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Abstract-—The zero-crossing discrete phase-lock loop (ZC-DPLL) is a key component of many
digital receivers. Yet prior analyses have overlooked the impact of its nonlinearities. Dynamical
systems theory immediately provides a more complete picture of ZC-DPLL operation. We also find
that the ZC-DPLL displays unusual features derived from its odd symmetry and bimodality. © 2001
Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

We describe some aspects of the discrete map
Un = Pp-1 — ksiny_1,

where k € [0,4.6033] (see Figure 1). For this range of k, ¢ maps the interval (—m, 7} into itself.
1y derives from an important component of digital communication receivers: it represents the
response of a first order zero-crossing discrete phase-lock loop (ZC-DPLL) to an unmodulated
carrier with a phase offset. The behavior of ¥ with increasing k shows how the ZC-DPLL behaves
with increasing signal strength.

The ZC-DPLL has received a great deal of attention in the engineering literature, including
[1-4] (in fact, in another context, the ZC-DPLL map is the transcendental term in Kepler’s
equation). Prior work has focused on the conditions for convergence of the ZC-DPLL to the fixed
point at 0, known as phase-lock. There are also observations that period 2 and period 4 orbits
exist, and that a double period 2 orbit exists. Osborne [3] conjectures “that all orbits of even
period exist”.

Based on dynamical systems theory (see [5]), we expect to find that the prior results form a
very incomplete description of 1’s behavior. For example, we easily find that orbits of all periods
exist, showing that Osborne’s conjecture is correct, but incomplete.
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Figure 1. Function representing the ZC-DPLL.

2. TWIN ORBITS

1 is a smooth map, an odd function, and it is bimodal. It is also easily seen that its Schwarzian
derivative, defined as (see [5])

@) 3 (@)
SI@) =y ~2 (f'(w))

is negative for k > 1. These characteristics drive ¢’s interesting behavior. The discussion of
Theorem 11.4 in [5] derives the relationship between the negative Schwarzian derivative and
critical points of a smooth map in great detail. One result, for example, is that “periodic points
with bounded stable sets must attract a critical point” (a negative Schwarzian derivative is
assumed). From this we conclude that 9 can have two attracting periodic orbits for a given value
of k, based on its bimodality and its negative Schwarzian derivative. '

The double attracting orbits are evident in ¥’s bifurcation diagram (see Figure 2). The black
and gray orbits derive from two different initial conditions (+.01). We see the presence of two
complete sets of period doubling cascades, beginning when k = , evolving in tandem. The two
sets of orbits are negatives of one another.

DEFINITION. The twin of an orbit is formed by negating each point in the original orbit.

LEMMA 1. Given a periodic orbit, 1g,%1,...,%¥n—1, the orbit’s twin is also a periodic orbit with
the same period. .

PROOF. The twin orbit behavior follows immediately from %’s odd symmetry. ]

The bifurcation at k = m, where the double orbit behavior begins, is nonhyperbolic (¢’ = 1),
suggesting a saddle node bifurcation. The second derivative is zero, showing that the bifurcation
is an inflection point of 1. This is a very nongeneric bifurcation.

As seen in the bifurcation diagram, all the orbits for 7 < k£ < 3.5315 are asymmetric. Hence,
by Lemma 1 there are two distinct periodic orbits for each such value of k.



Discrete Dynamical Theory 497

Bifurcation Diagram for x-k"sin(x)

lterates

2 2.5 3 3.5 4 45
k

Figure 2. Bifurcation diagram for the ZC-DPLL.

3. BOUNDS FOR PERIODIC ORBITS

DEFINITION. The high water mark is the farthest point from zero reached by a periodic orbit.
The low water mark is the closest point to zero reached in a periodic orbit.

It is easy to see (by graphical analysis) that the high water mark is bounded by the images of
the two critical points. Points outside these bounds have backward orbits (preimages) that are
single valued, and converge monotonically to the end points of the interval, 7. Therefore, such
points cannot be on a periodic orbit.

The images of the critical points are +(v/k2 — 1 — arccos1/k). For high period orbits (periods
higher than 4) the bound is quite close.

Once again, by graphical analysis we can show that for k < 3.9014... the low water mark is
the image of the high water mark (i.e., the second iterate of the critical point). For & in this
range the low water mark has the opposite sign of the high water mark.

The proof, which we will not present in detail, is based on the observation that a low water
mark value that is closer to 0 than the image of the high water mark leads to a contradiction.
Such a value can have several preimages, but all are either larger than the high water mark (so
they cannot be on a periodic orbit), or are smaller than the low water mark (contradicting the
assumption that our value is the low water mark).

For k > 3.9014 the image of the high water mark will have the same sign as the high water
mark. It is then possible for the low water mark to have a preimage that is smaller than the high
water mark. In this case, the bound on the low water mark is zero.

Using these bounds we can show that all periodic orbits for & < 3.9014 alternate in sign.
For k < 3.9014 the high water marks are closer to zero than the zero crossings of 4. Therefore,
all positive values in a periodic orbit will map to negative values, and all negative values will
map to positive values.

An obvious observation follows: since all periodic orbits alternate sign for k < 3.9014, only even
period orbits are possible for this range of k. Osborne’s conjecture is in fact correct for & < 3.9014.
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4. SUMMARY

The results from dynamical systems theory provide a far more complete description of this
system’s behavior than previous analyses had suggested. Beyond this, we find that the special
features (bimodality and odd symmetry) of ¢ result in unique characteristics, such as twins for
asymmetric periodic orbits.

The geometry of v also allows us to calculate precise bounds on the high and low water marks
of periodic orbits for a large range of parameter values. This result can be used to characterize
a wide range of undesirable states that have a cause that is intrinsic to the ZC-DPLL and the
source signal, not noise or component failure.
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