designer port model, and then (2) use the new updatemessages to implement ϕfix using π̂des. This yields a dynamic 1-
query routing scheme, enjoying the complexities promised in [23]. This discussion is summarized in part 2 in Theorem 6.1,
for routing. (Recall, that we already proved above the theorem for the other functions).
Other dynamic 1-query routing schemes are claimed in parts 1 and 3 of Theorem 6.1. For these other schemes we use

the translation method (from static to dynamic) of [19]. The adaptation of that translation to the query model turns out to
be somewhat less easy.
We now show how to adapt the schemes of [19] to obtain parts 1 and 3 of Theorem 6.1. For this, we need to know the

list of the cases where messages are sent in the schemes of [19]. This is because wewould like to show that we can amortize
the cost of the new messages we now send, on the messages sent anyhow by the method of [19].
Like in the case of [23],messages in [19] are sentwhenever themain protocol applies some reset protocol on some subtree

T ′. Moreover, each such application involves sending at least |T ′| messages. The labels of vertices may only change due to
such applications. However, unlike the case of [23], here, a subtree T ′ may include some vertex v, but not all of its children.
Recall, that our modifications includes the update: sending messages from v, whose label was changed, to all of its children.
When v has children outside of T ′ (unlike the case of using [23] above), we cannot amortize the cost of the notification
messages on the cost of the messages sent anyhow by the method of [19].
Fortunately, the only vertex in T ′ such that not all of its children are necessarily in T ′ is the root r ′ of T ′. Therefore, the

updatemessages sent by a vertex v ∈ T ′, where v 6= r ′, do not increase the cost of themessages sent anyhow by themethod
of [19].
The only thing left to consider is the case where the root r ′ changes its label in the dynamic labeling scheme given by the

method of [19] applied on πdes, the static routing scheme of [13]. Informally, to bound the number of notification messages
sent by r ′, we make sure that the label of r ′ does not change as a result of applying the reset protocol on T ′ (This is done by
modifying the static routing scheme πdes such that the label of the root is always 〈1〉, no matter which tree it belongs to.)
It, therefore, follows, that the cost of the remaining notification messages can be amortized on the cost of the messages

sent anyhowby [19]. Thenecessarymodifications of the schemes, aswell as amore formal proof of the claims in the following
theorem regarding routing, are full of details, but are not difficult. For completeness, they appear in [2].

Theorem 6.1. Consider the fixed-port model and let k(x) be any function satisfying that k(x), logk(x) x and
k(x)
log k(x) are

nondecreasing functions and that k(Θ(x)) = Θ(k(x)).3 There exist dynamic 1-query labeling schemes on trees supporting the
distance, separation level, id-NCA and routing functions, with the following complexities.

1. In the leaf-incremental tree model, with label size O(logk(n) n · log n) and amortized message complexity O(k(n) · logk(n) n).
2. In the leaf-incremental tree model, if an upper bound nf on the number vertices in the dynamically growing tree is known in

advance, with label size O(log
3 nf

log log nf
) and amortized message complexity O(log nf

log log nf
).

3. In the leaf-dynamic tree model, with label size O(logk(n) n · log n) and amortized message complexity O(
∑
i k(ni) · logk(ni) n

·
MC(π,ni)
ni

)+ O(
∑
i log

2 ni).

7. Conclusion and open problems

In this paper, we raise the question of what happens if one changes themodel for implicit labeling schemes. In particular,
we discuss the use of three labels instead of two. We also demonstrated a more drastic change of considering all n labels.
A natural question is to examine other points in this spectrum, i.e, examine c-query labeling schemes for 1 < c < n. In

particular, itwould be interesting to find non-trivial c-query labeling schemes as variants ofmore complex labeling schemes,
such as the ones in [16,20,30].
There are other dimensions to the above question. For example, by our definition, given the labels of two vertices, the

(at most) c vertices that are chosen by the query algorithm Q are chosen simultaneously. Alternatively, one may define
a possibly stronger model in which these vertices are chosen one by one, i.e., the next vertex is determined using the
knowledge obtained from the labels of previous vertices.
In addition, as mentioned in Section 2.3, it would be interesting to consider query labeling schemes in which the queried

vertices come from a restricted set of vertices. This may be found especially useful in hierarchical routing schemes.

3 The above requirements are satisfied by most natural sublinear functions such as αxε logβ x, α logβ log x etc.

1412 A. Korman, S. Kutten / Theoretical Computer Science 410 (2009) 1401–1412

Acknowledgements

The first author was supported in part at the Technion by an Aly Kaufman fellowship. The second author was supported
in part by a grant from the Israel Science Foundation.

References

[1] I. Cidon, I.S. Gopal, S. Kutten, New models and algorithms for future networks, IEEE Transactions on Information Theory 41 (3) (1995) 769–780.
[2] A. Korman, S. Kutten, A note on models for graph representations. http://ie.technion.ac.il/~kutten/SIROCCO2007.pdf.
[3] I. Abraham, C. Gavoille, D. Malkhi, Routing with improved communication-space trade-off, in: Proc. 18th Int. Symp. on Distributed Computing, DISC,
October 2004.

[4] D. Angluin, J. Aspnes, J. Chen, Y Wu, Y. Yin, Fast construction of overlay networks, in: Proc. SPAA 2005, pp. 145–154.
[5] S. Alstrup, C. Gavoille, H. Kaplan, T. Rauhe, Nearest common ancestors: A survey and a new distributed algorithm, Theory of Computing Systems 37
(2004) 441–456.

[6] S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, T. Rauhe, Compact labeling schemes for ancestor queries, SIAM Journal on Computing 35 (2006) 1295–1309.
[7] S. Alstrup, T. Rauhe, Small induced-universal graphs and compact implicit graph representations, in: Proc. 43’rd annual IEEE Symp. on Foundations of
Computer Science, November 2002.

[8] B. Awerbuch, D. Peleg, Sparse partitions, in: FOCS, 1990, pp. 503–513.
[9] M.A. Breuer, Coding the vertexes of a graph, IEEE Transactions on Information Theory IT-12 (1966) 148–153.
[10] Bruno Courcelle, Andrew Twigg, Compact forbidden-set routing, in: Proceedings of STACS 2007, pp. 37–48.
[11] Domain name system. Wikipedia: http://en.wikipedia.org/wiki/Domain_name_system.
[12] T. Eilam, C. Gavoille, D. Peleg, Compact routing schemes with low stretch factor, in: Proc. 17th Annual ACM Symp. on Principles of Distributed

Computing, ACM Press, May 1996, pp. 11–20.
[13] P. Fraigniaud, C. Gavoille, Routing in trees, in: Proc. 28th Int. Colloq. on Automata, Languages & Prog., in: LNCS, vol. 2076, July 2001, pp. 757–772.
[14] P. Fraigniaud, C. Gavoille, A space lower bound for routing in trees, in: Proc. 19th Int. Symp. on Theoretical Aspects of Computer Science, March 2002,

pp. 65–75.
[15] P. Fraigniaud, P. Gauron, D2B: A de Bruijn based content-addressable network, Theoretical Computer Science 355 (1) (2006) 65–79.
[16] C. Gavoille, D. Peleg, S. Pérennes, R. Raz, Distance labeling in graphs, Journal of Algorithms 53 (1) (2004) 85–112.
[17] M. Harchol-Balter, F.T. Leighton, D. Lewin, Resource discovery in distributed networks, in: Proc. PODC 1999, pp. 229–237.
[18] M. Katz, N.A. Katz, A. Korman, D. Peleg, Labeling schemes for flow and connectivity, SIAM Journal on Computing 34 (2004) 23–40.
[19] A. Korman, General compact labeling schemes for dynamic trees, Journal of Distributed Computing 20 (2007) 179–193.
[20] A. Korman, Labeling schemes for vertex connectivity, in: Proc. 34th Int. Colloq. on Automata, Languages, and Programming, 2007, pp. 102–109.
[21] A. Korman, S. Kutten, Distributed verification of minimum spanning trees, Journal of Distributed Computing 20 (2007) 253–266.
[22] A. Korman, D. Peleg, Labeling schemes for weighted dynamic trees, Information & Computation 205 (2007) 1721–1740.
[23] A. Korman, D. Peleg, Y. Rodeh, Labeling schemes for dynamic tree networks, Theory of Computing Systems 37 (2004) 49–75.
[24] S. Kannan, M. Naor, S. Rudich, Implicit representation of graphs, SIAM Journal on Discrete Math 5 (1992) 596–603.
[25] E.P. Markatos, G. Dramitinos, Remote memory to avoid disk thrashing: A simulation study, in: Proc. MASCOTS 1996, pp. 69–73.
[26] D. Peleg, Proximity-preserving labeling schemes and their applications, in: Proc. 25th Int. Workshop on Graph-Theoretic Concepts in Computer

Science, June 1999, pp. 30–41.
[27] D. Peleg, Informative labeling schemes for graphs, in: Proc. 25th Symp. onMathematical Foundations of Computer Science, in: LNCS, vol. 1893, August

2000, pp. 579–588. SV.
[28] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-addressable network, in: Proc. ACM SIGCOMM 2001, August 2001, pp.

161–172.
[29] N. Santoro, R. Khatib, Labeling and implicit routing in networks, The Computer Journal 28 (1985) 5–8.
[30] M. Thorup, Compact oracles for reachability and approximate distances in planar digraphs, Journal of the ACM 51 (2004) 993–1024.
[31] M. Thorup, U. Zwick, Compact routing schemes, in: Proc. 13th ACM Symp. on Parallel Algorithms and Architecture, Hersonissos, Crete, Greece, July

2001, pp. 1–10.
[32] J. Van Leeuwen, R.B. Tan, Interval routing, The Computer Journal 30 (1987) 298–307.

http://ie.technion.ac.il/~kutten/SIROCCO2007.pdf
http://en.wikipedia.org/wiki/Domain_name_system

	A note on models for graph representations
	Introduction
	Our contribution

	Preliminaries
	The functions
	Labeling schemes and c-query labeling schemes
	Routing schemes and β-approximation routing schemes

	Labeling schemes with one query
	Id-NCA function in trees
	Distance and separation level in trees
	An example in general graphs (Flow)
	Routing in trees using one query

	Examples for applications to traditional models
	An application to traditional routing schemes
	An application for flow queries in a non-distributed environment

	Labeling schemes with n-2 queries
	Dynamic labeling schemes with one query
	Dynamic 1-query distance, separation-level and id-NCA labeling schemes
	Dynamic 1-query routing labeling schemes for the fixed port model

	Conclusion and open problems
	Acknowledgements
	References

