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a b s t r a c t

Based on the extended hyperbolic functions method, we obtain the multiple exact explicit
solutions of the Klein–Gordon–Zakharov equations. The solutions obtained in this paper
include (a) the solitary wave solutions of bell-type for u and n, (b) the solitary wave
solutions of kink-type for u and bell-type for n, (c) the solitary wave solutions of a
compound of the bell-type and the kink-type for u and n, (d) the singular traveling wave
solutions, (e) periodic traveling wave solutions of triangle function types, and solitary
wave solutions of rational function types. We not only rederive all known solutions of
the Klein–Gordon–Zakharov equations in a systematic way but also obtain several entirely
new and more general solutions. The variety of structures of the exact solutions of the
Klein–Gordon–Zakharov equations is illustrated.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the theoretical investigation of the dynamics of strong Langmuir turbulence in plasma physics, various Zakharov
equations take an important role [1,2]. In this paper, we consider the following Klein–Gordon–Zakharov equations:

utt − uxx + u + αnu = 0, (1)

ntt − nxx = β(|u|2)xx, (2)

with u a complex function and n a real function, where α,β are two nonzero real parameters. This system describes the
interaction of the Langmuir wave and the ion acoustic wave in a high frequency plasma [1,2].

In recent years, there have been many works on the qualitative research of the global solutions for the
Klein–Gordon–Zakharov equations (1)–(2) [3–6]. Chen Lin considered orbital stability of solitary waves for the
Klein–Gordon–Zakharov equations in [7]. More recently, some exact solutions for the Zakharov equations are obtained by
using different methods [8–14]. These solutions are not general and by no means exhaust all possibilities. They are only
some particular solutions within some specific parameters choices.

The aim of this paper is to find the new and more general explicit and exact special solutions of the Klein–Gordon–
Zakharov equations (1)–(2). We obtain various of explicit and exact special solutions of the Klein–Gordon–Zakharov
equations (1)–(2) by using the extended hyperbolic functions method presented in [15] by author. These solutions include
that of the solitary wave solutions of bell-type for u and n, the solitary wave solutions of kink-type for u and bell-type for
n, the solitary wave solutions of a compound of the bell-type and the kink-type for u and n, the singular traveling wave
solutions, the periodic traveling wave solutions of triangle functions type, and solitary wave solutions of rational function
type.
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This paper is organized as follows: In Section 2, we present the concrete scheme of the extended hyperbolic functions
method for nonlinear wave equations. In Section 3, the method proposed in Section 2 is used to find the explicit and exact
special solutions of the Klein–Gordon–Zakharov equations (1)–(2).

2. The extended hyperbolic function method

In this section, we briefly review the extended hyperbolic function method, a general method presented in [15] by the
first author of this paper based on the methods given by the first author in [16], Conte et al. in [17], and Zhang et al. in [18].
The solitary wave solutions, the singular traveling wave solutions, periodic wave solutions of triangle function types, and
traveling wave solutions of rational function type are constructed uniformly by this method.

Given nonlinear partial differential equation, for instance, in two variables, as follows:

P(u, ux, ut, uxx, uxt, . . .) = 0, (3)

where P is in general a nonlinear function of its arguments, the subscripts denote the partial derivatives. Let u(x, t) =

u(ξ), ξ = kx + ωt, then Eq. (3) reduces to a nonlinear ordinary differential equation(ODE)

Q(u, u′, u′′, . . .) = 0. (4)

First of all, based on the fact that solitary wave solutions of nonlinear wave equations are generally polynomials of the
sech ξ function, we suppose that the solution of the ODE (4) is of the form

u(x, t) = u(ξ) =

n∑
i=0

ai(v(ξ))
i, (5)

where the coefficients ai (i = 1, 2, . . . , n) are constants to be determined and v = v(ξ) satisfies a nonlinear ordinary
differential equation of first order

v′
=

dv
dξ

= v
√
a + bv2, a, b ∈ R. (6)

The polynomial degree n can be determined via balancing the highest order derivative terms and the nonlinear terms
in ODE. Substituting (5) into (4) and using (6) repeatedly, we obtain a set of nonlinear algebraic equations for ai (i =

0, 1, 2 . . . , n), a, b, k,ω.With the aid of the computer programMathematica orMaple 4 [19],we can solve the set of nonlinear
algebraic equations and obtain all the constants ai (i = 0, 1, 2 . . . , n), a, b, k,ω. Note that the ODE (6) has the following eight
kinds of general solutions

v(ξ) = −

√
a

b
csch

√
a(ξ+ ξ0), a > 0, b > 0, (7a)

v(ξ) =

√
−a

b
sec

√
−a(ξ+ ξ0), a < 0, b > 0, (7b)

v(ξ) =

√
a

−b
sech

√
a(ξ+ ξ0), a > 0, b < 0, (7c)

v(ξ) =

√
−a

b
csc

√
−a(ξ+ ξ0), a < 0, b > 0, (7d)

v(ξ) = exp[
√
a(ξ+ ξ0)], a > 0, b = 0, (7e)

v(ξ) = cos
√

−a(ξ+ ξ0) + i sin
√

−a(ξ+ ξ0), a < 0, b = 0, (7f)

v(ξ) = ±
1

√
b(ξ+ ξ0)

, a = 0, b > 0, (7g)

v(ξ) = ±
i

√
−b(ξ+ ξ0)

, a = 0, b < 0. (7h)

So themultiple exact special solutions of nonlinear partial differential equation (3) are obtained bymaking use of (5) and (7).
Secondly, note that many solitary wave solutions of nonlinear wave equations are polynomials of the tanh ξ function, we

suppose that the ODE (4) has solution of the form (5) and v = v(ξ) satisfies a nonlinear ordinary differential equation of first
order

v′
=

dv
dξ

= a + bv2, a, b ∈ R. (8)

The balance constant n can be obtained by means of the leading order term analysis. Substituting (5) into (4) and utilizing
(8) repeatedly, we obtain a set of nonlinear algebraic equations with respect to ai (i = 0, 1, 2 . . . , n), a, b, k,ω. With the aid
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of the computer programMathematica or Maple 4 [19], we solve the set of nonlinear algebraic equations and obtain all the
constants ai (i = 0, 1, 2 . . . , n), a, b, k,ω. Note that the ODE (8) has the following six kinds of general solutions

v(ξ) = sgn(a)

√
a

b
tan[

√
ab(ξ+ ξ0)], ab > 0, (9a)

v(ξ) = −sgn(a)

√
a

b
cot[

√
ab(ξ+ ξ0)], ab > 0, (9b)

v(ξ) = sgn(a)

√
a

−b
tanh[

√
−ab(ξ+ ξ0)], ab < 0, (9c)

v(ξ) = sgn(a)

√
a

−b
coth[

√
−ab(ξ+ ξ0)], ab < 0, (9d)

v(ξ) = −
1

b(ξ+ ξ0)
, a = 0, b > 0, (9e)

v(ξ) = a(ξ+ ξ0), a ∈ R, b = 0, (9f)

The multiple exact special solutions of nonlinear partial differential equation (3) are obtained by making use of (5) and (9).
In 1992, Conte et al. presented an indirect method to find more new solitary wave solutions of nonlinear partial

differential equations that can be expressed as a polynomial in two elementary functions which satisfy a projective Riccati
equation [17]. In [18], Zhang et al. proposed the hyperbolic function method based upon the fact that many solitary wave
solutions have the format of hyperbolic functions. They expressed the solitary wave solutions of the nonlinear wave
equations as the combination of hyperbolic functions and obtained many new exact solitary wave solutions. In [20], Yan
presented the generally projective Riccati equation method. More recently, Chen and Ding improved the projective Riccati
equation method in [21] and obtained some new solitary wave solutions to the nonlinear evolution equation. In order to
obtain some more general exact solutions, we assume that the solutions of the ODE (4) is of the form

u(x, t) = u(ξ) =

n∑
i=0

ai(f (ξ))
i
+

n∑
j=1

bj(f (ξ))
j−1g, (10)

where the coefficients ai (i = 0, 1, 2 . . . , n) and bj (j = 1, 2, . . . , n) are constants to be determined. The functions f and g
satisfy the coupled Riccati equations

f ′(ξ) = −f (ξ)g(ξ), g′(ξ) = 1 − rf (ξ) − g2(ξ), (11a)

f ′(ξ) = −f (ξ)g(ξ), g′(ξ) = −1 + rf (ξ) − g2(ξ), (11b)

respectively. Furthermore, we can obtain their first integrals as given

g2(ξ) = 1 − 2rf (ξ) + (b2 − a2 + r2)f 2(ξ), (12a)

g2(ξ) = −1 + 2rf (ξ) + (b2 + a2 − r2)f 2(ξ), (12b)

respectively. The balance constant n can be determined by the analysis of the leading order term. Substituting (10) into
(4) and making use of (11)–(12), eliminating any derivative of (f , g) and any power of g higher than one and setting the
coefficients of the different powers of f and g to zero, we obtain a set of nonlinear algebraic equations with all parameters
which are to be determined. With the aid of the computer program Mathematica or Maple 4 [19], we can solve the set of
nonlinear algebraic equations and obtain all the constants ai (i = 0, 1, 2, . . . , n), bj (j = 1, 2, . . . , n), k,ω. Note that the
ODEs (11) have the following special solutions

f (ξ) =
1

a cosh ξ+ b sinh ξ+ r
, g(ξ) =

a sinh ξ+ b cosh ξ
a cosh ξ+ b sinh ξ+ r

, (13a)

f (ξ) =
1

a cos ξ+ b sin ξ+ r
, g(ξ) =

b cos ξ− a sin ξ
a cos ξ+ b sin ξ+ r

, (13b)

respectively. Sowe also obtain themultiple exact special solutions of nonlinear partial differential equation (3) by combining
(10) with (13).

3. New explicit and exact solutions of the Klein–Gordon–Zakharov equations

In this section, we shall apply the method developed in Section 2 to the Klein–Gordon–Zakharov equations (1)–(2) and
give it a series of explicit exact solutions.

To begin with, let us consider the following gauge transformation

u(x, t) = ei(kx+ωt+ξ0)ϕ(x, t), (14)
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where ϕ(x, t) is a real–valued function, k,ω are two real constants to be determined, ξ0 is an arbitrary constant. Substituting
(14) into (1)–(2), we get

ϕtt − ϕxx + (k2 − ω2
+ 1)ϕ+ αnϕ = 0, (15)

ωϕt − kϕx = 0, (16)

ntt − nxx = β(ϕ2)xx. (17)

In view of (16) we suppose

ϕ(x, t) = ϕ(ξ) = ϕ(ωx + kt + ξ1), (18)

where ξ1 is an arbitrary constant. Substituting (18) into (15), we infer that

n(x, t) =
(ω2

− k2)ϕ′′(ξ)

αϕ(ξ)
+

(ω2
− k2 − 1)
α

. (19)

Therefore, we can also assume

n(x, t) = ψ(ξ) = ψ(ωx + kt + ξ1). (20)

Substituting (20) into (17) and integrating the resultant equation twice with respect to ξ, one obtains

ψ(ξ) =
βω2ϕ2(ξ)

k2 − ω2 + C, (21)

where C is an integration constant. Substituting (21) into (15), we get

ϕ′′(ξ) +
(k2 − ω2

+ 1 + αC)

(k2 − ω2)
ϕ(ξ) +

αβω2

(k2 − ω2)2
ϕ3(ξ) = 0 (22)

Let l = (k2−ω2
+1+αC)

(k2−ω2)
,m =

αβω2

(k2−ω2)2
, thus (22) becomes the Liénard equation

ϕ′′(ξ) + lϕ(ξ) + mϕ3(ξ) = 0. (23)

In the following we will discuss how to solve exactly the Liénard equation (23).
Firstly, we suppose that the Liénard equation (23) has a solution of the form (5) with v satisfying Eq. (6). We require b is

different from zero in order to obtain nontrivial real solutions. It is easy to know that n = 1 by the analysis of the leading
order term. So we assume that

ϕ(ξ) = a0 + a1v(ξ) (24)

substituting (24) into (23) and making use of (6), we obtain a set of nonlinear algebraic equations in a0, a1, a, b,m, l

a31m + 2a1b = 0,
3a0a21m = 0,

a1a + la1 + 3a1a20m = 0, (25)
a30m + la0 = 0.

In order to obtain an nontrivial solution, we assume that a1 6= 0. Solving Eq. (25), we have

a0 = 0, a1 = ±

√
−
2b
m

, a = −l, (26)

By combining (7), (14), (18), (20), (21), (24) and (26), we have

Theorem 1. (1) Suppose that (k2 − ω2)(k2 − ω2
+ αC + 1) < 0,αβ > 0, then the Klein–Gordon–Zakharov equations (1)–(2)

has explicit and exact solitary wave solutions of bell-type for u(x, t) and bell-type for n(x, t)

u1(x, t) = ±

√
2(k2 − ω2 + 1 + αC)(k2 − ω2)

−αβω2 sech

√
(k2 − ω2 + αC + 1)

ω2 − k2
(ξ+ ξ1)

 ei(kx+ωt+ξ0), (27)

n1(x, t) = C −
2(k2 − ω2

+ αC + 1)
α

sech2

√
(k2 − ω2 + αC + 1)

ω2 − k2
(ξ+ ξ1)

 , (28)

where k,ω, C are arbitrary constants and ξ = ωx + kt, ξ0, ξ1 are two arbitrary constants. The solution (27) indicates that
u1(x, t) is an envelope solitary wave solution of bell-shape, while (28) shows that n1(x, t) is a solitary wave solution of bell-
shape. The solution n1 is called the Langmuir whistler soliton or the Langmuir pit soliton according to whether n1 is positive
or negative.
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(2) Suppose that (k2 −ω2)(k2 −ω2
+αC+1) < 0,αβ < 0, then the Klein–Gordon–Zakharov equations (1)–(2) has explicit and

exact singular traveling wave solutions for u(x, t) and n(x, t)

u2(x, t) = ±

√
2(k2 − ω2 + 1 + αC)(k2 − ω2)

αβω2 csch

√
(k2 − ω2 + αC + 1)

ω2 − k2
(ξ+ ξ1)

 ei(kx+ωt+ξ0), (29)

n2(x, t) = C +
2(k2 − ω2

+ αC + 1)
α

csch2

√
(k2 − ω2 + αC + 1)

ω2 − k2
(ξ+ ξ1)

 , (30)

where k,ω, C are arbitrary constants and ξ = ωx+kt, ξ0, ξ1 are two arbitrary constants. The singularity will occur at ξ = −ξ1
in solutions of (29)–(30) and it represents that the distortions arise from the Langmuir wave of the ion n and the ion acoustic
wave intensity u due to instability.

(3) Suppose that (k2 −ω2)(k2 −ω2
+αC+1) > 0,αβ < 0, then the Klein–Gordon–Zakharov equations (1)–(2) has explicit and

exact periodic wave solutions of triangle functions type given as

u3(x, t) = ±

√
2(k2 − ω2)(k2 − ω2 + αC + 1)

−αβω2 sec

√
(k2 − ω2 + αC + 1)

k2 − ω2 (ξ+ ξ1)

 ei(kx+ωt+ξ0), (31)

n3(x, t) = C −
2(k2 − ω2

+ αC + 1)
α

sec2
√

(k2 − ω2 + αC + 1)
k2 − ω2 (ξ+ ξ1)

 , (32)

and

u4(x, t) = ±

√
2(k2 − ω2)(k2 − ω2 + αC + 1)

−αβω2 csc

√
(k2 − ω2 + αC + 1)

k2 − ω2 (ξ+ ξ1)

 ei(kx+ωt+ξ0), (33)

n4(x, t) = C −
2(k2 − ω2

+ αC + 1)
α

csc2
√

(k2 − ω2 + αC + 1)
k2 − ω2 (ξ+ ξ1)

 , (34)

where k,ω, C are arbitrary parameters and ξ0, ξ1 are two arbitrary constants. These two sets of solutions suggest that the
periodic unstable distortions arise from the Langmuir wave intensity n and the ion acoustic wave intensity u.

(4) Suppose that k2 − ω2
+ αC + 1 = 0,αβ < 0, then the Klein–Gordon–Zakharov equations (1)–(2) has explicit and exact

solitary wave solutions of bell-type for u(x, t) and bell-type for n(x, t) given as

u5(x, t) = ±

√
2(k2 − ω2)2

−αβω2

1
(ωx + kt + ξ1)

ei(kx+ωt+ξ0), (35)

n5(x, t) = C −
2(k2 − ω2)

α

1
(ωx + kt + ξ1)2

, (36)

where k,ω are arbitrary constants and ξ0, ξ1 are two arbitrary constants.
Secondly, we suppose that the Liénard equation (23) has a solution of the form (5)with v satisfying (8). To obtain nontrivial

real solutions we also require b 6= 0. It is easy to know that n = 1 by the analysis of the leading order term. We assume that

ϕ(ξ) = b0 + b1v(ξ). (37)

Substituting (37) into Eq. (23) and making use of (8), we obtain a set of nonlinear algebraic equations in b0, b1, a, b,m, l

2b1b2 + mb31 = 0,
3mb0b

2
1 = 0,

3mb20b1 + 2ab1b + lb1 = 0, (38)
mb30 + lb0 = 0.

We assume that b1 6= 0 to obtain nontrivial solution. Solving (38), we obtain

b0 = 0, b1 = ±

√
2b2

−m
, a = −

l

2b
, (39)

By combining (9), (14), (18), (20), (21), (37) and (39) , we have
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Theorem 2. (1) Suppose that (k2 − ω2)(k2 − ω2
+ αC + 1) < 0,αβ < 0, then the Klein–Gordon–Zakharov equations (1)–(2)

has explicit and exact periodic wave solutions of triangle functions type as given

u6(x, t) = ±

√
(k2 − ω2)(k2 − ω2 + αC + 1)

αβω2 tan

√
(k2 − ω2 + αC + 1)

2(ω2 − k2)
(ξ+ ξ1)

 ei(kx+ωt+ξ0) (40)

n6(x, t) = C +
(k2 − ω2

+ αC + 1)
α

tan2

√
(k2 − ω2 + αC + 1)

2(ω2 − k2)
(ξ+ ξ1)

 , (41)

where k,ω are arbitrary constants and ξ0, ξ1 are two arbitrary constants.

(2) Suppose that (k2 − ω2)(k2 − ω2
+ αC + 1) < 0,αβ < 0, then the Klein–Gordon–Zakharov equations (1)–(2) has explicit

and exact periodic wave solutions of triangle functions type as given

u7(x, t) = ±

√
(k2 − ω2)(k2 − ω2 + αC + 1)

αβω2 cot

√
(k2 − ω2 + αC + 1)

2(ω2 − k2)
(ξ+ ξ1)

 ei(kx+ωt+ξ0) (42)

n7(x, t) = C +
(k2 − ω2

+ αC + 1)
α

cot2
√

(k2 − ω2 + αC + 1)
2(ω2 − k2)

(ξ+ ξ1)

 , (43)

where k,ω are arbitrary constants and ξ0, ξ1 are two arbitrary constants.

(3) Suppose that (k2 − ω2)(k2 − ω2
+ αC + 1) > 0,αβ < 0, then the Klein–Gordon–Zakharov equations (1)–(2) has explicit

and exact solitary wave solutions of kink-type for u(x, t) and bell-type for n(x, t) as given

u8(x, t) = ±

√
(k2 − ω2 + αC + 1)(k2 − ω2)

−αβω2 tanh[

√
k2 − ω2 + αC + 1

2(k2 − ω2)
(ξ+ ξ1)]ei(kx+ωt+ξ0) (44)

n8(x, t) = C −
k2 − ω2

+ αC + 1
α

2
tanh

√
k2 − ω2 + αC + 1

2(k2 − ω2)
(ξ+ ξ1)

 , (45)

where k,ω, C are arbitrary constants and ξ0, ξ1 are two arbitrary constants. Here the solitary wave solutions n8(x, t) are dark
solitons that means the intensity of Langmuir wave is increased as a whole but is decreased in part.

(4) Suppose that (k2 − ω2)(k2 − ω2
+ αC + 1) > 0,αβ < 0, then the Klein–Gordon–Zakharov equations (1)–(2) has explicit

and exact singular traveling wave solutions for u(x, t) and n(x, t) as given

u9(x, t) = ±

√
(k2 − ω2 + αC + 1)(k2 − ω2)

−αβω2 coth

√
k2 − ω2 + αC + 1

2(k2 − ω2)
(ξ+ ξ1)

 ei(kx+ωt+ξ0) (46)

n9(x, t) = C −
k2 − ω2

+ αC + 1
α

coth2

√
k2 − ω2 + αC + 1

2(k2 − ω2)
(ξ+ ξ1)

 , (47)

where k,ω, C are arbitrary constants and ξ0, ξ1 are two arbitrary constants.

(5) Suppose that k2 − ω2
+ αC + 1 = 0,αβ < 0, then the Klein–Gordon–Zakharov equations (1)–(2) has explicit and exact

solitary wave solutions of bell-type for u(x, t) and bell-type for n(x, t) as given

u10(x, t) = ±

√
2(k2 − ω2)2

−αβω2

1
(ωx + kt + ξ1)

ei(kx+ωt+ξ0), (48)

n10(x, t) = C −
2(k2 − ω2)

α

1
(ωx + kt + ξ1)2

, (49)

where k,ω are arbitrary constants and ξ0, ξ1 are two arbitrary constants.
Now we suppose that the Liénard equation (23) has a solution of the form (10) with f and g satisfying the coupled Riccati

equation (11a) and the first integral (12a). It is easy to know n = 1. So we assume that

ϕ(ξ) = c0 + c1f (ξ) + c2g(ξ), (50)
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where the coefficients c0, c1, c2 are constants to be determined and satisfy c21 + c22 6= 0. Substituting (50) into the Liénard equation
(23) and making use of (11a) and (12a), we can obtain a system of nonlinear algebraic equations with c0, c1, c2, r,m, l

m(c31 + 3c1c22(r
2
+ b2 − a2)) + 2c1(r2 + b2 − a2) = 0,

2c2(r2 + b2 − a2) + m(3c21c2 + c32(r
2
+ b2 − a2)) = 0,

m(3c0c21 + 3c0c22(r
2
+ b2 − a2) − 6c1c22r) − 3c1r = 0

−c2r + 6mc0c1c2 − 2mc32r = 0,

c1 + lc1 + m(3c1c22 + 3c20c1 − 6c0c22r) = 0

lc2 + m(3c20c2 + c32) = 0,

lc0 + m(c30 + 3c0c22) = 0.

(51)

Solving Eq. (51), we get a set of solutions

c0 = 0, c1 = ±

√
a2 − b2 − r2

2m
, c2 = ±

√
−

1
2m

(52)

provided that l = 1
2 , while a, b, and r are arbitrary constants satisfy r2 + b2 − a2 > 0.

We can also obtain another two set of solutions

c0 = 0, c1 = ±

√
2(a2 − b2)

m
, c2 = 0, r = 0 (53)

when l = −1, and

c0 = 0, c1 = 0, c2 = ±

√
−

2
m

, r = 0 (54)

while l = 2. By combining (13a), (50) and (52)–(54) we find that, when l = 1
2 ,m < 0, the Liénard (23) possesses solutions of the

form

ϕ(ξ) = ±

√
a2 − b2 − r2

2m
1

a cosh ξ+ b sinh ξ+ r
±

√
−

1
2m

a sinh ξ+ b cosh ξ
a cosh ξ+ b sinh ξ+ r

, (55)

where a, b, and r are arbitrary constants such that r2 + b2 − a2 > 0,

ϕ(ξ) = ±

√
2(a2 − b2)

m

1
a cosh ξ+ b sinh ξ

(56)

when l = −1, a, b,m satisfies (a2 − b2)m > 0, and

ϕ(ξ) = ±

√
−

2
m

a sinh ξ+ b cosh ξ
a cosh ξ+ b sinh ξ

(57)

when l = 2,m < 0.
Finally,We suppose that the Liénard equation (23) has a solution (50)with f and g satisfying the coupled Riccati equation (11b)

and the first integral (12b). Substituting (50) into (23) and making use of (11b), (12b), one obtains a set of nonlinear algebraic
equations with c0, c1, c2, r,m, l

m(c31 + 3c1c22(b
2
+ a2 − r2)) + 2c1(b2 + a2 − r2) = 0,

2c2(b2 + a2 − r2) + m(3c21c2 + c32(b
2
+ a2 − r2)) = 0,

m(3c0c21 + 3c0c22(b
2
+ a2 − r2) + 6c1c22r) + 3c1r = 0

c2r + m[6c0c1c2 + 2c32r] = 0,

−c1 + lc1 + m(−3c1c22 + 3c20c1 − 6c0c22r) = 0

lc2 + m(3c20c2 − c32) = 0,

lc0 + m(c30 − 3c0c22) = 0.

(58)

Solving Eq. (58), we obtain

c0 = 0, c1 = ±

√
−

b2 + a2 − r2

2m
, c2 = ±

√
−1
2m

, (59)
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provided that l = −
1
2 ,m < 0. We also obtain two solutions

c0 = 0, c1 = ±

√
−2(b2 + a2)

m
, c2 = 0, r = 0, (60)

when l = 1,m < 0, and

c0 = 0, c1 = 0, c2 = ±

√
−2
m

, r = 0, (61)

when l = −2,m < 0. By combining (13b), (50), (59) and (61) , we obtain the solutions of the Liénard equation (23) given as

ϕ(ξ) = ±

√
−

b2 + a2 − r2

2m
1

a cos ξ+ b sin ξ+ r
±

√
−1
2m

b cos ξ− a sin ξ
a cos ξ+ b sin ξ+ r

(62)

when l = −
1
2 ,m < 0, where a, b, r are arbitrary constants such that b2 + a2 − r2 > 0, and

ϕ(ξ) = ±

√
−2
m

b cos ξ− a sin ξ
a cos ξ+ b sin ξ

(63)

when l = −2,m < 0, and

ϕ(ξ) = ±

√
−2(b2 + a2)

m

1
a cos ξ+ b sin ξ

(64)

when l = 1,m < 0, where a, b are arbitrary constants.
From (55)–(57) and (62)–(64) , we have

Theorem 3. (1) The Klein–Gordon–Zakharov equations (1)–(2) has explicit and exact solitary wave solutions of a compound of
kink-type and bell-type for all u(x, t), n(x, t)

u11(x, t)

= ±

√
(a2 − b2 − r2)(k2 − ω2)2

2αβω2

1
a cosh ξ+ b sinh ξ+ r

+

√
(k2 − ω2)2

−2αβω2

a sinh ξ+ b cosh ξ
a cosh ξ+ b sinh ξ+ r

 ei(kx+ωt+ξ0) (65)

n11(x, t) = C −
(k2 − ω2)

2α

[√
r2 + b2 − a2

1
a cosh ξ+ b sinh ξ+ r

+
a sinh ξ+ b cosh ξ

a cosh ξ+ b sinh ξ+ r

]2

, (66)

where k,ω, r, a, b are arbitrary constants such that αβ < 0, r2 + b2 − a2 > 0, 1
2 (k

2
− ω2) + αC + 1 = 0, ξ = ωx + kt + ξ1.

(2) The Klein–Gordon–Zakharov equations (1)–(2) has explicit and exact solitary wave solutions

u12(x, t) = ±

√
2(a2 − b2)(k2 − ω2)2

αβω2

1
a cosh ξ+ b sinh ξ

ei(kx+ωt+ξ0)
 (67)

n12(x, t) = C +
2(b2 − a2)(k2 − ω2)

α

1
(a cosh ξ+ b sinh ξ)2

, (68)

where k,ω, a, b are arbitrary constants such that αβ(b2 − a2) > 0, 2(k2 − ω2) + αC + 1 = 0, ξ = ωx + kt + ξ1.
(3) The Klein–Gordon–Zakharov equations (1)–(2) has explicit and exact solitary wave solutions

u13(x, t) = ±

√
2(k2 − ω2)2

−αβω2

a sinh ξ+ b cosh ξ
a cosh ξ+ b sinh ξ

ei(kx+ωt+ξ0), (69)

n13(x, t) = C −
2(k2 − ω2)

α

[
a sinh ξ+ b cosh ξ
a cosh ξ+ b sinh ξ

]2

, (70)

where k,ω are arbitrary constants such that αβ < 0,ω2
− k2 + αC + 1 = 0, ξ = ωx + kt + ξ1.

(4) The Klein–Gordon–Zakharov equations (1)–(2) has explicit and exact periodic wave solutions of triangle functions type

u14(x, t)

= ±

√
(r2 − b2 − a2)(k2 − ω2)2

2αβω2

1
a cos ξ+ b sin ξ+ r

+

√
(k2 − ω2)2

−2αβω2

b cos ξ− a sin ξ
a cos ξ+ b sin ξ+ r

 ei(kx+ωt+ξ0) (71)
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n14(x, t) = C −
(k2 − ω2)

2α

[ √
b2 + a2 − r2

a cos ξ+ b sin ξ+ r
+

b cos ξ− a sin ξ
a cos ξ+ b sin ξ+ r

]2

, (72)

where k,ω, a, b, r are arbitrary parameters such that αβ < 0, b2 + a2 − r2 > 0, 3
2 (k

2
− ω2) + αC + 1 = 0, ξ = ωx + kt + ξ1.

(5) The Klein–Gordon–Zakharov equations (1)–(2) has explicit and exact periodic wave solutions of triangle functions type

u15(x, t) = ±

√
−2(k2 − ω2)2(a2 + b2)

αβω2

1
a cos ξ+ b sin ξ

ei(kx+ωt+ξ0) (73)

n15(x, t) = −
1
α

−
2(k2 − ω2)(b2 + a2)

α

1
(a cos ξ+ b sin ξ)2

, (74)

where k,ω, a, b are arbitrary constants such that αβ < 0, ξ = ωx + kt + ξ1.
(6) The Klein–Gordon–Zakharov equations (1)–(2) has explicit and exact periodic wave solutions of triangle functions type

u16(x, t) = ±

√
−2(k2 − ω2)2

αβω2

b cos ξ− a sin ξ
a cos ξ+ b sin ξ

ei(kx+ωt+ξ0) (75)

n16(x, t) = C −
2(k2 − ω2)

α

[
b cos ξ− a sin ξ
a cos ξ+ b sin ξ

]2

, (76)

where k,ω, a, b are arbitrary constants such that αβ < 0, 3(k2 − ω2) + αC + 1 = 0, ξ = ωx + kt + ξ1.

4. Summary and conclusions

In summary,we adopt the extendedhyperbolic functionsmethod, to obtainmultiple exact travelingwave solutions of the
Klein–Gordon–Zakharov equations. We obtain some more general solitary wave solutions of the Klein–Gordon–Zakharov
equations. It not only produces the same solutions as originally by [6,7] and [10] but also can pick up what we believe to
be new solutions missed by other authors. The results indicate the Klein–Gordon–Zakharov equations admit multiple exact
traveling wave solutions with two or three arbitrary parameters. The type of exact solitary wave solution is different along
with different value of arbitrary parameters. So we can choose appropriate parameter value to obtain solutions we need
in practical problems. The method can also be employed to solve a large number of other nonlinear evolution equations,
such as nonlinear reaction–diffusion equation, the long-short wave resonance equation, the shallow water wave equation,
Whitham–Broer–Kaup equation, variant Boussinesq equation, double Sine–Gardon equation, Dodd–Bullough–Mikhailov
equation et al. In particular cases, when a = 1, b = 0 in (11a), (12a) and (13a), this method becomes hyperbolic function-
method presented in [17]. In case of a = 0, b = 1 in (11a), (12a) and (13a), we obtain some singular traveling solutions
corresponding to the solitary wave solutions of the Klein–Gordon–Zakharov equations (1)–(2) obtained in case a = 1, b = 0.
We would like to point out that g in Eq. (7) of [20] is in full agreement with f in (13a) of this paper but f in Eq. (7) of [20] is
different from g in (13a) of this paper. It is worthwhile emphasizing that σi (i = 1, 2) in (11) (respectively σi (i = 3, 4) in
(12) of [21] are special cases of f in (13a)) (respectively (13b)) of the present paper but g in (13a) and (13b) of this paper are
more general than τi (i = 1, 2) in (11) and τi (i = 3, 4) in (12) of [21].
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