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ABSTRACT 

Let G be a connected semisimple linear algebraic group defined over an algebraically closed field k and 
P C G a parabolic subgroup without any simple factor. Let H be a connected reductive linear algebraic 
group defined over the field k such that all the simple quotients of  H are of  classical type. Take any 
homomorphism p : P --+ H such that the image of  p is not contained in any proper parabolic subgroup 
of  H. Consider the corresponding principal H-bundle Ep(H) = (G x H) /P  over G/P. We prove that 
Ep (H) is strongly stable with respect to any polarization on G/P. 

I. INTRODUCTION 

Let G be a connected semisimple linear algebraic group defined over an alge- 
braically closed field k. Let P C G be a parabolic subgroup without any simple 
factor. The quotient G/P is a complete variety. The principal P-bundle over G/P 
defined by the quotient map G ~ G/P will be denoted by Ep. 

Let V be a finite dimensional irreducible left P-module. Let Ep (V) = (G x V)/P 
be the vector bundle over G/P associated to the principal P-bundle Ep for the 
P-module V. 

The main theorem in [11] states that the vector bundle Ep(V) is stable with 
respect to any polarization on G/P provided the characteristic of  the field k is 
zero (see [11, p. 136, Theorem 2.4]); the definition of  a stable bundle is recalled 
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in Section 2. A weaker result was proved earlier in [7]. In [11], Umemura asks 
the question whether the above mentioned theorem of [ 11 ] remains valid when the 
characteristic of k is positive (see [ 11, p. 131 ]). 

In [3] it was proved that for any algebraically closed field k the vector bundle 
Ep (V) over G/P is stable with respect to any polarization on G/P, answering the 
question of Umemura affirmatively. In other words, Theorem 2.4 of [11] remains 
valid for all algebraically closed fields. 

Fix a homomorphism 

p:P--+ H, 

where H is a connected reductive linear algebraic group defined over the field k. 
We will assume that the homomorphism p is irreducible. This means that the image 
p(P) is not contained in any proper parabolic subgroup of H. Let Ep(H) = (G x 
H)/P be the principal H-bundle over G/P obtained by extending the structure 
group of the principal P-bundle Ep using the homomorphism p. 

If k = C, then the principal H-bundle Ep(H) is stable with respect to any 
polarization on G/P [2]. It is natural to ask if  this remains valid for other 
algebraically closed fields. 

Assume that all the simple quotients of H are of classical type. We prove that 
for any algebraically closed field k the principal H-bundle Ep(H) over G/P is 
stable with respect to any polarization on G/P (Theorem 4.1). In fact, we prove 
that Ep (H) is strongly stable with respect to any polarization on G/P. 

2. SE MIST A BILITY OF HOMOGENEOUS BUNDLES 

Let k be an algebraically closed field. The characteristic o fk  will be denoted by p. 
Let G be a connected semisimple linear algebraic group defined over the field k. 
Fix a reduced proper parabolic subgroup 

PGG 

without any simple factor. That P is without any simple factor means that the image 
of P in any simple quotient of G is a proper parabolic subgroup. 

Let 

(2.1) Ru(P) C P 

be the unipotent radical. So Ru(P) is a connected normal reduced unipotent 
subgroup of P, and the quotient 

(2.2) L(P) :---- P/Ru(P), 

which is called the Levi quotient, is a reductive linear algebraic group (see [5, 
p. 125]). 

Let H be a connected reductive linear algebraic group defined over the field k. 
Let 

(2.3) p : P ~ H 



be a homomorphism with the property that the image of  P is not contained in any 

proper parabolic subgroup of  H. 
The natural projection G --+ G/P defines a principal P-bundle over the projective 

variety G/P. This principal P-bundle over G/P will be denoted by Ep. Let Ep (H) 
denote the principal H-bundle over G/P obtained by extending the structure group 
of  the P-bundle Ep using the homomorphism p (defined in (2.3)). Therefore, the 
total space of  Ep (H) is the quotient space 

(2.4) Ep(H) = (G x H)/P, 

where the action of any a ~ P sends any (g, h) ~ G x H to (gol, p(ot-1)h) E G x H. 
The right translation action of  H on G x H descends to an action of  H on the 
quotient space Ep(H) in (2.4) making Ep(H) a principal H-bundle over G/P. 
The natural projection G ~ G/P induces a projection of Ep (H) to G/P. 

Let 

(2.5) EL(f) := (G x L(P))/P 

be the principal L(P)-bundle over G/P obtained by extending the structure group 
of  the principal P-bundle Ep using the quotient map P -+ L(P) in (2.2). 

Take a very ample line bundle ~ over G/P, which is also called a polarization. 
The degree of  any line bundle ~ over G/P is defined to be the degree of the 
restriction of  ~ to a smooth complete intersection curve obtained by intersecting 
hypersurfaces of  G/P in the complete linear system for ~ (this does not depend on 
the choice of  the complete intersection curve). The degree of  a vector bundle W 
over G/P is defined to be the degree of  the line bundle A r W, where r = rank(W). 
More generally, the degree of  a arbitrary coherent sheaf W over G/P is defined to 

be 

g0 

where 

degree(l~) = ~ ( - 1 )  i degree(W/), 
i=0 

O ~  W~ 0 ~ . . . ~  Wl ~ W o ~  ~ 0  

is an exact sequence of  coherent sheaves on G/P with each Wi, i ~ [0, £o], a vector 
bundle. If  can shown that degree(W) is independent of the choice of  the exact 
sequence. 

Note that from this definition it follows immediately that if W is a torsion sheaf 
supported on a closed subscheme S c G/P such that the codimension of S is at least 
two, then degree(W) = 0. We also note that the degree of  a coherent W on G/P 
coincides with the intersection number of  cl (W) (the Chern class is considered 
as an element of the Chow group) and dimG/P - 1 hypersurfaces in G/P in the 
complete linear system of  the very ample line bundle ~. 

Let W be a vector bundle defined over a nonempty Zariski open subset U c G/P 
such that the complement (G/P) \ U is of  codimension at least two. Then the direct 



image t .W is a coherent sheaf on G/P, where L: U --+ G/P is the inclusion map. 
By degree(W) we will mean degree(t. W). 

A torsionfree coherent sheaf W over G/P is called stable if  

degree(W ~) degree(W) 
- <  

rank(W') rank(W) 

for every coherent subsheaf W ~ c W with 0 < rank(W ~) < rank(W) (the degree is 
defined by fixing a very ample line bundle on G/P). The torsionfree coherent sheaf 
W is called semistable if  

degree(W') degree(W) 
<~ 

rank(W') rank(W) 

for every coherent subsheaf W ~ of  W of positive rank. It is easy to see that a stable 
sheaf is semistable. 

When the characteristic p of  the field k is positive, a vector bundle W is called 
strongly semistabIe i f  the iterated pull back (Fn)*W is semistable for all n >~ 0, 
where 

(2.6) F: G/P ~ G/P 

is the Frobenius morphism of  G/P; here F ° denotes the identity map of  G/P. 
For notational convenience, if the characteristic p of  k is zero, then F will denote 
the identity map of  G/P. I f  p = 0, then a strongly semistable vector bundle will 
simply mean a semistable vector bundle. Note that this is compatible with the above 
convention on F. 

We will now recall the definition of  a (semi)stable principal bundle; see [8-10]. 
Let G ~ be a connected reductive linear algebraic group defined over the field k 
and E~, a principal G~-bundle over G/P. The G'-bundle E~, is called stable 
(respectively, semistable) i f  for every triple of  the form (U,  U, o-), where 

(i) P~ C G r is a reduced maximal parabolic subgroup, 
(ii) U C G/P is a Zariski open dense subset such that the codimension of  

complement (G/P) \ U is at least two, 
(iii) cr : U --+ (E'~,/P')Iu is a reduction of  structure group over U of  the Gt-bundle 

E~,, to the subgroup P' ,  

the following inequality holds: 

degree(cr*Trd) > 0 

(respectively, degree(o-*Trel) ~> 0), where Trel is the relative tangent bundle for 
the natural projection ~ i Ea, /P --+ G/P and the degree is defined after fixing a 
polarization on G/P (see [9, p. 129, Definition 1.1] and [9, p. 131, Lemma 2.1]). 

Remark  2.1. For any vector bundle W over G/P of  rank n, there is a corre- 
sponding principal GL(n, k)-bundle over G/P defined by the space of  all linear 
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isomorphisms of k en with the fibers of W. It is straight-forward to check that the 
vector bundle W is stable (respectively, semistable) if  and only if  the corresponding 
principal GL(n, k)-bundle over G / P  is stable (respectively, semistable). 

Remark  2.2. Let p : G / --+ G" be a quotient reductive group of G ~ such that the 
kernel of p is contained in the center of G ~. Given any principal GZ-bundle E~, over 
G/P ,  we have the principal G'-bundle UG,(G') over G / P  obtained by extending 
the structure group of E~, using the projection p. It is straight-forward to check 
that the principal G~-bundle E~, is stable (respectively, semistable) if and only if  
the corresponding principal G'-bundle E~, (G')  is stable (respectively, semistable). 
Combining this with Remark 2.1 we conclude that a vector bundle W over G / P  of 
rank n is stable (respectively, semistable) if and only if  the principal PGL(n, k)- 
bundle over G / P  defined by W is stable (respectively, semistablc). 

A principal G'-bundle E~, over G / P  is called strongly stable (respectively, 
n * I strongly semistable) if the iterated pull back ( F )  E~, is a stable (respectively, 

semistable) principal G'-bundle for all n/> 0, where the map F, as before, is the 
Frobenius map in (2.6) when the characteristic of k is positive and it is the identity 
map of  G / P  when the characteristic o fk  is zero. 

Lemma 2.3. The principal L(P)-bundle EL(p), defined in (2.5), is strongly 
semistable with respect to any polarization on G / P. 

The principal H-bundle Ep(H) ,  defined in (2.4), is strongly semistable with 
respect to any polarization on G / P. 

Proof. Take any finite-dimensional left L(P)-module V. Let EL(p)(V) be the 
corresponding vector bundle over G / P  associated to the principal L(P)-bundle 
EL(p). We recall that EL(p)(V) = (EL(p) × V ) /L (P) ;  the action of any g ~ L(P)  
sends any (z, v) ~ EL(p) × V to (zg, g-1 . v). We know that if  the L(P)-module 
V is irreducible, then the vector bundle EL(p)(V) is stable with respect to any 
polarization on G / P  [3, p. 135, Theorem 2.1]. 

Fix a filtration 

(2.7) O= Vo C Vt C ...  C Ve_I C Ve = V 

of the left L(P)-module V such that each successive quotient Vi/Vi-1, 1 <~ i <. ~, is 
an irreducible left L (P)-module. Let EL(e)(Vi), 1 <<. i <. g~, denote the vector bundle 
over G / P  associated to the principal L(P)-bundle EL(p) for the left L(P)-module 
V/. Note that the filtration of L (P)-modules in (2.7) gives a filtration of subbundles 

(2.8) 0 -~ EL(p)(Vo) C EL(p)(V1) C ""  C EL(p)(Vg-1) C EL(p)(Vg) --~ EL(p)(V) 

of the vector bundle EL(p) (V). The quotient vector bundle EL(p) (Vi)/EL(p) (Vi-1) 
is identified in an obvious fashion with the vector bundle associated to the principal 
L(P)-bundle EL(p) for the left L(P)-module Vi/Vi-1. 



Let 

(2.9) Z(L(P)) C L(P) 

denote the subgroup-scheme defined by the center of L(P). Note that Z(L(P)) in 
general is nonreduced; for example, if  L(P) = SL(2, k) and the characteristic of k 
is two, then Z(L(P)) is nonreduced. 

Henceforth in the proof of the lemma we will assume that V satisfies the 
condition that the center Z(L(P)) (defined in (2.9)) acts trivially on V. Since 
Z(L(P)) acts trivially on the L(P)-module Vi/V/-1, the vector bundle 

EL(p)(Vi/Vi-1) = EL(p)(Vi)/EL(p)(Vi-1) 

associated to EL(p) for the L (P)-module V//Vi-1 has the property that its determi- 
nant bundle, namely the line b u n d l e / ~ t o p  EL(p) (Vi / Vi- 1 ) over G /P ,  is isomorphic 
to the trivial line bundle. Indeed, this follows immediately from the fact that 
L(P)/Z(L(P)) does not have any nontrivial character. In particular, we have 

degree(Ea(p)(Vi/Vi-1)) = 0 

with respect to any polarization on G/P. 
Since Vi/Vi-1, 1 ~< i ~ £, is an irreducible L(P)-module, the associated vector 

bundle EL(p)(Vi/Vi-1) is stable [3, p. 135, Theorem 2.1]. Therefore, (2.8) is a 
filtration of subbundles of EL(e)(V) such that each successive quotient is a stable 
vector bundle of degree zero with respect to any polarization on G/P. From this 
it follows immediately that the vector bundle EL(e)(V) is semistable with respect 
to any polarization on G/P (the extension of a semistable vector bundle of degree 
zero by another semistable vector bundle of degree zero is semistable). 

Let FL(p) : L(P) --+ L(P) denote the Frobenius morphism of L(P). As before, 
if  the characteristic of the field k is zero, then FL(p) will denote the identity map 
L(P). For any integer n >~ 0, let V(n) denote the left L(P)-module constructed 
using the composition homomorphism 

(2.10) L(P) ~ )  L(P) -+ GL(V), 

where F~(p) is the n-fold iteration of the self-map FL(p) (the Frobenius morphism 
of L(P)). Let EL(p)(V(n)) denote the vector bundle over G/P associated to the 
principal L(P)-bundle EL(p) for the left L(P)-module V(n) defined in (2.10). 
From this definition of EL(p)(V(n)) it follows that the vector bundle EL(p)(V(1)) 
is identified with the pull back F*EL(p)(V), where F, as in (2.6), is the Frobenius 
morphism of G/P (it is the identity map of G/P if  the field k is of characteristic 
zero); see [8, p. 287, Remark 3.22]. Consequently, for any in integer n ~> 0, the 
vector bundle EL(p)(V(n)) is identified with the pull back (Fn)*EL(p)(V). 

Note that since Z(L(P)) (defined in (2.9)) acts trivially on V, it also acts trivially 
on each V(n). Therefore, replacing the L(P)-module V by the L(P)-module V(n) 
in the above argument for semistability of EL(p)(V ) w e  conclude that the vector 



bundle EL(p)(V(n)) is semistable with respect to any polarization on G/P. In view 
of the above remark that (Fn) * EL(p)(V) = EL(p)(V (n)), this implies that the vector 
bundle EL(p)(V) is strongly semistable with respect to any polarization on G~ P. 

Setting V to be the Lie algebra of L(P) equipped with the adjoint action of 
L(P) we conclude that the adjoint vector bundle ad(EL(p)) (of the principal L(P)- 
bundle EL(p)) is strongly semistable with respect to any polarization on G/P. This 
immediately implies that the principal L(P)-bundle EL(p) is strongly semistable 
with respect to any polarization on G/P. 

To prove the second part of the lemma, consider the homomorphism p in (2.3). 
Using the condition that the image of p is not contained in any proper parabolic 
subgroup of  H it can be deduced that p (R, (P)) = e, where R~ (P), as in (2.1), is the 
unipotent radical, and e c H is the identity element. Indeed, if p(R,(P)) ~ e, then 
p(Ru (P)) is a connected nontrivial unipotent subgroup of H. From this it follows 
that the normalizer of p (Ru (P)) in H is contained in a proper parabolic subgroup 
Q of H [5, p. 186, Corollary A]. To deduce this from [5, p. 186, Corollary A] note 
the following two facts: 

(i) for the sequence of subgroups {Ni}ie N of G in [5, p. 185, §30.3] the inclusion 
Ni c_ Ni+l holds for all i ~ N, and 

(ii) any connected unipotent subgroup of H is contained in a Borel subgroup of H, 
which in turn follows from the definition of a Borel subgroup (see [5, p. 134, 
§21.3]). 

Since Ru (P) is a normal subgroup of P and the normalizer of p (R, (P)) (in H) is 
contained in Q, we conclude that p(P) c Q. But, by assumption, the image p(P) is 
not contained in any proper parabolic subgroup of H. Therefore, we conclude that 
p(Ru(P)) = e. 

Since p (R, (P)) = e, the homomorphism p in (2.3) induces a homomorphism 

(2.11) ~:P/R,(P)=L(P)--+ H. 

Let Zo(L(P)) c L(P) be the reduced subgroup defined by the connected 
component of the center of L(P). Similarly, set Zo(H) C H to be the reduced 
subgroup defined by the connected component of the center of H. It is easy to 
see that 

(2.12) ~(Zo(L(P))) C Zo(H), 

where F5 is constructed in (2.11). Indeed, if  we have 

¢ Zo(m, 

then the centralizer, in H, of the torus ~(Zo(L(P))) is a proper subgroup of H 
(note that ~(Zo(L(P))) is connected as Zo(L(P)) is so). On the other hand, the 
centralizer of any torus in H is a Levi subgroup of  a parabolic subgroup of  H. 
Therefore, the centralizer, in H, of the torus ~(Zo(L(P))) is contained in a proper 



parabolic subgroup of H. If  Q c H is a proper parabolic subgroup containing the 
centralizer of f i(Zo(L(P))),  then Q contains ~(L(P))  as L(P)  commutes with 
Zo(L(P)) .  But this contradicts the given condition that p(P)  is not contained in 
any proper parabolic subgroup of H. Therefore, the inclusion (2.12) is valid. 

Since the L(P)-bundle EL(m is strongly semistable and the inclusion (2.12) 
holds, it follows immediately from [8, p. 288, Theorem 3.23] that the principal 
H-bundle Ep(H)  is strongly semistable (if the characteristic of k is zero, then it 
directly follows from [8, p. 285, Theorem 3.18]). This completes the proof of the 
lemma. [] 

In Section 4 we will show that Ep (H) is strongly stable under the assumption that 
all the simple quotients of H are of classical type. For that we will need an analog of 
the socle for a semistable projective bundle (the socle of a semistable vector bundle 
is the unique maximal polystable subsheaf). The socle for a semistable projective 
bundle will be constructed in the next section. 

3. SOCLE FOR A SEMISTABLE PROJECTIVE BUNDLE 

Although throughout the paper we consider principal bundles only over G /P ,  the 
socle constructed in this section might have other applications. Therefore, in this 
section we do the construction of the socle for semistable principal bundles over an 
arbitrary smooth projective variety. 

Let X be an irreducible smooth projective variety defined over the field k. Fix a 
very ample line bundle (= polarization) on X in order to be able to define degree of 
coherent sheaves on X. Stability and semistability of principal bundles over X are 
defined exactly as done in Section 2 for principal bundles over G/P.  

Let 17 ~ X be a projective bundle over X of relative dimension d - 1. Let Fe 
denote the principal PGL(d, k)-bundle over X defined by 17. So for each closed 
point x ~ X, the fiber (F~)x is the space of all linear isomorphisms from 1?k d-1 to 
1?x; here I~k -1 denotes the space of all one-dimensional subspaces of k ed. 

Take a Zariski open dense subset U c X such that the complement X \ U is of 
codimension at least two. Let 17' C 17 be a subprojective bundle defined over U. So 
for each closed point x ~ U, the fiber 1?~x is a linear subspace of the projective space 
1?x. Let d I - 1 be the relative dimension of projective bundle 17' over U. 

Consider the obvious decomposition k ®d --= k @d' G k @(d-d') • Using this decom- 
position we have a natural inclusion of 1? d'-I in 17d-1. The inclusion map sends any 

line ~ in k @d' to the line in k ®d given by (g, 0) c k @dl G k @(d-d') . Let 

Q c PGL(d, k) 

be the maximal parabolic subgroup defined by the space of all automorphisms of 
I~k -1 preserving the above defined subspace 17#-1. 

The above subbundle 17~ c lPl~ gives a reduction of structure group over U of the 
principal PGL(d, k)-bundle Fp to the subgroup Q c PGL(d, k). This reduction of 
structure group 

(3.1) F 0 C F~,Iu 



is defined by the condition that for any closed point x c U and any closed point 
z ~ (F~)x in the fiber, the isomorphism of I?~ -1 with (Fe)x given by z takes the 
subspace lDdl- 1 d - 1  / -~ C l?~ to the subspace l? x c Px. The reduction of structure group 
in (3.1) gives a section 

(3.2) a : U  --+ (F~ /Q)]v  

of the fiber bundle ( F y / Q ) I u  -+ U. 
Given any maximal parabolic subgroup Q~ of PGL(d, k), there is a proper 

subspace V ( Q  I) c k ed such that QI coincides with the subgroup of PGL(d, k) that 
preserves V (QI). 

Therefore, from the definition, given in Section 2, of a semistable principal 
PGL(d, k)-bundle it follows that the principal PGL(d, k)-bundle F~, over X is 
semistable if and only if  for each pair (U, l?') of the above type the inequality 

(3.3) degree((r*Trel) ~> 0 

holds, where Trd is the relative tangent bundle for the projection F p / Q  ~ X and cr 
is the reduction of structure group to Q constructed in (3.2). 

If  there is a vector bundle W over X such that P is the projective bundle ]?(W) 
(here I?(W) denotes the space of all one-dimensional subspaces in the fibers of W), 
then there is a unique subbundle 

W / c WI~ 

of rank d I over the open subset U such that the above subprojective bundle ]7i C ]?[~: 
is identified with the projective bundle ]?(W/). Furthermore, we have 

(3.4) degree(~r* Trel) = degree(W/W1)d - degree(W1) (d - d'), 

where o- is constructed in (3.2) and Tre 1 is as in (3.3). It may be pointed out that from 
the identity (3.4) it follows immediately that the principal PGL(d, k)-bundle Fp is 
semistable (respectively, stable) if and only if  the vector bundle W is semistable 
(respectively, stable); see Remark 2.2. 

Now-onwards, in this section assume that the principal PGL(d, k)-bundle Fp over 
X corresponding to the projective bundle 17 is semistable. 

We recall that a torsionfree coherent sheaf W~ is called polystable if it is 
isomorphic to a direct sum of coherent sheaves (~i Wil, o, where each W~:1,o is stable 
with 

degree(WS, o) _ degree(WE) 

rank(W[, o) rank(W~) 

for all i. A semistable vector bundle has a unique maximal polystable subsheaf 
which is called the socle. The socle of a semistable vector bundle Wo is generated 
by all polystable subsheaves W E c W0 with 

degree(W E) degree(Wo). 
(3.5) rank(W~) -- rank(Wo) '  



see [6] and [1] for the details. 

Let W ~ C W be the socle of  a semistable vector bundle W. From the definition 

of  a socle it follows that the quotient W/W'  is torsionfree. Indeed, since W ~ is 

a polystable subsheaf of  W satisfying (3.5), any torsion subsheaf of  W~ W r can 

be absorbed in some polystable subsheaf of W satisfying (3.5). Since W~ W' is 

torsionfree it follows immediately that there is a Zariski open dense subset U' c X 

such that 

(1) the complement X \ U t is ofcodimension at least two, and 

(2) the subsheaf W' c W is a subbundle over U'. 

The Zariski open subset of  X over which the quotient W~ W' is a vector bundle can 

be taken to U .  
Therefore, i f P  = P(W), where W is a semistable vector bundle over X, then P 

has a unique maximal subprojective bundle P1 c P defined over some open dense 

subset U c X such that 

(1) the complement X \ U is of  codimension at least two, 

(2) the projective bundle P1 is polystable, and 

(3) degree(o-* Trd) = 0, where o- and Tre 1 are as in (3.3) for the subprojective bundle 

It~l. 

To construct this projective bundle PI, let U denote the open dense subset of  X 

over which the socle W' of  W is a subbundle of W. Now set P1 to be the projective 

bundle over U defined by the space of  all lines in the fibers of W t. We recall that a 

projective bundle P0 defined over an open dense subset U0 of  X, with codim(X \ 

U0) ~> 2, is polystable if  P0 contains finitely many subprojective bundles Pi,o, 1 <~ 
i ~< n, such that 

(1) the relative dimension of  the projective bundle P0 coincides with ~in=l di.o, 
where di,o is the relative dimension of  the projective bundle Pi,0, 

(2) for each closed point x E Uo, the linear span of  the fibers {(Pi,o)x}7=l is (PO)x, 

and 
(3) if o'i, 1 ~< i ~< n, is the section constructed as in (3.2) for the subprojective 

bundle Pi,0 c Po, then degree(cr*Trel) = 0, where Trd is the relative tangent 

bundle as in (3.3) for Pi,0. 

However, a general projective bundle is not the projectivization of  some vector 

bundle. Our aim in this section is to prove that given any semistable projective 

bundle P there is a unique maximal pair (U0, P1) satisfying the above three 

conditions. 
As before, let P be a semistable projective bundle over X. Let p1 C PJu be a 

polystable subprojective bundle defined over a Zariski open dense subset U c X 
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such that the complement X \ U is of codimension at least two. Further assume that 
P~ satisfies the following condition: 

(3.6) degree((oJ)*Trel) = 0, 

where ~' is the section over U constructed as in (3.2) for the subprojective bundle 
P', and Tre~ is the relative tangent bundle as in (3.3) corresponding to P~. 

Let P" c Plu be a stable subprojective bundle defined over the same open subset 
U such that 

(3.7) degree((o-')*Tret) = 0, 

where o-" is the section over U constructed as in (3.2) for the subprojective bundle 
P ' ,  and Trel is defined as in (3.3) for P ' .  

Proposition 3.1. Take the above two subprojective bundles P' and P" of P defined 
over the open subset U. There is a Zariski open dense subset U' c U, whose 
complement U \ U t is of  codimension at least two, such that one of  the following 
two holds: 

(1) For any closed point y c U', the fiber Py is contained in the fiber Py. 
(2) For any closedpoint y ~ U', the two subspaces P~ and Py of  Py are disjoint. 

Proof. Let U" C U C X be a Zariski open dense subset such that 

(i) the complement X \ U" is ofcodimension at least two, and 
(ii) P' and P" together generate a subprojective bundle of P over U'. 

Such an open subset U" can be constructed as follows. Let 

(3.8) f :P ---> X 

be the natural projection from the total space of the projective bundle. The pulled 
back projective bundle f*P  has the property that there is a certain canonically 
defined vector bundle F over P such that f*P  is identified with P(F). The vector 
bundle ]2 in question is the dual bundle JrXd(Op) *, where Jlel(Op) is the relative first 
jet bundle of the trivial line bundle; the jet bundle fits in an exact sequence 

0 -+  r f  ---, J~el(OP) ~ O~ ~ 0 

over P, where T2 C T*P is the relative cotangent bundle for the projection f .  The 

two subprojective bundles P' and P" define subbundles of V over f - l ( u ) .  More 
precisely, let V I (respectively, V") be the unique subbundle of V I f-1 (u) such that the 
subprojective bundle of P(V)]/-1 (g) defined by f*P' (respectively, f*P ' )  coincides 
with the subprojective bundle P(F')If-1 (u) (respectively, P(F")If-~ (u)); here f is 
the projection in (3.8) and U is the open set over which P' and P" are defined. 
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Let V1 be the unique smallest coherent subsheaf of ]2lf-l(u ) satisfying the 
following two conditions: 

(1) the subsheaf V1 contains both V' and V', and 
(2) the quotient V/V1 is torsiohfree. 

Let U~' C f - l ( u )  be the open subset over which the subsheaf V1 is a subbundle of 
Vf-l(~z). Since V/V1 is torsionfree, the codimension of the complement f - 1  (U) \ 

U~' is at least two. Since U~' = f - 1  (f(U~')), the codimension of the complement U \ 
f(U~') coincides with the codimension of the complement f - 1  (U) \ U~' and hence 
it is at least two. Consequently, the codimension of the complement X \ f(U~ ~) is 
at least two (recall that codim(X \ U) ~> 2). The open subset U ~' in the beginning of 
the proof can be taken to be the image f(U~t), where f is the projection in (3.8). 

Let P~I C 1PIu,, be the subprojective bundle over U" generated by l?' and I? ~'. 
Therefore, I?~ is determined by the condition that the subprojective bundle f'I?~1 C 
(f*lP)lu-1 coincides with the subprojective bundle P(])I) c (f*I?)lu[,, where f is 
the projection in (3.8) and 12i is constructed above. 

Consequently, both P~ and I? '~ are subprojective bundles of the projective bundle 
I?~ defined over the open subset U t~. 

Let F~] be the principal PGL(n] + 1, C)-bundle over U" defined by 1?'1, where n] 

is the dimension of a fiber of the natural projection of I?' 1 to U r'. Let 

(3.9) ~r~ : U" --+ Fpi / Qr 1 

be the reduction of structure group defined by the subprojective bundle I? ~ of I?] 
(the construction of this reduction is identical to the construction done in (3.2)); 
here Q~I is a maximal parabolic subgroup of PGL(ntl + 1, C) of type determined by 
the relative dimension of the projective bundle I? ~ over U r~. 

Since the projective bundle I? is semistable, from (3.6) and (3.7) it follows that 
the projective bundle 1?] is semistable, and furthermore, 

(3.10) degree((o'~)*Trel) = 0, 

where  Tre 1 is the relative tangent bundle for the natural projection F~,/Q' 1 --+ U" 
and cr~ is the section constructed in (3.9). 

Let I?]' be the projective bundle over U ~r whose fiber over any closed point x c U r~ 
is the space of all hyperplanes in the fiber (~?'l)x that contain the linear subspace 
I?~ c (I?'l)x. Also define ~?" to be the projective bundle over U t~ whose fiber over 
any closed point x E U tt is the space of all hyperplanes in the fiber (IPr')x. If the 
subprojective bundle I? ~ c I? is not contained in the subprojective bundle ]?t, then 
over a nonempty Zariski open subset of U ~ the above constructed projective bundle 
I?] ~ is a subprojective bundle of]P tt'. To see this, take any closed point x 6 U" and any 
hyperplane H 6 (I?]')x in the projective space (I?' 1)x. Consider the linear subspace 

/ t  n (~")~ c (~)x  
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(recall that (17'I)x is a subspace of (1?'l)X)" Since H contains the subspace 17~ C (I?~)x, 
the above intersection H n (1?")x is a hyperplane in (1?")x for the general point H 
in the total space of 17~', provided the subprojective bundle 17" c 17 is not contained 
in the subprojective bundle 17'. 

Since the projective bundle 17" is stable, the above observation combined together 
with (3.10) and (3.7) yield that the two subspaces (1?')x and (1?")x of (1?~)x are 
disjoint for the general closed point x ~ U' ,  provided the subprojective bundle 17" c 
17 is not contained in the subprojective bundle 17~ c 17. This completes the proof of  
the proposition. [] 

Given any semistable projective bundle 17 over X, from Proposition 3.1 it follows 
that there are finitely many stable subprojective bundles 17i C 17, I ~ i ~< n, defined 
over open dense subsets whose complements are of codimension at least two such 
that 

(1) for each 1 ~ i ~< n, we have 

degree(o* Trel) = 0, 

where oi is the section constructed as in (3.2) for the subprojective bundle I? i C 
17, and Tre 1 a s  in (3.3) is the relative tangent bundle, 

(2) the subprojective bundles 17i c 17 together generate a polystable subprojective 
bundle 171 over an open dense subset U c X such that the complement X \ U is 
of codimension at least two, 

(3) the section c~ constructed as in (3.2) for the subprojective bundle 171 c PI~ 
satisfies the condition 

(3.11) degree(o* Trel) = 0, 

where Trel as in (3.3) is the relative tangent bundle, 
(4) any stable subprojective bundle 17~ C 17 defined over an open dense subset of X 

whose complement is ofcodimension at least two and satisfying (3.11) (for the 
subprojective bundle 17I c 17) is contained in 171. 

Therefore, 171 is the unique maximal polystable subprojective bundle of 17, 
defined over an open dense subset whose complement is of codimension at least 
two, that satisfies the condition (3.11) (for the subprojective bundle 171). 

Definition 3.2. For any semistable projective bundle I? we will call the subprojec- 
tive bundle 171 constructed above as the socle of 17. 

4. STABILITY OF HOMOGENEOUS BUNDLES FOR CLASSICAL GROUPS 

Let Z(H) c H be the center of H, which, in general, is nonreduced. In other words, 
Z(H) is a subgroup-scheme. The quotient H/Z(H)  is a product of simple groups. 
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Henceforth, we will assume that all the simple factors of H/Z(H) are of classical 
type. Therefore, we have 

(4.1) 
£0 

H/Z(H) =I--[~,  
i=1 

where each Hi is either PSL(ni, k) or PSO(ni, k) or PSp(2ni, k). 

Theorem 4.1. Assume that all the simple factors of H/Z(H) are of classical type. 
Then the principal H-bundle Ep(H) over G/ P, defined in (2.4), is strongly stable 
with respect to any polarization on G / P. 

Proof. Consider the quotient group H/Z(H). Let Ep(H/Z(H)) denote the prin- 
cipal H/Z(H)-bundle over G/P obtained by extending the structure group of the 
H-bundle Ep (H) using the natural projection of H to H/Z(H). From the definition 
of a stable principal bundle it follows that the H/Z(H)-bundle Ep(H/Z(H)) 
is strongly stable if and only if the H-bundle Ep(H) is strongly stable (the 
parabolic subgroups of H/Z(H) are in bijective correspondence with the parabolic 
subgroups of H with the correspondence constructed using the projection map 
H --+ H/Z(H)); see Remark 2.2. 

Consider a simple factor Hi of H/Z(H) (see (4.1)). Let Ee(H/Z(H))(Hi) 
denote the principal H/-bundle over G~ P obtained by extending the structure group 
of the principal H/Z(H)-bundle Ep(H/Z(H)) using the natural projection of 
H/Z(H) to the simple group Hi. From the definition of a stable principal bundle 
it follows immediately that the H/Z(H)-bundle Ep (H/Z(H)) is strongly stable if 
and only if the///-bundle Ep (H/Z(H))(Hi) is strongly stable for each i c [1, ~0] 
(any parabolic subgroup of H/Z(H) is of the form 1--[~°__ 1 Pi, where Pi is a parabolic 
subgroup of Hi). 

In view of the above observations, we can, and we will, assume that H is 
PSL(n, k) or PSO(n,k) or PSp(n, k). So henceforth H is either PSL(n,k) or 
PSO(n, k) or PSp(n, k). 

Let 

(4.2) 3 : H ~ PSL(n, k) 

be the natural inclusion (recall that H is either PSL(n, k) or PSO(n, k) or PSp(n, k) 
and hence it is a subgroup of PSL(n, k)). Let Ep(PSL(n, k)) denote the principal 
PSL(n, k)-bundle over G/P obtained by extending the structure group of the princi- 
pal H-bundle Ep (H) using the homomorphism 8 in (4.2). Note that Ep (PSL(n, k)) 
is identified with the principal PSL(n, k)-bundle obtained by extending the structure 
group of the principal P-bundle Ep using the homomorphism 3 o p, where p is the 
homomorphism in (2.3). 

Let 

(4.3) Ep(l?) := Ep(PSL(n, k)) (~ -1) 
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denote the projective bundle over G/P associated to the PSL(n,k)-bundle 
Ep(PSL(n, k)) for the standard action of PSL(n, k) on ~?~ 1. 

The principal H-bundle Ep(H) is strongly semistable (see second part of 
Lemma 2.3). Therefore, from [8, p. 288, Theorem 3.23] it follows that the asso- 
ciated projective bundle Ep (1?) defined in (4.3) is semistable (if the characteristic 
ofk  is zero, then it directly follows from [8, p. 285, Theorem 3.18]). 

The left translation action of G on itself is an action of G on the principal 
P-bundle Ep that lifts the left translation action of G on G/P (recall that the 
total space of Ep is G). This action of G on Ep induces an action of G on any 
fiber bundle over G/P associated to Ep; the induced action on such an associated 
bundle lifts the left translation action of G on G/P. 

Let ~?x be the socle of the semistable projective bundle Ep(I?) defined in (4.3) 
(see Definition 3.2). From the uniqueness of the socle it follows immediately that 
~?I is left invariant by the action of G on the total space of Ep (]?). 

Therefore, the action of the isotropy subgroup P (the isotropy subgroup at eP 
G/P for the action of G on G/P) on the fiber Ep (~?)~p leaves the subspace 

(~l)eP C Ep(~)ep 

invariant. Recall that the homomorphism p in (2.3) has the property that p (P) is not 
contained in any proper parabolic subgroup of H. From this property of p it follows 
immediately that for the action of P on 17~ -I  defined by 8 o p (the homomorphism 

is defined in (4.2)) there is no proper linear subspace ofI?~ -1 that is left invariant. 
Therefore, we conclude that (I?l)ep = Ep (I?)ep. 

Consequently, we have I?1 = Ep(l?). In other words, the projective bundle 
Ep(I?) is polystable. Therefore, the PSL(n, k)-bundle Ep(PSL(n, k)) over G/P is 
polystable. 

We will next prove that Ep (PSL(n, k)) is stable. For that it suffices to show that 

(4.4) H°(G/P, ad(Ep (PSL(n, k)))) = 0 

(see [4, p. 787, Claim]), where ad(Ep(PSL(n, k))) is the adjoint bundle. 
Let 

(4.5) ld; ___ ad(Ep (PSL(n, k))) 

be the coherent subsheaf generated by the space of all global sections of the vector 
bundle ad(Ep (PSL(n, k))). So the coherent sheaf 1A; is globally generated. 

The left translation action of  the group G on Ep induces an action of G on the 
adjoint vector bundle ad(E,o (PSL(n, k))). This action of G on ad(Ep (PSL(n, k))) 
evidently leaves invariant the subsheaf W constructed in (4.5). From this it follows 
immediately that W is a subbundle of the vector bundle ad(Ep (PSL(n, k))). More 
precisely, 14; is the vector bundle associated to the principal P-bundle El, for the 
P-module Wep, where Wep is the fiber of l& over the point eP ~ G/P. Note that 
the condition that G leaves invariant W implies that the subspace 

(4.6) Wep C ad(Ep (PSL(n, k)))e P 
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is left invariant by the action of  the isotropy subgroup P at eP C G (for the action 
of  G on G/P);  hence the fiber Wep is a submodule of  the P-module PSL(n, k). 
The module structure on PSL(n, k) is defined by ~ o p, where ~ and p are as in (4.2) 
and (2.3) respectively. 

Let 

( 4 . 7 )  0 ~---~ [.'/0 C Z , / 1 C  • • • C Z4'g :m-~ "l/Vee 

be a filtration of left P-modules such that each successive quotient Ui/l,'[i-1, i 
[1, g],is an irreducible P-module. 

We will now need a couple of  lemmata. 

Lemma 4.2. To prove (4.4) it & enough to show that the P-module ~,[i/~,[i_l in 
(4.7) is a trivial P-module for each i c [1, g]. 

Proof. To prove the lemma we first recall that the homomorphism p in (2.3) factors 
through the homomorphism/5 in (2.11). Since L (P) (the domain of  15) is reductive, 
there is no nontrivial homomorphism from L(P)  to a unipotent algebraic group. 

Assume that Lti/Lli_l is a trivial P-module for each 1 ~< i ~< £. Consequently, the 
action of  P on 14;ep factors through a unipotent group. In view of  the above remark 
it follows that Wee is a trivial P-module. 

Since the homomorphism p in (2.3) satisfies the condition that the image p(P)  
is not contained in any proper parabolic subgroup of  H, we conclude that the 
homomorphism 6 o p has the property that adjoint action of  P on the Lie algebra 
PSL(n, k) defined by ~ o p does not have any nonzero invariants (the homomorphism 

is defined in (4.2)). This immediately implies that Wee = 0 (recall that Wee is a 
trivial submodule of  the P-module PSL(n, k)). Therefore, we have W = 0. From 
this it follows that (4.4) is valid. This completes the proof of  the lemma. [] 

Lemma 4.3. For each i ~ [1, Q, the action of  P on l,[i/Ui-1 extends to an action 

of G on tti/Ui-1. 

Proof. To prove this lemma, let Ep(Lte/bli_l) be the vector bundle over G / P  
associated to the principal P-bundle Ep for the P-module b/e/b//-1 (see (4.7)). 
We will first prove that Ep (b/e/b//-1) is a trivial vector bundle. 

Consider the adjoint action of  P on the Lie algebra PSL(n, k) defined by 8 .  p, 
where ~ and p are as in (4.2) and (2.3) respectively. Since lge/Lti_l, i ~ [1, £], is a 
subquotient of the P-module PSL(n, k) (see (4.6) and (4.7)), it can be shown that 
At°P (b/~/L//_I) is a trivial P-module of dimension one. To prove this first recall that 
the action of  P on PSL(n, k) is defined by ~ o p, and the homomorphism p factors 
through t5 from L(P) ;  see (2.11). From (2.12) we know that the homomorphism/5 
in (2.11) takes the connected component of  the reduced center of  L(P)  to Zo(H). 
Since H is either PSL(n, k) or PSO(n, k) or PSp(2n, k), the center Zo(H) is trivial. 
Therefore, the action of L(P)  on At°P(L/e/~-_I) factors through L(P) /Zo (L(P) ) .  
Since L ( P ) / Z o ( L ( P ) )  does not admit any nontrivial character we conclude that 
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/~t°P(lie/lii_l) is a trivial L(P)-module,  and hence /~t°P(lie/lii-1) is a trivial 
P-module. Consequently, the line bundle A top Ep(lie/lii-1), which is associated 
to the principal P-bundle Ee  for the character / \ t°P( l ie / l i i_ l )  of  P,  is a trivial line 

bundle over G/P.  
Since 14; is globally generated and Ep(lie/lii-1) is a quotient bundle of  l/V, the 

vector bundle Ep (lte/lii- 1 ) is also globally generated. 
A globally generated vector bundle E of  rank n over G/P,  such that A n E is a 

trivial line bundle, is isomorphic to the trivial vector bundle of  rank n [3, p. 137, 
Proposition 2.3]. Therefore, Ee (lie/lii-1) is a trivial vector bundle, where i E [1, g]. 

For any i c [1, ~], let Ee(lii/ l i i-1) be the vector bundle over G / P  associated to 
the principal P-bundle Ee  for the P-module lii/lii-1. From the filtration (4.7) of  
P-modules we have the following exact sequence of  P-modules: 

0 ~ l i i / l i i -1  ~ l ie / l i i -1 ~ Uellii ~ O, 

where i 6 [1, g]. Therefore, the above defined vector bundle Ep(l i i / lg i -1)  fits in an 
exact sequence of  vector bundles 

0--+ Ep(lii/lii-1) -+ Ee(lie/lii-1) ~ Ee(bte/lii) --+ 0 

over G/P.  Consider the dual of  the above exact sequence of  vector bundles: 

(4.8) 0 ~ Ep(lie/lii)* --+ Ep(lii/lii-1)* --+ Ep(lii/lii-1)* --+ O. 

Each Ee(lie/lij-1)*, j ~ [1, e], is a trivial vector bundle as Ep(l ie / l i j -O is trivial. 
Therefore, from (4.8) it follows that Ep (lii/lii-1)* is a globally generated vector 
bundle with the top exterior product A top Ee(lii/lii-1)* a trivial line bundle. 
Consequently, Ep (lii//I/_1)* is a trivial vector bundle [3, p. 137, Proposition 2.3]. 
Hence Ep(lii/lii-1) is a trivial vector bundle for each i c [t, Q. 

The action of  G on the vector bundle Ep (lii/lii-1) induces an action of  G on the 
vector space 

(4.9) Vi := H°(G/P ,  Ep(lii/lii-1)). 

Consider the evaluation map 

~o: ( G / P )  x Vi --+ Ep( l i i / l i i -1 ) ,  

where (G/P)  x Vi is the trivial vector bundle over G / P  with fiber Vi (defined in 
(4.9)). 

The homomorphism ~o commutes with the actions of  G, and furthermore, ~0 is an 
isomorphism as Ep (lii/lii-1) is a trivial vector bundle. Therefore, the action of  G 
on V/ is an extension of  the action of  P on Vi = EP(lii/lii-1)eP = lii/lii-1; note 
that since 

Ep(l i i / ld i_ l )  = (G × ( l i i / l i i -1 ) ) /  P, 
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sending any v ~ Hi~Hi-1 to the image in Ep(Ui/lgi-1)eP of (e, v) c G x (Hi~Hi-I) 
we get an identification of the fiber Ee(Hi/Hi-1)ep with Hi~Hi-1. This identifi- 
cation clearly commutes with the actions of P. This completes the proof of the 
lemma. [] 

Continuing with the proof of the theorem, the condition that P c G is a parabolic 
subgroup without any simple factor implies that if  V is a G-module of dimension at 
least two, then the action P on V preserves a nontrivial filtration of V. Consider the 
G-module Hi~Hi-1 (see Lemma 4.3). In view of the above observation, the given 
condition in (4.7) that Hi~Hi-1 as a P-module is irreducible implies that 

(4.10) dimHi/Hi_l = 1. 

On the other hand, the action of P on the P-module PSL(n, k), of which Lti/Lti-1 
is a subquotient, is defined by 8 o p, and p factors through the homomorphism/5, de- 
fined in (2.11), from L(P). Also, from (2.12) we know that ~(Zo(L(P))) C Zo(H), 
and we are given that Zo(H) is the trivial group (recall that H is either PSL(n, k) or 
PSO(n, k) or PSp(2n, k)). Consequently, the action of P on Hi~Hi-1 factors through 
L(P)/Zo(L(P)). Since L(P)/Zo(L(P)) does not admit any nontrivial character, 
from (4.10) it follows immediately that Hi~Hi-1 is a trivial P-module. Now from 
Lemma 4.2 we conclude that (4.4) is valid. We noted earlier that (4.4) implies that 
the principal PSL(n, k)-bundle Ep(PSL(n, k)) over G/P is stable. Therefore, we 
have proved that the PSL(n, k)-bundle Ep(PSL(n, k)) is stable. 

Since the homomorphism 8 in (4.2) is an embedding of H, the above assertion 
that Ep (PSL(n, k)) is stable implies that the principal H-bundle Ep (H) is stable. 

Let F/4 : H --+ H be the Frobenius morphism of H; if the characteristic of 
the field k is zero, then we take F~/ to be the identity morphism of H. It is 
easy to see that the composition FH o p also satisfies the condition that the 
image Fr4 o p(P) is not contained in any proper parabolic subgroup of H, 
where p is the homomorphism in (2.3). As we noted earlier, the pulled back 
principal H-bundle F*Ep(H) over G/P is identified with the principal H-bundle 
obtained by extending the structure group of the principal P-bundle Ep using the 
homomorphism FL, o p, where F is the map in (2.6). 

Therefore, replacing p by FH o p in the above argument proving that Ep (H) is 
stable, and iterating it, we conclude that the H-bundle Ep (H) is strongly stable. 
This completes the proof of Theorem 4.1. [] 

ACKNOWLEDGEMENT 

The author is very grateful to the referee for providing helpful comments to improve 
the manuscript. 

REFERENCES 

[ 1 ] Anchouche B., Biswas I. - Einstein-Hermitian connections on polystable principal bundles over a 

compact K~ihler manifold, Amer. J. Math. 123 (2001) 207-228. 

18 



[2] Azad H., Biswas I. - On the principal bundles over a flag manifold, J. Lie Theory 14 (2004) 569-  

581. 
[3] Biswas I. - On the stability of  homogeneous vector bundles, J. Math. Sci. Univ. Tokyo 11 (2004) 

133-140. 
[4] Biswas I., Gdmez T.L. - Restriction theorems for principal bundles, Math. Ann. 327 (2003) 773-  

792. 
[5] Humphreys J.E. - Linear Algebraic Groups, Grad. Texts in Math., vol. 21, Springer-Verlag, New 

York, Heidelberg, Berlin, 1987. 
[6] Mehta V.B., Ramanathan A. - Restriction of  stable sheaves and representations of  the fundamental 

group, Invent. Math. 77 (1984) 163-172. 
[7] Ramanan S. - Holomorphic vector bundles on homogeneous spaces, Topology 5 (1966) 159-177. 

[8] Ramanan S., Ramanathan A. - Some remarks on the instability flag, Trhoku Math. J. 36 (1984) 

269-291. 
[9] Ramanathan A. - Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975) 

129-152. 
[10] Ramanathan A., Subramanian S. - Einstein-Hermitian connections on principal bundles and 

stability, J. Reine Angew. Math. 390 (1988) 21-31. 
[ 11 ] Umemura  H. - On a theorem of  Ramanan, Nagoya Math. J. 69 (1978) 131-138. 

(Received June 2004) 

19 


