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Abstract

Corrugated and diamond lattice materials have been manufactured as the cores of sandwich panels by slotting
together stainless steel sheets and then brazing together the assembly. The out-of-plane compressive, transverse shear
and longitudinal shear responses of the corrugated cores have been measured at three relative densities 0:03 < �q 6 0:10
and compared with analytical and finite element (FE) predictions. Finite element models are in good agreement with the
experimental measurements while the analytical models over-predict the measured strength due to a neglect of manu-
facturing imperfections. The out-of-plane compressive and transverse shear responses of the diamond cores have also
been measured at three relative densities 0:08 6 �q 6 0:25. The compressive strengths are sensitive to the aspect ratio of
the specimens for L/H < 4 and again are below the analytical predictions due to imperfections. The longitudinal shear
strength and energy absorption compare favorably with competing core topologies but the prismatic corrugated and
diamond cores are weaker than the pyramidal and square-honeycomb under compression and transverse shear.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Micro-architectured materials are being pursued for various multi-functional applications, because of
their ability to support loads, dissipate heat and change shape (Evans et al., 2001). Two basic architectures
include trusses and prismatics (Deshpande et al., 2001; Wadley et al., 2003).
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Fig. 1. (a) Isometric view and (b) front view of the corrugated core. The geometrical parameters used to characterise the specimens and
the core topology are marked along with the co-ordinate system employed. Out-of-plane compression is along the x3-direction,
transverse shear is in the 1–3 plane along the x1-direction, and longitudinal shear is in the 2–3 plane along the x2-direction.

Fig. 2. (a) Isometric view and (b) front view of the diamond core. The geometrical parameters used to characterise the specimens and
the core topology are marked along with the co-ordinate system employed. Out-of-plane compression is along the x3-direction, and
transverse shear is in the 1–3 plane along the x1-direction.
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Prismatics, such as the Y-core (Naar et al., 2001) and NavTruss (Astech Inc.), are preferred in marine
sandwich construction for two reasons (i) they are straightforward to manufacture on large length scales by
a welding route and (ii) the high longitudinal stretching and shear strength of the cores makes them ideal
for application in sandwich beams. For example, Fleck and Deshpande (2004) and Xue and Hutchinson
(2004) have shown that prismatic geometries are near optimal for shock resistant sandwich construction.
More recently, Valdevit et al. (2004) have revealed that the structural attributes of the prismatic cores
can be combined with their thermal characteristics to devise actively cooled multifunctional panels. The
aim of this study is to investigate the quasi-static response of two prismatic sandwich cores; the corrugated
and diamond cores, as shown in Figs. 1 and 2, respectively.

The outline of the paper is as follows. The slotting technique used to manufacture the corrugated and
diamond cores is described in Section 2 while the measured compressive and shear responses of the corru-
gated and diamond cores are compared with analytical and finite element predictions in Sections 3 and 4.
Finally, the strength and energy absorption capacities of these cores are compared in Section 5 with those of
competing core topologies such as the square-honeycomb and pyramidal core.
2. Materials and manufacturing route

Corrugated cores and diamond cores as sketched in Figs. 1 and 2, respectively, were manufactured from
304 stainless steel sheets, thickness t = 0.3 mm. The slotting technique shown in Fig. 3 was used to produce
both types of core, following the method developed by Côté et al. (2004) for square-honeycombs. Stainless
steel sheets were cropped into rectangles, and then cross-slotted by electro-discharge machining (EDM).
The slots were of width Dt = 0.305 mm, of spacing l and were cut to half-depth of the sheet. The sheets were
assembled in a ±45� array in order to produce sandwich panels of length L, thickness H, and width W, as
sketched in Fig. 1 for the corrugated core and in Fig. 2 for the diamond core. The clearance of 5 lm be-
tween the sheets and slots facilitated assembly while providing a sufficiently tight fit to assure stability.
The braze alloy Ni–Cr 25-P10 (wt.%) was applied uniformly over the sheets of the core (increasing the sheet
thickness to t = 0.31 mm) and the inner surface of the face-sheets. The assembly (core and face-sheets) was
brazed together in a vacuum furnace at 1075 �C in a dry argon atmosphere at 0.03–0.1 mbar. Capillarity
forces were sufficient to draw the braze into the joints, resulting in an excellent bond.

The relative density of the corrugated and diamond core specimens, made from sheets of thickness t with
a cell size l is, to first order, given by
�q ¼ 2t
l sin 2x

; ð1Þ
Fig. 3. Sketch of the slotting procedure used to manufacture the cores.
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where x is the angle of corrugated core as shown in Figs. 1b and 2b. In the present study, all specimens have
cells with x = p/4.

2.1. Tests on the corrugated cores

Corrugations were machined onto the inner surface of the face-sheets in order to ensure good bonding
(see Fig. 4a). The cores were tested in out-of-plane compression and in transverse shear at the three relative
densities �q ¼ 0:036, 0.05 and 0.10, using width W = 60 mm and aspect ratio L/H = 12. Additional longitu-
dinal shear tests were performed on the corrugated core specimens; it sufficed to test narrow specimens
comprising three corrugations in the 1–3 plane such that L = 6H, and a width to height ratio W/H = 12.

2.2. Tests on the diamond cores

Out-of-plane compression and transverse shear tests were performed on the diamond cores of relative
density �q ¼ 0:08, 0.19 and 0.25, and aspect ratios L/H = 2, 4 and 8. Each had five cells along the core height
direction (the x3-direction), and a width to height ratio, W/H = 1. The specimens employed in the transverse
shear tests contained corrugations on the inner surfaces of the face-sheets (see Fig. 4b). No such corrugations
were required for the compression tests, flat 3 mm thick stainless-steel face-sheets sufficed (Fig. 4c). No
longitudinal shear tests were performed as such tests required specimens with aspect ratios W/H P 8: the
manufacturing and laboratory testing difficulties associated with such large specimens were impractical.
Fig. 4. Photographs of the as-manufactured specimens: (a) corrugated core specimen, �q ¼ 0:036; (b) diamond core specimen, �q ¼ 0:19,
L/H = 8 used in the transverse shear tests; and (c) diamond core specimen, �q ¼ 0:19, L/H = 4 used in the out-of-plane compression
tests.
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2.3. Properties of the parent material

Tensile specimens of dog-bone geometry were cut from the as-received 304 stainless steel sheets and were
subjected to the same brazing cycle as that used to manufacture the corrugated and diamond cores. The
measured true tensile stress r versus logarithmic strain e response shown in Fig. 5 is adequately represented
by an elastic–plastic solid of Young�s modulus Es = 210 GPa, 0.1% offset yield strength ry = 210 MPa and
linear hardening with modulus Et � dr/de � 2.1 GPa.

2.4. Test protocol

The compressive and shear responses of the corrugated and diamond cores were measured in a 150 kN
screw driven test machine at a nominal applied strain-rate of 10�4 s�1. The load was measured by the load
cell of the test machine and was used to define the nominal stress, while laser extensometers were employed
to measure the compressive and shear strains. The compression and shearing directions are described using
the co-ordinate systems sketched in Figs. 1 and 2.

The out-of-plane compressive response (r33 versus e33) was measured by compressing the specimens be-
tween two rigid platens. Linear bearings between the platens and the face-sheets of the specimens ensured
frictionless loading. The transverse shear (r31 versus c31) and longitudinal shear (r32 versus c32) responses
were measured via single lap shear tests conforming to the ASTM Standard C273-94 (1994) for shear tests
on sandwich cores. The length to thickness ratio of the corrugated and diamond core specimens in the shear
tests was taken to be 12 and 8, respectively.
3. Corrugated cores

The out-of-plane compressive responses (Fig. 6a–c) all display a peak stress followed by a strong soft-
ening response. Densification of the core was not investigated because the corrugations on the inner sur-
faces of the face-sheets permitted nominal compressive strains, e33 > 1. The peak stress increases
systematically with increasing �q. Images at different levels of compression (Fig. 7) indicate that the peak
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Fig. 7. Photographs of the �q ¼ 0:05 corrugated core showing the deformation mode during tests in out-of-plane compression.
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load is governed by buckling of the constituent struts while the subsequent softening is associated with the
post-buckling response.

The transverse shear responses (Fig. 8) also exhibit a peak, occurring at stresses similar in magnitude to
those found for compression. Images at selected levels of engineering shear strain (Fig. 9) suggest that the
peak load is now governed by plastic buckling of one of the constituent struts. The exception is the peak at
�q ¼ 0:10, which is governed by tearing of the core from the face-sheet; causing the post-peak softening to be
significantly less than in the other cases.

In longitudinal shear (Fig. 10) the peak stresses exceed those in compression or transverse shear and
the post-peak softening is more moderate. The �q ¼ 0:10 specimen has no peak: instead it continues to
harden up to the largest strain investigated (c32 = 0.6). Images (Fig. 11) of the deformation indicate that
it involves ‘‘wrinkling’’ of the sheets comprising the core. Typically five wrinkles form along the width
W of the specimens at �45� to the shearing direction. The amplitude of the wrinkles increases with increas-
ing strain.
3.1. Analytical models for the compressive and shear response

At small t/l, the contribution to the overall stiffness from bending of the constituent struts is negligible
compared to that from stretching. Thus, for deriving a simple expression for the stiffness we assume the
struts to be pin-jointed to the face-sheets whereupon the out-of-plane Young�s and transverse shear moduli
are given by
E33 ¼
Es

1� m2
�q sin4x; ð2Þ
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and
Fig. 8.
�q ¼ 0:0
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Fig. 9. Photographs of the �q ¼ 0:05 corrugated core showing the deformation mode during tests in transverse shear.
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respectively, where Es and m are the Young�s modulus and Poisson�s ratio of the constituent solid. Note that
since W� l, plane-strain conditions are established and thus the factor 1 � m2 has been introduced. Under
longitudinal shear, the engineering shear strain c23 is related to that in wall of the corrugated core constit-
uent struts cw via
c32 ¼
cw

sin x
. ð4Þ
An energy balance gives the effective shear modulus G32 of the corrugated core as
G32 ¼
Es

2ð1þ mÞ �q sin2x. ð5Þ
We proceed to develop analytical models for the peak strength of the corrugated core. For small t/l, an
equilibrium analysis dictates that the peak compressive and transverse shear strengths are given by
rp
33 ¼ rc�q sin2x; ð6Þ
and
rp
31 ¼ rc

�q
2

sin 2x; ð7Þ
respectively, where rc is the maximum compressive strength of the constituent struts. This maximum com-
pressive stress is set by either elastic or plastic buckling of the struts as given by the Euler elastic buckling
and Shanley plastic bifurcation stresses (Shanley, 1947),
rc ¼

k2p2Es

12 1� m2ð Þ
t
l

� �2

if
t
l
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
ffiffiffi
3
p

1� m2ð Þry

p2k2Es

s
;

k2p2Et

12

t
l

� �2

otherwise;

8>>><
>>>:

ð8Þ
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Fig. 11. Photographs of the �q ¼ 0:05 corrugated core showing the deformation mode during tests in longitudinal shear.
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respectively. Here, Et � drs/des is the tangent modulus of the plane strain true tensile stress versus logarith-
mic strain curve of the parent material evaluated at rs = rc, and ry its yield strength. Note that the
von-Mises yield criterion and flow rule dictate that the plane strain yield stress is related to the plane stress
tensile. stress by, rs ¼ 2r=

ffiffiffi
3
p

, and the work conjugate strain to rs is related to the plane stress tensile strain
by, es ¼

ffiffiffi
3
p

e=2. The factor k depends upon the end-constraints of the struts. For the corrugated core it is
reasonable to assume the struts be built-in, giving k = 2. In general, Eq. (8) needs to be solved numerically
with the measured tensile response of the parent material used to define Et. In the case of an ideally plastic
material, Eq. (8) reduces to
rc ¼

k2p2Es

12ð1� m2Þ
t
l

� �2

if
t
l
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
ffiffiffi
3
p
ð1� m2Þry

p2k2Es

s
;

2ryffiffiffi
3
p otherwise.

8>>><
>>>:

ð9Þ
It remains to develop a relation for the longitudinal shear strength of the corrugated core. In case of an
elastic ideally plastic parent material, the peak longitudinal strength of the corrugated core is given by
rp
32 ¼

3p2Es

4 1� m2ð Þ cos x
t
l

� �3

if
t
l
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1� m2ð Þry

3
ffiffiffi
3
p

p2Es

s
;

ryffiffiffi
3
p

cos x

t
l

otherwise;

8>>><
>>>:

ð10Þ
where we have employed the prediction of Timohensko and Gere (1961) for the elastic buckling of thin
plates. In case of a strain hardening parent material response, we can only provide analytical expressions
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for the shear stress versus strain response of the corrugated core prior to the development of wrinkles (i.e.
when the constituent sheets are in a uniform state). With the engineering shear strain cw in the walls of the
corrugated core related to the macroscopic applied strain c32 via Eq. (4), the principle of virtual work im-
plies that the corresponding wall stress sw is given by
s32 ¼ sw�q sin x. ð11Þ
The longitudinal shear stress versus strain response (s23 versus c23) follows from the solid material tensile
response as
s32 ¼

Es

2ð1þ mÞ �q sin2xc32 if c32 <
2ð1þ mÞryffiffiffi

3
p

Es sin x
;

�q sin xffiffiffi
3
p r erefð Þ otherwise;

8>><
>>: ð12Þ
where eref � c32 sin x=
ffiffiffi
3
p

and r(e) is the uniaxial true stress logarithmic strain curve of the solid material. It
is emphasized that this analysis assumes uniform deformation of the corrugated core. Thus, the analysis
provides an upper bound to the strength of the corrugated core and does not predict the peak shear strength
set by wrinkling of the corrugated core sheets.
3.2. Finite element analysis

Finite element calculations of the compressive and shear response were performed using the general pur-
pose finite element package ABAQUS (HKS—Hibbitt, Karlsson & Sorensen, Inc.). It suffices to model a
single corrugation, modelled using 3-dimensional linear shell elements (S4R in the ABAQUS notation).
All degrees of freedom (translational and rotational) of the nodes at the base of the unit cell were fully con-
strained, while only the rotational degrees of freedom of nodes at the apex of the unit cell were constrained.
Displacements were applied uniformly to the nodes at the apex of the unit cell to simulate the compression
or shear of the core. Typically, the model comprised 100 shell elements in the x2-direction and 40 elements
along the length of the struts: giving a total of 8000 linear shell elements.

The uniaxial true stress versus logarithmic plastic strain was tabulated in ABAQUS using the experimen-
tally measured response (Fig. 5). For the compression and transverse shear calculations, an imperfection in
the shape of the buckling mode was imposed onto each strut. The imperfection is described by an initial
transverse deflection w
wðsÞ ¼ ft
2

1� cos
2ps

l

� �� �
; ð13Þ
where f is a dimensionless imperfection parameter and s the arc length along the strut measured from one
end. Similarly, in the longitudinal shear calculations, an imperfection in the first eigenmode and maximum
amplitude equal to 25% of the sheet thickness was specified in the FE calculations.

In the out-of-plane compression calculations, displacements were prescribed in the x3-direction,
uniformly at all the nodes on the apex of the unit cell, with the tractions, T1 and T2 (in the x1- and x2-
directions, respectively) set equal to zero (natural boundary conditions for displacement-based variational
problems). Similarly, loading in the transverse and longitudinal shear simulations was applied through pre-
scribed displacements in the x1- and x2-directions respectively, applied uniformly to all nodes on the apex of
the unit cell with the traction T3 = 0. An additional set of shear simulations was performed with the dis-
placements u3 = 0 specified on all nodes on the apex of the unit cell. We shall refer to the simulations with
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tractions T3 = 0 as unconstrained while the simulations with u3 = 0 as constrained. These choices should
bound the measured responses.
3.3. Comparison between predictions and measurements

3.3.1. Out-of-plane compression

Comparisons between the finite element predictions and measurements (Fig. 6) reveal that the post-peak
response is captured accurately for both choices of the imperfection magnitude, f = 0.01 and 0.25. How-
ever, only the f = 0.25 simulations predict the peak stress accurately. This level of imperfection corresponds
to a transverse deflection of 0.075 mm in the struts, consistent with the imperfections introduced during
manufacture. The analytical calculations (Eq. (8)) over-predict the peak strength (Fig. 12a) because they
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do not include imperfections; the inclusion of such imperfections within the FE calculations rectifies the
discrepancy.
3.3.2. Transverse shear

The constrained and unconstrained FE simulations (f = 0.25) of the response are included in Fig. 8
along with the measurements. The unconstrained simulations capture the peak strength but under-predict
the post-peak stress. The constrained calculations predict a hardening response at stresses substantially lar-
ger than the measurements. The measured response is intermediate between the constrained and uncon-
strained simulations. This suggest that the grips provide some constraint against displacement in the x3-
direction. Consistent with out-of-plane compression, the analytical calculations and FE simulations with
f = 0.01 over-predict the peak strength (Fig. 12b) while the f = 0.25 simulations accurately capture the
measurements.
3.3.3. Longitudinal shear

A comparison between the analytical predictions with strain hardening (Eq. (12)), FE simulations and
measurements (Fig. 10) indicate that the analytical predictions are in good agreement with the constrained
simulations. Again, the measured responses for the �q ¼ 0:036 and 0.05 cores are between the unconstrained
and constrained predictions, consistent with lateral constraint from the grips. For the core with �q ¼ 0:10,
the analytical model and both FE simulations predict an almost identical response up to c32 � 0.3. How-
ever, the measured response is much weaker due to tearing of the core from the face-sheets.
4. Diamond core

The out-of-plane compressive responses (Fig. 13) reveal large oscillations associated with the sequential
collapse and lock-up of successive layers of the core. The sequence of events is evident from the images
(Fig. 14). The transverse shear responses are plotted in Fig. 15 for L/H = 8. For comparison purposes,
the corresponding compression data from Fig. 13 are included. Whilst the peak strengths in compression
and transverse shear are approximately equal, the post-peak responses differ. Images of a progressively
deformed transverse shear specimen (Fig. 16) indicate an absence of successive deformation bands. Rather,
rupture occurs in the struts inclined at h = 45� with respect to the x1-direction.
4.1. Analytical models for the compressive and shear response

Zupan et al. (2004) developed expressions for the stiffness and strength of the woven sandwich core.
Expressions for the stiffness and strength of the diamond core may be obtained in a similar manner. Details
of the derivations are omitted and the reader is referred to Zupan et al. (2004).

Assuming plane-strain deformation, the out-of-plane compressive and transverse shear moduli are
E33 ¼
Es

1� m2
1� 1

ðL=HÞ tan x

� �
�q sin4x; ð14Þ
and
G31 ¼
Es

1� m2
1� 1

ðL=HÞ tan x

� �
�q
4

sin22x; ð15Þ
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respectively. Here, Es is the Young�s modulus of the parent material of the diamond core and x is the cell
angle. The out-of-plane compressive and transverse shear peak strengths are
rp
33 ¼ rc 1� 1

ðL=HÞ tan x

� �
�q sin2x; ð16Þ



Fig. 14. Photographs of the �q ¼ 0:08 diamond core showing the deformation mode during tests in out-of-plane compression.
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and
rp
31 ¼ rc 1� 1

ðL=HÞ tan x

� �
�q
2

sin 2x; ð17Þ
respectively, where rc is the maximum compressive strength of a constituent strut is set by the elastic or
plastic buckling given by Eqs. (8) and (9). The weakest buckling mode corresponds to that for pin-ended
plates of length, l, consistent with the buckling mode observed in Fig. 14. Thus, we set k = 1 in Eqs. (8) and
(9).

4.2. Finite element analysis

Finite element calculations of the compressive and transverse shear responses were performed using the
general purpose finite element package ABAQUS (HKS—Hibbitt, Karlsson & Sorensen, Inc.). Here the en-
tire specimen was modelled using 3-dimensional linear shell elements (S4R in the ABAQUS notation). All
degrees of freedom (translational and rotational) of the nodes on the bottom surface of the specimen were
fully constrained while only the rotational degrees of freedom of nodes on the top surface were constrained.
In addition, the translational degrees of freedom of the nodes on the top surface were constrained to be
equal in order to simulate the bonding to the rigid face-sheet. Typically, each strut of the diamond core
was discretised into 20 elements along its length, l, and in the x2-direction.

The uniaxial true stress versus logarithmic plastic strain was tabulated in ABAQUS using the experimen-
tally measured response (Fig. 5). An imperfection in the shape of the buckling mode was imposed onto each
strut. The imperfection is described by an initial transverse deflection w
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wðsÞ ¼ ft sin
ps
l

� �
; ð18Þ
where f is a dimensionless imperfection parameter and s the arc length along a strut measured from one
end. This imperfection corresponds to an Euler pin-ended struts buckling mode as the primary elastic



Fig. 16. Photographs of the �q ¼ 0:19 diamond core showing the deformation mode during tests in transverse shear.
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buckling mode of the diamond core that involves the rotation of the diamond core joints. By contrast, an
imperfection (13) is employed in the corrugated core analysis as the sheets of the corrugated core are
clamped at the rigid faces and hence the primary buckling mode in that case is that of an Euler
clamped–clamped strut.

In the compression calculations, displacements were prescribed in the x3-direction to the top surface with
the tractions, T1 and T2 (in the x1- and x2-directions, respectively) set equal to zero (natural boundary con-
ditions for displacement-based variational problems). Similarly, loading in the transverse shear simulations
was applied through prescribed displacements in the x1-direction, applied to the top surface with the trac-
tions T3 = T2 = 0. This corresponds to the unconstrained case reported in Section 3.2. Consistent with the
comparison between the FE predictions and measurements in Section 3.3, this boundary condition is
thought to be the more realistic for the single lap shear experiments.
4.3. Accuracy of predictions

A comparison between the analytical predictions and the measured values of peak out-of-plane compres-
sive strength (Fig. 17a) indicates that, while the trends are consistent, the analysis over-predicts the
strength: this discrepancy is again attributed to the presence of imperfections. The FE predictions of the
peak compressive strength for an imperfection value f = 0.1 are included in Fig. 17b. These agree well with
the measurements and confirm this suggestion.
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In transverse shear (Fig. 18) good agreement between the analytical predictions, FE simulations (f = 0.1)
and measurements is apparent for �q > 0:1. Note that �q ¼ 0:08 represents the transition between elastic and
plastic buckling; where the imperfection sensitivity is greatest (see Hutchinson, 1974, for a detailed discus-
sion) and here the measured peak shear strength is much less than the analytical and FE predictions.
5. Comparison of corrugated and diamond cores with competing core designs

It is instructive to compare the performance of the corrugated and diamond cores with competing cores.
The dependence of peak compressive strength rp and shear strength sp upon relative density is summarized
in Fig. 19. These figures include data for 304 stainless steel square-honeycombs (Côté et al., 2004), AL6XN
stainless steel pyramidal cores (Zok et al., 2004; Côté, 2005) and aluminum alloy metal foams (Ashby et al.,
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2000). Note that the strengths have been non-dimensionalised by the factor ry�q. A value of rp=ðry�qÞ equal
to unity is the maximum achievable in the absence of strain hardening. However, these austenitic stainless
steels can strain harden appreciably enabling the non-dimensional strength rp=ðry�qÞ to exceed unity for the
square honeycomb.

It is noted from Fig. 19a that the corrugated and diamond cores have a higher peak strength than metal
foams but are weaker than the square-honeycombs. The square-honeycombs has exceptional strength be-
cause the core members are aligned with the loading direction and contain few manufacturing imperfections
enabling the cells to undergo plastic buckling in a axial–torsional mode, see Côté et al. (2004). In contrast,
the corrugated and diamond cores are misaligned with the loading direction and collapse by weaker plastic
buckling modes.

The shear strengths sp of the various cores, defined by the peak stress in transverse shear, are compared in
Fig. 19b. In longitudinal shear of the corrugated and square-honeycomb cores there is no peak; conse-
quently, the strength is defined by the shear stress at 5% engineering shear strain. The longitudinal shear
strength of the corrugated core is comparable to that of the square-honeycomb with sp=ðry�qÞ approximately
equal to its optimum value of 0.5 (assuming the Tresca yield criterion). In transverse shear, the corrugated
and diamond cores are weaker than the square-honeycomb.

The compressive and shear energy absorption capacities of the corrugated and diamond cores are
compared with those of competing sandwich core topologies in Fig. 20a and b, respectively. Here, the com-
pressive and shear energy absorption capacities are defined by
W c ¼
Z �e

0

rde ð19Þ
and
W s ¼
Z �c

0

sdc; ð20Þ
respectively, where r and s are the compressive and shear stresses, and e and c are the work-conjugate strains.
The energy absorption capacities are calculated up to the practical limits of strain �e ¼ �c ¼ 0:5. The normal-
isations of energy used in plotting Fig. 20 are chosen such that the non-dimensional compressive and shear
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energy absorption capacities of sandwich cores made from an ideally plastic material of yield strength ry are
equal to 1 and 0.5, respectively. The soft post-buckling responses of the corrugated and diamond cores in out-
of-plane compression and transverse shear result in lower energy absorptions Wc and Ws than for the square-
honeycomb and pyramidal sandwich cores. However, in longitudinal shear the non-dimensionalised value of
Ws of the corrugated core approaches the optimal value of 0.5 and is comparable to that of the square-
honeycomb.
6. Concluding remarks

Prismatic corrugated and diamond cores have been manufactured by slotting together sheets of 304
stainless steel and then brazing together the assembly. Three relative densities of the corrugated core were
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tested in compression and transverse as well as in longitudinal shear. By including geometric imperfections,
the finite element models are in good agreement with the measured strengths while the analytical models
(based upon the perfect microstructure) over-predict the measured strengths.

Three relative densities of the diamond cores were tested in out-of-plane compression and transverse
shear. The compressive strength is sensitive to the aspect ratio of the specimen for aspect ratios less than
about 4. Again, the measured strengths are below the analytical predictions due to geometric imperfections
introduced during manufacture.

The prismatic cores have weak buckling modes under out-of-plane compression and shear and hence
have lower strength to weight ratios than the square-honeycomb and pyramidal sandwich cores. However,
the cores have a near optimal longitudinal shear strength and energy absorption capacity with
sp=ðry�qÞ and W s=ðry�q�cÞ � 0:5. Thus, prismatic cores have high potential for application in sandwich beam
construction.
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