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Abstract 

Shier, D.R., E.J. Valvo and R.E. Jamison, Generating the states of a binary stochastic system, 
Discrete Applied Mathematics 37/38 (1992) 489-500. 

An important aspect of planning a communication or distribution system is assessing its perform- 

ance when the components are subject to random failure. Since exact calculation of stochastic 

performance measures is usually difficult, the behavior of the system can instead be approximated 

by generating a subset of all system states. Specifically, we consider here the generation of states 

of a binary stochastic system in order of nonincreasing probability. Such an ordering ensures that 

maximum coverage of the state space (in terms of probability) will be obtained for a specified 

number of generated stater. We identify a particular discrete structure, a distributive lattic::, 

underlying this generation problem, and use this structure to guide an algorithm for generating 

in order the states of the given system. Computational results suggest that the proposed method 

improves on existing algorithms for this generation problem. 

Kqvwords. Algorithm, lattice, network, partial order, performance measures, reliability. 

1. Introduction 

It is frequently of interest to evaluate the performance of a system, such as a com- 
munication or distribution system, which is composed of failure-prone components. 
Since the exact calculation of most realistic performance measures (throughput, 
delay, reliability) is in general NP-hard 121, there is reason to investigate methods 
for approximating such measures. One approximation strategy involves generating 
the states of a given binary stochastic system in order of nonincreasing probability. 
As shown by Li ana Silvester [5], this can in fact be accomplished without examining 
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the entire state space. Once this generation procedure has been carried out, it is not 
difficult to obtain bounds on various performance measures for the system [5]. An 
attractive feature of this approach is that lower and upper bounds can be generated 
at each step, and the whole process of generating states in nonincreasing order can 
be continued until the bounds become sufficiently close. 

Li and Silvester discussed the application of this approach to several perform- 
ance measures arising in the analysis of computer networks. They provided an 
O(n2k + nk log k) algorithm for generating the k most probable states of a system 
with n components, where k must be specified in advance. An improved algorithm, 
that does not require k to be specified in advance, was subsequently given by Lam 
and Li [4]. This algorithm, with an O(nk + k log k) time complexity, provides an 
order of magnitude improvement over the previous procedure. 

Rather surprisingly, there is an elegant algebraic structure (a distributive lattice) 
underlying the state space, as discussed in Section 2. This structure can be exploited 
to produce an algorithm for generating the most probable states of the system in 
order, without the need to examine the entire state space. Section 3 discusses the 
details of this algorithm and compares it to the method given in [4]. In addition, 
the worst-case computational complexity of the algorithm is shown to t-e related to 
a certain algebraic invariant of the lattice. Computational result: with implementa- 
tions of the various algorithms are described in Section 4. 

2. Structure of the state space 

ConsiEcr a system with n failure-prone components 1,2, . . . , n, assumed to fail in- 
dependently of one another. Suppose that component i is found in the operational 
mode with probability p,, and in the failed mode with probability qi = 1 -pi. 
Without loss of generality it can be assumed that each pi z+, since otherwise the 
analysis can proceed using 1 -pi in place of pi. Also we will number the com- 
ponents from least reliable to most reliable, giving 

Consequently, the ratios Ri = qi/pi are placed in nonincreasing order: 

lrR,~R,z-rR,,z-0. (2) 

Each state of the system corresponds to a subset X of the set of components 
{1,2,..., n > r where the elements of X represent the failed components occurring in 
that state. The slate space, containing all states for n components, is denoted by 
S= $, where ISI = 2”. Assuming independent failures, each state XE S has prob- 
ability p(X) given by 

(3) 
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where R(X) is the R-value of state X. The speciai case when X = 0 (that is, when 
all st components are operational) is assigned the R-value 1, consistent with equation 

(3). 
The objective here is to generate the states X in order of nonincrzasing probability 

p(X). It will be seen that simply knowing the ordinal information conveyed by (1) 
provides considerable information about the relative probabilities of the various 
states. To clarify this connection, we define, for any two states Xi,XjE S, the order 
relation Xi IXj if p(Xi) ZP(Xj) holds for all values P,,~ satisfying (1). It is then 
straightforward to show the following. 

Property 2.1. The set S of all states forms a partially ordered set (S, 1). 

We can represent this partMy ordered set (S, 2) as a (directed) graph in which 
each state XE S corresponds to a node of the graph. If state X = {i ], iz, . . . , ik > E S, 
where i, <i2< l _ <ik, then the associated node is labeled ilia4k. The distinguish- 
ed state X = 0 corresponds to node 0. If Xi ZXj holds, then an arc is drawn be- 
twecn the corresponding two nodes in the graph. 

Note that by equation (3) comparing p(Xi) with P(Xj) for all pill satisfying (1) is 
equivalent to comparing R(Xij with R(Xj) for all R,,, satisfying (2), so that the 
ordering of R-values in (2) completely determines the arcs of this graph. For exam- 
ple, consider the partially ordered set (S3, 2). An arc extends from node 2 to node 
13 in this graph, since Rpz R3 L R1R3. The graph of the partially ordered set (S3, 2) 
can be displayed more clearly by removing all arcs that are implied by transitivity, 
yielding its Hasse diagram, shown in Fig. 1. 

In general, the Hasse diagram for n components is comprised of 2” nodes, one 
for each state of the system. The 2” nodes are arranged into n + 1 levels such that 
levelj, forj=O,..., n, contains (1) nodes. Each node on level j corresponds to a 
state with exactly j failed components. The arcs of the Hasse diagram can be 
separated into two dif’.-rent categories: arcs within a given level and arcs between 
two consecutive levels. Within each level j (j = 1, . . . , n - 1), an arc extends from 

node k, •~~ ki_lki l **kj to node kl l *mki_rki+l***kj provided kj+ 1 and ki+l are 
distinct and ki + 1 I tz. Between two consecutive levels j and j + 1 (j = 0, l m. , n - I), 

d/ 123 

Fig. 1. 
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Fig. 2. 

an arc extends from each node k,k-, --• kj on level j, with kl f , to the node 
lkik2 l m* kj on level j+ 1. 

An interesting feature of the Hasse diagram based on n ~2 car * Bonents is that 
it contains two copies of the Hasse diagram on n - 1 components. C 01 e of the copies 
is comprised of all nodes in which component n is operating: this :*jpy is an exact 
duplicate of the Hasse diagram for the n - 1 component system. 7‘H* e second copy 
contains all nodes in which component 11 has failed. The labels in Eis copy simply 
have the integer n adjoined to the end of each label in the first copy ! is straightfor- 
ward to verify that there are 2)’ - ’ arcs joining these two copies. Th : Hasse diagram 
of the 3 component system shown in Fig. 2 illustrates the above du: i cation feature. 
The two copies of the Hasse diagram on 2 components are shown fr th heavy lines, 
while the 23-1 = 2 arcs joining the copies are shown as dotted lir :‘ . 

If If;1 denotes the number of arcs in the Hasse diagram for n c lJ.-rponents, then 
this duplication property shows that Jl satisfies& = 2j;,_ l + 2”-‘, J L.: 2. Solving this 
recursion with Jr = 1 then yields the following. 

Ptoperfiy 2.2. The total number of arcs in the Hasse diagram for v components is 
(n+ 1)2’? 

This same partially ordered set (S,,, 2) arises in other con e%ts [6,7,9], and 
known properties of this structure are now briefly mentioned. S \yzral of these will 
be useful in the subsequent discussions of Section 3. First, the p .f-Gaily ordered set 
forms a special type of lattice, a distributive lattice [9]. Moreo zr, the lattice can 
be ranked: namely, its nodes can be decomposed into subsets PO, PI, . . . , P,,, such 
that arcs of the Hasse diagram only join nodes in consecutive s :ts Pt;. The rank of 
any node is simply the sum of the integers comprising its labe . Thus, node 0 has 
rank 0, node 12 l .a n has rank +n(n + l), and so the lattice has 3 height (maximum 
rank) h = +n(n + 1). 

In an n component system with height h, let I’ = (rO, rl, . . . , r ; be its rank vector, 
with ri= 1 PiI signifying the number of nodes having rank i. P Y shown in [6,9], the 
rank vector is symmetric and unimodal. For example, the I- z: se diagram for a 3 
component system has h =6 and the rank vector Y = (1, 1, 1, ’ . ;, 1,l). 



3. An algorithm for sate generatioiu 

Bncc the state spa 7.: has been identified as d partially ordered set, it is not dit ficuh 
to formulate an algorithm for generating, in order, the most probable states of the 
system. This section describes an algorithm, which concepiually works on the Hasse 
diagram, and thy- . -4 compares it to existing procedures for solvkg this problem. We 

also examine a worst-case upper bound on the complexity of our algorithm, which 
is related to a certain invariant of the underlying partial order. 

In the Hasse diagrarr for a partially ordered set, let the indegree of a node be the 
number of nodes (o’ ,-edecessors) that cover the given node: i.e., the number of 
arcs entering that node in the Hasse diagram. Any (finite) partially ordered set con- 
tains at least one node with indegree 0. In oatr particular case, (S,!,z) contains a 
single such node (namely, node 0), and it corresponds to the most probable state 
of the system. When this node is removed from the Hasse diagram, there wrll be 
at least one node in the reduced Hasse diagram with indegree 0. More generally, 
when the first k most probable nodes have been removed from the Ha ,se diagram, 
there will remain some set C of nodes having indegree 0 in the reduced Hasse 
diagram. Any two such rlodes (states), X, YE C must be incomparable in the original 
partial order. All such nodes are thus candidates for selection as the next most pro- 
bable state. The partial information embodied in (1) is not sufficient to completely 
order the probabilities of the states represented in C. However, by comparing R- 
values of the candidates, the next most probable state (selected from C) can be 
determined. 

The general idea of the +yw-tk-~ - _. La. is to at each step remove from C a node X with 
largest R-value and then update the candidate set C, since the removal of X (in- 
cluding its arcs) may create new nodes with indegree 0. Namely, any successors Y 
of X (having X as a predecessor) will have their indegree reduced by 1. In order to 
avoid scanning the entire partial order, it is useful to maintain an “active set” A, 
which contains those nodes in the Hasse diagram having a predecessor that has 
already been removed from the Hasse diagram. A node is transferred from the set 
A to the candidate set C whenever its indegree becomes 0. This process of successive- 
ly removing nodes from C and updating the relevant sets can be continued until a!! 
states in Sn have been generated in order. More typically, however, the process is 
continued until some stopping criterion is satisfied. For example, termination may 
be governed by achieving some desired coverage II of the state space; the coverage 
is defined as the sum of the probabilities of the most probable states generated so 
far [5]. 

The procedure described above yields the foilowing algorithm GENERAT for 
identifying the most probable states in orde of (nonincreasing) probability. 

Algorithm GENERATE 
Input: Number of components (n), coverage desired (n), and component prob- 

abilities (pi, . . . , p,) ordered as in ( 1). 
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Orrtput: States in order of nonincreasing probability until the specified coverage 
is obtained. 

Step 1. [Initialization] 
C: = (0); A: =0; sum: =O; 

Step 2. [Iterative loop] 
while (sum < 7~) do 
Step 2.1. delete the node XE C having the largest R-value; 
Step 2.2. sum: = sum+p(X); output X; 
Step 2.3. find successors of X, place them on A (if not already present) 

and update their indegrees; 
Step 2.4. remove all nodes with indegree 0 from A and place them on C; 

We now establish some properties of the sets used in the algorithm above. Let D 
denote the set of elements deleted from the partially ordered set at some step of the 
algorithm. Thus the states in D have already been correctly generated in order. The 
“neighborhood” of D in (S,,, 2) is defined as r(D) = (X@ D: X has a predecessor 
YE D) so T(D) = CU A. A set KC_ S,] is termed convex [3] if for any X, Z E K and 
YE St2 with X2 YzZ we have YE K. The following two results are proved in the 
Appendix. 

Lemma 3.1. The set D is a convex subset of S,,. 

Theorem 3.2. At any step of the algorithm, IT(D)1 5 1 D I. 

In our implementation of algorithm GENERATE, the candidate set C is main- 
tained as a heap [S]; this allows selection and deletion of the most probable node 
from C (Step 2.1 j to be done in time logarithmic in the size 1 C 1 of the current can- 
didate set. Suppose a total of k nodes (states) have been output when the algorithm 
terminates. The total number of insertions into C (Step 2.4) minus the total number 
of deletions from C equals the final size of C, which by Theorem 3.2 is at most k. 
Since there are exactly k deIetions from C, at most 2k insertions are required into 
the heap, and thus Step 2.4 takes at most O(k log ICI) operations. In addition, we 
use a hash table to maintain the active set A. While the insertion and/or location 
of an element in a hash table can be expensive in the worst case, on average these 
operations can be carried out in constant time [l]. Since there will be at most O(n) 
successors of a given node, Step 2.3 requires O(nk) work on average. The average 
computational complexity of algorithm GENERATE can then be expressed as 
O(nk+ k log m), where m is the maximum size of the heap occurring during execu- 
tion of the algorithm. 

By Theorem 3.2, we are assured that I C / is in general less than k, and so a (weak) 
upper bound on m is k. As a matter of fact, the algorithm ORDER of Lam and 
Li uses a heap whose typical size is k, yielding the k log k term in their complexity 
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estimate O(nk + k log k). Thus, the proposed algorithm might provide some advan- 
tages over that given in [4] with respect to both computational effort and storage, 
since our candidate set is (even in the worst case) smaller than the corresponding 
candidate set used in the algorithm of Lam and Li. In order to get a sense of the 
difference between the sizes of these sets in practice, we show the results of running 
both algorithms on a small example, having pl = 0.55, p2 = 0.6, p3 =0.7, p4 =0.8, 
p5 = 0.9. Table 1 shows for this example (run until a coverage of II = 0.90 is achiev- 
ed) the sizes of the respective candidate sets along with the most probable state out- 
put at PaLh iteration. The candidate set for GENERATE here stays much smaller 
than the corresponding set used by ORDER. Moreover, the active set required for 
GENERATE in this example attained a maximum size of 4, still quite small. This 
finding, that the candidate set in GENERATE stays quite modest in size, is confirm- 
ed by the empirical results presented in Section 4. 

The computational complexity of algorithm GENERATE, both theoretically and 
empirically, is determined in large part by the effort needed to process the candidate 
set C. While Theorem 3.2 provides the upper bound k = ID 1 on the maximum size 
of the set C, we now explore an alternative upper bound related to the structure of 
the partially ordered set (Sn, 2). 

An important observation, made earlier, is that all elements in C must be incom- 
parable in the partial order, since they all have indegree 0 in the reduced Hasse 
diagram. In other words, the elements of C form an antichain in the partially 
ordered set: a set of mutually incomparable elements in the partial order. Thus, an 
upper bound on the maximum size II? of C is the size ~1 of the largest antichain in 

(S,,, Z )* 

Table 1 

Iteration Size of candidate sets Most probable 

ORDER GENERATE 
state 

- 

0 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

- 

2 

3 

4 

5 

6 

7 

8 

9 

i0 

11 

12 

I1 

12 

II 

- 

1 

1 

2 

1 

2 

2 

2 

3 

2 
2 

3 

2 

2 

2 

2 

0 

1 

2 

12 

3 

13 

23 

4 

123 

14 
24 

124 

5 

34 

15 

134 
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Table 2. 070 of states needed for n = 0.90 coverage 

11 p=O.85 p=o.9 p=o.95 

10 12.7 4.88 1.07 

15 4.54 1.28 0.22 

20 1.60 0.30 0.018 

25 0.56 0.045 0.003 

30 0.19 0.013 0.0003 

Stanley [9] and Proctor [6,7] have studied in other contexts this same partially 
ordered set, and have demonstrated some rather deep results concerning its struc- 
ture. Specifically, the elements of the partially ordered set can be partitioned into 
sets Pi of rank i. Moreover, the partially ordered set is Qerner, meaning that the 
size of the largest antichain is the same as the maximum size of the sets Pi. Since 
the partially ordered set is rank unimodal and rank symmetric, a maximum-sized 
antichain occurs for a set Pi at the half-height 6 of the lattice: namely, at rank 
6 = L+h J = I+?@ + 1) J. 

As a result, we obtain an upper bound p = 1 Pii 1 on the maximum possible size of 
the candidate set. Since the rank of a node iliZ G, is simply the sum of its consti- 
tuent integers ij, another way of expressing this upper bound p is as the number of 
partitions of the integer 6 into distinct parts, none of which exceed n. Equivalently 
~1 is the coefficient of x6 in the generating function (1 +x)(1 +x2)(1 +x3)*=(1 +x”). 

4. Computational results 

In this section, we assess the empirical computational complexity of state genera- 
tion algorithms. First it should be pointed out that if all pi = +, then every state has 
equal probability and in order to generate coverage proportion n that same propor- 
tion of the system states needs to be generated. In this case there is little point in 
employing state generation techniques. However, if the system components are 
reasonably reliable, then a relatively small proportion of the system states accounts 
for a large proportion of the total prtibability. To illustrate this fact suppose for 
simplicity that all components have the common probability pi = p. Table 2 
displays the percent of states that need to be generated (in most probable order) to 
achieve 7t = 0.90. For example, in a 25 component system with p = 0.9, only 0.045% 
of the system states need to be generated to achieve the specified coverage. As seen 
in the table, this proportion dramatically decreases as n and p increase. Thus there 
is hope for being able to approximate the performance of binary systems if the in- 
dividual components are sufficiently reliable. Fortunately this is frequently the case 
in practice and the empirical results reported here will study such systems. 

In our computational study, the number of components n = 5,6, . . . ,20 and the 
component probabilities (not necessarily identical) are randomly selected from the 
interval [O. 85,0.995]. The set of pi’s defining the n - 1 component system is a 
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Fig. 3. Comparison of maximum heap sizes. 

subset of the set of pi’s for the n component system. All of the experimental data 
were obtained using implementations of the algorithms in Pascal, run on a Macin- 
tosh Plus microcomputer. 

Figure 3 compares the maximum size of the candidate sets required by the two 
generation algorithms GENERATE and ORDER for 71 = 0.90 coverage. It is seen 
that the candidate set for GENERATE remains quite manageable in size, whereas 
that for ORDER grows rapidly with n. As a result, the heap operations are more 
expensive with the latter algorithm. Figure 4 compares the total storage re- 
quirements of both algorithms; in the case of GENERATE, this total includes the 
(maximum) storage for both C and A. In terms of overall space efficiency, then, 
GENERATE is more economical than ORDER. This can be an important practical 
consideration, because of potential limitations on available storage imposed by the 
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n 
Fig. 4. Comparison of total storage. 
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Fig. 5. Comparison of execution times. 

growth of the state space with n. The empirical time complexity of the algorithms 
is shown in Fig. 5, which displays the CPU time (in seconds) required for the test 
problems of different sizes n. The superiority of GENERATE over ORDER is clear- 
ly evident in these test problems. 

It is important to stress that all algorithms for generating most probable states 
face an explosive growth of the state space with n. As a result, the applicability of 
such algorithms is probably limited to about 30-35 components, still an advance 
over existing approaches for calculating exact performance measures in general 
stochastic networks. In fact, there are no general methods known for approximating 
such performance measures that operate in polynomial time [2]. Therefore, an em- 
pirical assessment of algorithms, as that carried out here, is more appropriate than 
comparison based on asymptotic worst-case behavior. 

5. Conclusions 

The objective of this paper has been to describe how the identification of an 
underlying discrete structure aids considerably in understanding a certain problem 
arising in reliability analysis. Specifically, being able to place the components in 
order of nondecreasing reliability provides a good deal of information about the 
relative probability of states in the state space. In addition, this algebraic viewpoint 
leads quite naturally to an algorithm based on the Hasse diagram for generating the 
states in order. It is of interest that the analysis of this derived algorithm itself is 
aided by studying the maximum-sized antIchain in the lattice. Computational results 
are presented to complement the theoretical findings, and they indicate that the 
algorithm described here is reasonably effective in practice, offering storage and 
speed improvements over existing approaches. 



A binmy stochstic systeru 

Acknowledgement 

499 

The authors are indebted to Jim Lawrence for his helpful and insightful com- 
ments. The work of the first author was supported by the United States Air Force 
Office of Scientific Research (AFSC) under Grants AFOSR-84-0154 and AFOSR- 
89-007 1. 

Appendix 

We present here proofs of the results stated in Section 3. 

Proof of Lemma 3.1. Suppose X, 2 E D with X 2 Y 2 2. Since Y is more probable 
than 2 it must be removed before Z. Because Z E D, it follows that YE id. Cl 

Proof of Theorem 3.2. We establish a one-to-one mapping from f(D) to D. Sup- 
pose that node X is in T(D). Then X= i&i3 l =a i,,l l =. if has some predecessor YE D, 
say Y = i&i3 .m. i,,, - 1 l .= i,. If there are several predecessors, the choice can be made 
arbitrarily. Also if m = 1 and i,,, = 1, then we interpret this prescription as defining 

Y= iI,, + I l i,. 301 define the map v/ : T(D) + D using t,u(X) = il i2i3 l . . i,,, _ I illI + 1 l -- it. 
Note that 02 u/(j.’ 1~ Y, where node 0 is the most probable state; cince 0, YE D then 
the convexity of D yields v(X) ED. 

Now suppose that there is some X’E f (D), X’#X, with w(X’) = w(X). Then X’ 
must have a predecessor Y’E D, which we assume has the form 

Y’=i,i& .a. i,,,_ Jr,,+, -0. i,_ , ki, l . . i,. 

(A similar argument governs other placements of the index k.) Since the indices 
satisfy i,,l<i,,l+,<~=~<i,_,<k<i,<=~. <i,, it can be verified that Yz X2 Y’ holds. 
Again by the convexity of D and the fact that Y, Y’E D it follows that XE D, a con- 
tradiction. Thus, the map is one-to-one and the stated result follows. Cl 

References 

[II 

PI 

[31 
[41 

151 

A. Aho, J. Hopcroft and J. Ullman, Data Structures and Algorithms (Addison-Wesley, Reading, 

MA, 1983). 

M. Ball, Computational complexity of network reliability analysis: an overview, IEEE Trans. 

Reliability 35 (1986) 230-239. 

G. Gratzer, Lattice Theory (Freeman, San Francisco, CA, 1971). 

Y. Lam and V. Li, An improved algorithm for performance analysis of networks with unreliable 

components, IEEE Trans. Comm. 34 (1986) 496-497. 

V. Li and 3. Silvester, Performance analysis of networks with unreliable components, IEEE Trans. 
Comm. 32 (1984) 1105-l 110. 



500 D. R. Shier et 01. 

[6) R. Proctor, Representations of sl(2.C) on posets and the Sperner property, SIAM J. Algebraic 
Discrete Methods 3 (1982) 275-280. 

[7] R. Proctor, Solution of two difficult combinatorial problems with linear aigebra, Amer. Math. Mon- 
thly 89 (1982) 721-734. 

[S] R. Sedgewick, Algorithms (Addison-Wesley, Reeding MA, 1983). 
[9] R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic 

Discrete Methods 1 (1980) 168-184. 


