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I. INTRODUCTION 

If xi, ***, x, and pi, .~a, p, are nonnegative real numbers with 
2 pi = 1, and we define pLr = C p,x[ , then according to Lyapunov’s 
inequality [I, p. 271, 

p$- < p~-vp~~;u, o<u<v<w. (l-1) 

Since the pi are probabilities, we may consider a random variable X with the 
distribution P{X = xi} = p, , i = 1, .*a, n, in which case pFLr = EXT. But 
(1.1) holds for arbitrary nonnegative random variables, so that in the follow- 
ing we need only assume that P(X > 0} = 1 and p,. = EXr. 

Generally speaking, there is no positive constant y for which 

Pv 
w-u > w-v ‘v--Y 

, YPU Pru ? u<v<w. (l-2) 

(A related result is given by Karlin, Proschan, and Barlow [3].) 
However, such a constant may exist if further restrictions are placed on the 
distribution F of X. For example, if log [l -F(x)] is concave and u is a 
positive integer, then Barlow, Marshall, and Proschan [2] obtain 

y = [T(v + l)]“-” [I+ + I)]-+-0) [T(w + 1)1-u+“‘. 

In this paper, we consider the restriction that X is positive and bounded, 
i.e., P{m < X < M} = 1, with m > 0, and do not require that u be non- 
negative. Under this condition, the three special cases of (1.2) obtained by 
taking u = 0, z, = 0, or w = 0 have each been recently obtained for discrete 
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random variables by Cargo and Shisha [4]. The special case u = 2, - r, 
w = v + r, Y > 0 yields 

I%--TPv+r . Y& < 

and follows from results of Greub and Rheinboldt [5]. When v = 0, Y = 1, 
this reduces to the well-known inequality of L. V. Kantorovich (for a list 
of references and general discussion see [6]). 

As is well known, Lyapunov’s inequality can be obtained directly from 
Holder’s inequality. It is not surprising then, that in the course of 
deriving (1.2), we obtain some general results which also yield reversals of 
Holder’s and Minkowski’s inequalities. 

II. A FUNDAMENTAL INEQUALITY 

By determining conditions when a linear combination of xr and x8 is non- 
negative in the interval [m, M], we obtain a fundamental inequality from 
which we are able to derive all of the succeeding results of this paper. 

For 0 < m < M and r < s, rs # 0, we introduce the notation 

a = a(m, M) = 
MT-mm 
MS _ ms ’ b s b(m, M) = M8z8 balms . 

Note that a > 0 if and only if rs > 0, and b > 0 if and only if s > 0. 

LEMMA 2.1. If X is a random variable satisfring P(m < X < M} = 1, 
with m > 0, and Z is a positive random variable, then 

r[EZX’ - aEZX* - bEZ] > 0, for r < s. 

Equality holds if and only if P(X = m) + P(X = M} = 1. 

(2-l) 

PROOF. To prove (2.1) it is sufficient to show that for m < x < M, 

f(x) = r[xr - & - b] 3 0, r < s, (2.2) 
for then 

r[ZXr - aZX8 - bZ] > 0, r -=c s, (2.3) 

with probability one, and (2.1) follows by integrating (2.3). 
To prove (2.2), note that f’(x) = ~x+l(r - u.rP+) = 0 has a unique 

zero in (0, m), so that f(x) has at most two zeros in (0,~). But by the choice 
of a and b, f(m) = f(M) = 0, so that f(x) is of one sign for m < x < M. 
If 0 < r < s, then f (0) = - rb < 0 implies that f(x) > 0, m < x Q M. 
If Y < 0 and I < s, then lim, I ,, f (x) < 0 implies that f (x) > 0, m < x < M. 
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Equality holds in (2.1) if and only if equality holds in (2.3) with probability 
one, the condition for which is immediate. 1 

We note that the positivity of Z can be weakened to nonnegativity, but with 
some resulting minor changes in the conditions for equality. 

LEnrhlA 2.2. If P{m < X 6 M} = 1 with m > 0, and P{Z > 0} = 1, 
then for Y < s, 

( EZXs)l’s 
(EZLyT)l,r < K(E.V’~)--(~‘~), (2.4) 

where 

[ 

l/S 

K = (s 's:,(sr81 1) 1 [ s(tP - 6') 1 
-1/r 

(s - Y) (6s - 1) ’ 

and 6 = M/m. Equality holds ;f and only if P{X = m or X = M} = 1 and 
EZXs = rb[a(s - Y)]-l EZ. 

PROOF. From (2.1), it follows that 

(EZXs)l’s < (EZX8)1’s 
(EZX’)l ” '(aEZX8 + bEZ)ll'= dEZXS)' 

It is easily seen that the unrestricted maximum of v(y) occurs at 

y,, = rb[a(s - Y)]-’ EZ, 

and gj(y,) is the bound of (2.4). 
Since m < X < M with probability one, it might appear that (2.4) could 

be improved if v is maximized subject to the restriction 

smsEZ < sEZXB = sy < sMpEZ. 

However, we find by a straightforward check that yO does satisfy this restric- 
tion. We conclude that equality occurs if and only if equality holds in (2.1), 
and in addition, v(EZX*) = I. m 

III. REVERSAL OF THE LYAPUNOV,H~LDER, 
AND MINKOWSKI INEQUALITIES 

To apply the inequalities of Section II, we need only specify the choice of 
X and Z. In particular, we consider the cases 

(X9 Z) = (4 -q and (X, Z) = (VU-‘, PU”). 
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When (X, Z) = (X, Xt), we obtain from (2.1) and (2.4) with t = u, 
r+t=v, s + t = w, that if u < v < w, then 

(MU-U _ mw-u) pv _ (Mu-u _ mv-u) pw 
- (MW-Umv-U _ Mv-umw-u) pu > 0, (3.1) 

pi7” 2 YtrP:~, (3.2) 
where 

(&-u - @J-U) (w - u) 

I 

w--u 

y = (W” - 1) (w - 0) 1 [ 
p-u - p-u) (v - u) 

@J-u - 1) (w - 0) 1 
-(v-da 

Inequality (3.2) is the reversal of Lyapunov’s inequality mentioned in the 
introduction. 

When (X, Z) = (VU-l, WV”), we obtain from (2.1) and (2.4) that if 
P(m < ViF Q M) = 1, with m > 0, then for Y < s, 

r[ElJ8-’ - aEVS+ - bEU”V-“1 > 0, (3.3) 

(EUs-?)-l/7(EVs-r)1/8 < K(EU~V-~)(1/~)-(l/7), (3.4) 

An equivalent formulation may be obtained by writing EUt = s Ut o!A, 
EVt = s VGX When h is uniform on [OL, /3] or (1, 2, **a, n}, and Y = - 1, 
s = 1, both (3.3) and (3.4) have been obtained by Diaz and Metcalf [6]. 

To obtain a reversal of Holder’s inequality, let fp = Us+, $ = V8-‘, 
and 8 = a*-*. A direct substitution in (3.4) and (3.3) 

THEOREM 3.1. Let f andg be nonnegative functions such that I < f-Pgq ,< 10 
and J’fg dh exists. If p > 1 and (l/p) + (l/q) = 1, then 

(3.5) 

and 

2+91qP~p - 1) If %!A + wqw - 1) J. gQdh < (e - 1) s fgdh, 

where 

(3.6) 

c=+,q,e)= 
qv2pl/P~l/Pq(elb2 _ 1)1/9 (cl/p _ 1)1/~ 

(0 - 1) 
. 

Just as Minkowski’s inequality is derived from Holder’s inequality, we 
obtain from (3.5) 

(j (f +g>p qp >, c [(SfrdyP + (JPq’u] - (3.7) 
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REMARK. Inequalities (3.5) and (3.7) are reversed for 0 < p < 1. It 
should be noted that the proofs did not require h to be finite. 

A particular case of interest is p = 4 = 2, which yields the reversal of the 
Cauchy inequality due to Schweitzer [7], namely, 

(3.8) 

Some interesting results involving the geometric mean can be obtained 
from the various inequalities. From (3.1) with w = 0, we obtain 

(&PUmU - mWMU) - (mU - &P) p2v 
1 MW-mmw 1 ilU < l,a --.Pu 3 

and a similar upper bound for ,.L~ . “UJ After taking limits as u --+ 0 (and w -+ 0), 
we obtain 

u{(M’ - mC) eE1ogX - (EX’) log (M/m) - MT log m + rn’ log M} > 0. (3.9) 

By a similar argument, from (3.2), we obtain with p = P(6’-1)-‘, 

rElogX-logEXr+logp-loglogp-110, (3.10) 

a result also obtained by Cargo and Shisha [4]. 
The two choices of (X, 2) in (2.1) and (2.4) which we have utilized in this 

section exemplify the methods. However, other choices, e.g., 

(X, 2) = (UV, WV) or (X, Z) = (X, etx) 

lead to other types of inequalities. 

IV. MATRIX THEORETIC INTERPRETATIONS 

If A is an 1z x n Hermitian matrix with (real) eigenvalues 8r , em*, 0, , 
and if x is a unit row vector, then 

xA’x* = (XT) D;(T*x*) = yD;y* = z y&8;, 

where I’ is unitary, and Do = diag (r9, , .a*, 0,). Since ylyi are nonnegative 
and add to unity, xAvx* can be regarded as the rth moment, pr, of a random 
variable taking values on the eigenvalues of A. (For another application see 
Marshall and Olkin [8].) With this interpretation we obtain from (3.1) and 
(3.2), that if A is positive definite and 0 < m < Bi < M, i = 1, m**, n, then 

(J4w-u _ mm-u) xL4ux* - (M+-u _ mu-u) xA~x* 
3 (Mw-urn+” - Mv-urn”-u) xL4~x*, (4.1) 

(xA”x*)~- > Y(xA~x*)w-” (xAwx*)“-U. (4.2) 
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Of particular interest is the choice u = - 1, v = 0, w = 1, which in (4.2) 
yields the more familiar form of Kantorovich’s inequality. From (4.1) we get 
a strengthened version of Kantorovich’s inequality, 

xA-lx* < (M + m - xAx*)/Mm. (4.3) 

If A and B are commutative Hermitian matrices, then they can be simul- 
taneously diagonalized by a unitary matrix, so that 

and 

Consequently, these quadratic forms may be regarded as moments Et?=, 
EW, and E@%P, respectively, where 

~(0 = eij = Pp = p,) = Pi8 = ei , a = vij =yiyi , i = 1, ***, ?z. 

Using (3.3) and (3.4) we obtain, for r < s, 

r[xA-X* - axB8-7x* - ~xA~B-~x*] > 0, (4.4) 

[xB8-rx’x*]lIs [xA~-rx*]-ll+ < K[xA8fj-rx*] WsHl/r)~ (4.5) 

Here the roots Bi and pi of A and B satisfy m < q@i < M. The case I = - 1 
and s = 1 in (4.5) was obtained in [5]. 

Some further results can be obtained by considering compound matrices. 
The pth compound B(,, of a K x 1 matrix B is defined for p Q min (K, 1) 
to be the (i) x (i) matrix of pth order minors of B arranged in lexicographic 
order (see [9] or [lo]). We write trZ, B = tr B(,, , and make use of the Cauchy- 
Binet Theorem (BC),,, = Bl,,Ct,, . 

As before, let A : n x n be Hermitian, with characteristic roots 
4 B *a* > 0, ; then the characteristic roots h, > *** > h(,, of A(,, are the 
products of the 8, taken p at a time. 

D 

Let X : I x tl satisfy tr, XX* = 1 (so that rank (X) 3 p). Then 

XAkX* = XrDkr*X* ze YD”Y*. 
Thus 

Since 

tr, YD”Y* = tr D/,,(Y*Y),,, = tr D&,2 = z %x6, . 

tr 2 = trp, Y*Y = trP YY* = trD XX* = 1, and zii > 0, 

we may regard tr, YDkY* as the kth moment of a random variable taking 
values on the (i) points hi , i.e., on the products of the roots of A taken p at 
a time. 
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With this interpretation, we obtain from (3.1) and (3.2) that if -4 : II x n 
is Hermitian with characteristic roots A, , ..a, A,, , m < A, < M, and if 
X : I x n satisfies tr, XX* = 1, then 

(Mw-u _ mt~-u) tr, XAvX* _ (Mu-u _ m~‘-~) tr, XL~“‘X* 
a (~~-u~v-u _ np-umt+ti) tr, x~Au~~*, (4.6) 

(tr, XA”X*)~~‘-U 3 y(tr, XAUX*)~‘-~ (tr, X.dmX*)c-u. (4.7) 

In the case 1= p, tr, XA”X* = det (XA”X*), and these inequalities take a 
particularly simple form. The special case of (4.7) with 

(24, ZJ, w) = (k - 1, 6, 6 + 1) 

was obtained by Schopf [ll]. 

17. RELATED INEQUALITIES 

In (2.2) we defined f(x) = r[.a?’ - a.$ - 61 which for r = - 1 and s = 1 
becomes 

f@) = (x - m) w - 4 = M + m - x _ x-l 
mM?t mM 

so thatf(x) 2 0 is immediate. However, the nonnegativity also follows from 
the convexity of x- l. The essential point is that the function x-l < ax + 6, 
m < x < M, with equality at the end points x = m and x = M by choice 
of a and 6. This suggests that we consider functions g(x) and h(x) satisfying 
g(x) < 4-4 + 6, m < x < M, g(m) = ah(m) + 6, andg(M) = ah(M) + 6. 
The latter two conditions determine 

a = g(M) - g(m) 
h(M) -h(m) ’ 

6 = dm) h(M) -dnl) h(m) 
h(M) - h(m) ’ (5-l) 

If in the interval [m, M], either h is monotone and g/z-l is convex, or g is 
monotone and hg-l is concave, then g(x) < ah(x) + 6, and hence 

Eg(X) < aEh(X) i- 6, (5.2) 

where a and 6 are defined in (5.1). 
If B(X) > 0 and a < 0, then from (5.2), 

Eh(X) Q(X) < a[l3~(X)]~ + bEh(X) < g 

k(m) WV - 44 dW12 
= 4k(M) - &41 W(m) - 4Wl * (5.3) 

Equality in (5.3) can be achieved by a distribution concentrating on m and M. 
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Of course, if g(x) = x-i and h(x) = x’, then (5.3) is just Kantorovich’s 
inequality. 

Inequality (5.2) is a simple extension of the case that h(x) = x and g 
is convex; in this special form it is given by Edmundson [12], andmay be 
regarded as a reversal of Jensen’s inequality. Multivariate extensions of 
Edmundson’s results have been obtained by Madansky [13]. In both instan- 
ces, the results were obtained using convexity properties of moment spaces. 

We now consider the multivariate case from the point of view used to 
derive (5.2). Let X = (Xi, **a, X,) be a random vector with EXi = pi , 
andP{OdX,,cl)=l,i=l,..., n. Let g be a function defined on the 
unit hypercube 0 ,( x, < 1, i = 1, a**, n, with the property that g(xi , *a*, x,) 
is convex in each *z”~ for fixed .v~ , (Y # i. 

An upper bound for Eg(X) in terms of the pz may be obtained as follows. 
Let % be the class of functions h on 0 < xi < 1, i = 1, *me, n such that 
g(x) < h(x) and Eh(X) is a function of the pE . For any h E &‘, we have the 
inequality Eg(X) < Eh(X), and hence 

Eg(X) < in2 E&Y). 

If Eg(X) = Eh,(X), ha E S’, for some random vector satisfying the moment 
conditions, then 

isf Eh(X) = Eh,(X). 

In the case g is invariant under permutations of its arguments, we obtain 
inequalities illustrating the method, when the xi may be dependent, and when 
the xi are independent. 

The following Lemma is useful in proving that g(x) < h(x). 

LEMMA 5.1. Let Z,,, be the set of m-dimensional vectors with components 
0 or 1. Suppose g(x, , * ** , x,J is convex in each xi for jxed x, , (II # i, and 
@I, e-e, xn) is linear in each xi for jixed x, , a: # i. If g(z) < h(z), z E Z, , 
then g(x) < h(x) for all x in the unit hypercube. 

PROOF. Let x = (xi, ... , xVz) be an arbitrary but fixed vector in the unit 
hypercube, and xCk) = (xi , a**, xk). 

If zC,-i) E Z,-, , then by the linearity of h and convexity of g, 

hh, P Gz-1J a g(xu, 9 GHJ- 

Assume that for all z~,-~, E Z,-, , 

hh, 9 +a-,w) 2 dxm, , +z-d 
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Then 

4x, k+l) t ~~,-,+-1J = hh, 9 xzs+l, G-li-1,) 

= %+J+,,, , 1, %-k-l)) + (1 - %+1> h&d 9 0, G-k-1,) 

2 xk+lg(x,,, 1 1,%-k-l)) + (1 - ~,+,)gh ? a %-k-1)) 

>,&k+ll 9 qn-k-1) )T 

and by induction, h(x) > g(x). m 

When XI, *es, X, are independent, we consider the function 

h(x)=b,+b,~x,+b,C,X~~)-L...+b,~xi, 

where the bi are determined so that g, = g(nk) = h(vJ, h = 0, 1, -em, n, 
where ok is the vector with first K components equal to 1, and remaining 
components equal to zero. These equations may be written in the form 

It is easily seen that U-1 E (z&j) has elements ~“1 = (- l)i+j Uij , SO that 

h = 0, 1, ***, n. 

By the Lemma, it remains to show that g(z) < h(x) for z E 2, . Note that 
each z E 2, is equal to v,P for some K and some permutation matrix P. Since 
both g and h are invariant under permutations, 

g(z) = g(v,J = h(vk) = h(z). 

To summarize, we have obtained 

THEOREM 5.2. Let X = (Xl , -*., X,) be a random vector with independent 
components such that P{O < Xi < 1) = 1 and EXi = pi , i = 1, em., n. Let 
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g(x1 , *-*3 x,) be de$ned and convex in each xi , 0 < xt < 1, with the further 
property that g is invariant under permutations of the xi . Then 

+ 6 1)” Q go] sk p (5.4) 

wheregj =g(v,j,), vCi, is the vector with Jirst j components one and remaining 
components zero, and where sk is the kth elementary symmetric function of the pi. 

Equality is obtained if Xi , *me, X, are independent with 

P{Xi = I} = pi = 1 - P{X, = O}. 

To see this note that this distribution of X is concentrated at points x such 
that g(x) = h(x). 

In the special case g(x) = IIf t(x,) with t convex, b, takes the simple form 
b, = tt-“(t, - to)“, t, = t(O), tl 3 t(l) and hence (5.4) becomes 

E fi t(xi) < to” + ti-‘(tl - tO> 2 Pi + $-‘( tl - CJa 2 l-W&i 
1 i<j 

+ -** + (t1 - to)” (r1 -*- &I). (5.5) 

This result for g(x) = exp (xi + xa) was obtained by Madansky [13]. 
We now remove the condition of independence but retain the choice 

g(x) = 11: t(xi). In this case 

h(x) = a, + $ aixi , 
1 

and we determine the ai by gl, = g(v,,,) = h(v,,,), k = 0, 1, *a*, n. These 
equations may be written as 

1 1 1 *a* 1 
0 1 1 *** 1 

L?=ko, ***,g,) = (a,, -a-, a,) = aT. 

0 0 0 -a* 1 

Since T-l = (tij) has elements tii = 1, ti-lvi = - 1, and all other elements 
zero, it is easily seen that 

a = (g, , gl - go , -9 gn - g,-d 
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If a, < ..a < a, , or equivalently, 

gk - gk-1 2 gk-I - gk-2 9 k = 1, .*a, n, (5.6) 

then h(w(,,) < h(r+,,P) for any permutation matrix P, and hence, by the 
permutation invariance of g, 

g(a,k,P) = &+k,) = h(wd < h(w(k,P). 

By the Lemma, g(x) < h(x) for all x in the unit hypercube. 
The monotonicity condition (5.6) becomes 

[t(l)]” [t(O)]+” - 2[t( l)]“-’ [t(O)]“-“” + [t( l)]k-” [t(O)]“-“+” > 0, 

which is clearly satisfied if t(0) 3 0, t(l) 3 0. 
To summarize, we have 

THEOREM 5.3. Let (Xl , ..., X,) be a random wector with P{O Q X, < I} = 1 
andEXi=pi, i=l;**, n. Letg(x) = II; t(q), where t is conwex on [0, 11, 
t(0) 2 0, t(1) > 0. Then 

Eg(& , a--> xl) G go + 2 ki - Ri-1) Pi * (5.7) 
1 

The order of the Xi is arbitrary, and if we assume 1 2 p1 2 a** > pn > 0, 
then equality may be attained for P{X = w( k,} = p, , k = 0, a*., n, where 

(PO, **-t Pn) = (1 -tL1, Pl- t% 9 "'r Pn-1-b ,Pun) 

is determined by (p. , a**, pn) T’ = (1, pr , **a, &. Equality is attained 
because this distribution of X is concentrated at the points .r for which 

g(x) = 44. 
The result for g(x) = exp (xi + x2) was obtained by Madansky [13]. 

REMARK. Note that (5.7) holds for any g(x) which is invariant under 
permutations, convex in each element, and satisfying the monotonicity 
condition (5.6). This class of g’s is convex, and in addition to g(x) = ny t(xJ, 
includes, e.g., g(x) = Er t(q). 

The condition (5.6) was derived from the choice of T, which in turn is 
dependent upon the choice of n vertices from the 2” possibilities for which 
we require h(x) = g(x). The proper choice of vertices depends on the func- 
tion g and also upon the pI . Thus, for example, if 0 $ go < **. < g,, , 
Eypi < 1, then 
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yields the sharp inequality 

Two such functions g are 2; x5 and (CT xi)“. 

Note added in proof. An alternative proof of (5.4) was suggested by W. Hoeffding, 
and is based on the fact that ifg(x, , *me, x,) is convex in each x, for fixed X, (a # i), then 
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