
0 DISCRETE MATHEMATICS 5 (1973) 105 -129. North-Molland Publishing Company

CONSTRUCTION OF DEFINING RELATORS
FOR FINITE GROUPS*

John J. CANNON
Depurtment of Pure Mathematics, University of Sydney, Sydney, N.S. W. 2006, A ustraliu

Received 1 June 1972**

Abstract. Given a faithful representation of a group G of order up to 104, we describe an algo-
rithm, based on the notion of the graph of G, for constructing a concise presentation for G. This
technique may be generalized to give a semialgorithm which is usually successful in ficding
presentations for groups of order up to 106. !

c

1. Introduction

Suppose G is a finite group for which a faithful permutation or matrix
representation is known. A problem which often arises is to construct
a set of defming relations (presentation) for G with respect to a given
set of generators. For example, while it is a comparatively simple matter
to show that the two permutations

a=(1 2), b=(l 2 3 4 5 6 7)

generate the symmetric group S7 of order 5040, it is a much mo Ire dif-
ficult task to construct a corresponding set of defining relations, such as

a2 = b7 = (&)6 = (&-lab)3 = (&--2&2)2 = I,

for the group.
Not only do we wish to be able to construct sets o:f defining relations

,from faithful permutation or matrix generators of G but we usually insist
in addition that the resulting set of defining relations be concise both in
the sense that the number of relations in the set be small and the actual

* This research was supported by a grant from the Australian Research Grants Comrkittee.
** Original version received 1 December 197 1.

106 J.J. Cannon, Defining relators for finite groups

relations be as uncomplicated as possible. No practical hand method of
constructing defining relations for an arbitrary group appears to be
known.

The only non-trivial application of computers to this problem appears
to have been the use of programs implementing the ToddCoxeter algo-
rithm to check whether sets of relations holding in a group are indeed
defining. (The Todd-Coxeter algorithm [6] determines the index of a
subgroup H in a group 6, given defining relations for C and a set of words
generating H.) For some examples of this type of work see [61. Other-
wise, computers have been merely used to multiply permutations or
matrices together to assist hand computations of defining relations. A
sophisticated example of such a program has been described in [41.

In this paper, we describe an efficient machine algorithm for construct-
ing fairly concise sets of defining relations for groups of order up to 108.
Our method is based on the notion of the jgaph of a group modulo a sub-
group (defined in Section 2). If the subgroup is taken as the identity,
then a subset S of the complete set of circuits passing through any node
of the graph will correspond to a concise set of defining relations for the
group. The crux of our algorithm is an efficient technique for identifying
this subset of circuits. Because of storage limitations this method is not
directly applicable to groups of order greater than 104 and so in Section
6 we describe an inductive version of the method which can be applied to
much larger groups but which may occasionally fail.

In [3, Chapter 31, a method of constructing defining relations is
described which also makes use of the fact that relators correspond to
circuits in the graph of the group over the identil y. However, their
method of constructing S involves topological techniques (such as sym-
metrically embedding a graph in a surface) which cannot be easily real-
ized algorithmically.

2. Theory

We begin by defining the graph of a group modulo a subgroup and
summarising some of its properties. Throughout this paper, we shall as-
sume that the identity element is excluded from sets of generators
X = {g1, gr) of a goup. We shall write X-l to denote the set
igil •9dT~‘l

2. Theory 107

Definition 1. Let H be a subgroup of the group G and suppose

G=Hc, + . ..+Hc.,

where we shall always assume that c1 = I, the identity of G. Wetssociate
a directed graph T’(G IH) with the group G, generating set X = {ifI, g,)
for G and subgroup H of G as follows: With each coset HCi of h” in G as-
sociate a node ai of I’(G I H) so that there is a one-to-one corxspondence
between the cosets of H and the nodes of T’(GIH). Two nodes, t2i and
aj of r(GIH) are joined by an edge eii directed from a+ to ai if itnd only
if

HCigk = Hc~, for some gk E X.

The edge eii is called a gk-edge. The graph r(G IH) is called the graph of
G modulo H.

In the literature, this graph is sometimes called a Schreier diagram. If
H = {I}, the graph is called a Cayley diagram or colo~r group in older
works but we shall refer to it simply as the graph of G and denote it by
I’(G). Basically, the graph of G is a very compact means of reprssenting
the multiplication table of G.

For convenience, we shall suppose that the node ai of I’(GIH) cor-
responding to coset HCi is simply labelled by the integer i. Thus if i is
any node of I?(GIH) and W is an element of G written as a word in the
g’s, we write Ir(i, W) for the path in lY’(GIH) beginning at node i and
defined by ti . On the other hand if e1 , . . ., E, is the sequence of edlc.es
corresponding to some path n in r(G IH) and if si E X U X- 1 is the label
of edge c~, we say that the word s1 . . . st is the word corresponding to
path K

We summarise a number of elementary properties of these graphs iy
the following lemma. In each case the proof is obvious.

Lemma 1. Suppose that G is a group with generating set X = (gl, “.., g,),
F is the free group on X and I’(G IH) is the graph of G modulo some sub-
group H. Suppose further that under the natural homomorphism of F
into G, the image of an element w E F is i+.

(i) For every node i in ?(G IH) and every word w E F, the path ir(i, i+)
exists in I’(G IH) and is unique. Thus we denote the unique end node of
the path n(i, W) by (i)W.

108 J. J. Cannon, Defining rdators for finite groups

(ii) The graph I’(G is) is connected.
(iii) If for any w E F, (1)W = i, then i? E HQ. So any such @ can be

taken as our coset representative ci.
(iv) If iii = I is a relation holding in C and i is any node, then (i)i? = i,

so that C determines a circuit at every node of r(G IH). In particular, if

R, (gl, ..-, gr) = . . . = Rs& , grl=I

& a presentation for G, then each relator forms a circuit around each
node of r(G IH).

(V) If (i)i? = i then Ciu'Ci 1 E H. In particular, if H = {I), then * = I,
i.e., iii is a relator.

(vi) lf H = (I), the sets of circuits at any nodes i and j are identical.

A more extensive discussion of the properties of I’(G) together with
examples of group graphs, may be found in [IS].

We next recall the definition of fundamental circuit.

Definitim 2. Let I’ be a graph 3aving p edges and q nodes and suppose
further that A is any spanning tree of II’. An edge of I’ not in A is called
a chord. The set of p - q + 1 c:rcuits obtained by adding the p - q + I

chords to A one at a time is called the fuuzdamental syste.m of circuits
relative to A. A circuit in the fundamental system of circuits is call.ed a

fundamental circuit.

If A and B are two sets whose elements are edges of graph r, we de-
fine the sum A + I? of A and B to be the set

(A u B) - (A n B).

Tlhrs edge-disjoint union of circuits PHWU the union of a set of circuits
having no common edges. It is well ~K.IAOWII that the set of all circuits and
edge-disjoint unions of circuits in a graph r forms a vector space over
GFQ), the so-called circuit space of I?. Further, the fundamental system
of circuits relative to a spanning tree is a basis for the circuit space of I?
(see [7]). This Beads tci the following important result [31:

Lemma 2. The relators corresponding to a fundamental system of circuits
belonging to r(G) are sufficient to define C.

2. Theory 109

Let us call a circuit belonging to the fundamental system of’ circuits
relative to spanning tree A of r(G) a A-circuit and a relator correspond-
ing to a A-circuit a A-relator. The complet.3 set of A-relators will be
called a A-system for G.

A A-system will contain (r - 1)I G I + 1 1 elators and, except in the case
of the very smallest groups, will form a highly redundant set of defining
relators. The heart of our technique for constructing non-redundant sets
of defining relations is an algorithm for colouring all the edges of all
those A-circuits in l?(G) whose corresponding A-relators can be deduced
from a given set of A-relators.

Our strategy for constructing a non-redundant set D of defining rela-
tions for a finite group G thus becomes clear. First the graph I’(G) of G,
relative to the given set of generator;, is constructed and a spanning tree
A for I’(G) found. Initially, we suppose that only those edges of I’ cor-
responding to the edges of A are coloured. Now each A-circuit 7 is pro-
cessed as follows:

(a) If some edge of 7 is uncoloured we ;.dd the corresponding A-rela-
tor to D (initially D is empty). Now we colour al! the edges of A-circuits
corresponding to all A-relators implied by the relators of D by repeated-
ly applying the following colouring rule uritil no more edges of I”(G)
can be coloured: If a circuit corresponding to any relator of D, starting
at any node of I’(G), contains a single uncoloured edge, then colour this
edge. When the colouring procedure has finished, we proceed to examine
the next A-relator.

(b) If all the edges of y are coloured we simply proceed to the next
A-relator.

A circuit is said to be coloured if all its edges are coloured. If an sj-
edge is coloured, we automatically assume that the corresponding sir 1 -

edge is coloured. This means that if the circuit corresponding to relator
R is coloured, then the circuit correspondjng to R- 1 is also coloured.
We now establish that the above colouring rule will colour precisely
those A-circuits corresponding to A-relato rs derivable from D. First,
however, we shall make precise the notion of a relator being derivable
from D.

Definition 3. Suppose D = {R, , R,, R,,} is a set of relators of a
group G. A relator R is said to be derivabk from D if it can be trans-
formed into the identity by a finite number of applications of the follow-
ing rules:

110 J.J. Camton, Lk : 9.q relators for finite groups

(i)InsertoneoftherelatorsR,,Ryl,I~z,R,-,...,R,,R,1 orone
of the trivial relators between any two consecutive symbols of R or at
either end of R.

(ii)DeleteoneoftherelatorsRr,Ril,Rz,R~’,...,R,,R;;;1 orone
of the trivial relators if it forms a block of consecutive symbols in R.

Lemma 3. Suppose that the coolouted edges of r(G) correspond either
to the edges of the spanning tree A or to A-circuits corresponding to A,-
relators derivable from D. If R is a relator ofD such that, for some node
i of I’(G), the path a(i, R) contains a single uncoloured edge E, then the
A-relltptot corresponding to the A-circuit including e is derivable from 3.

Proof.SupposeR=sl....st,s, ExU;ir’-l foru= l,...,tandthateisan
si-edge joining nodes i and k, being directed from i to k. Let n(1, psiq)
be the A-circuit containing E with both the paths nil, p) and n(k, q)
coloured. We need to prove that psiq is a relator in G using only the re-
lators of LL

<

Using rule (i) of Def’inition 3,

-1 -1 -1 = psi_:, s1 s* . ..) si;::q = R’, say.

The second step is possible by rule (ii) of Definition 3, because sl st
is a relator of l). Since E is the only uncoloured edge of n(i, R), the circuit
n(l) PS~~f .--. Si’S,l s$ q) is coloured and so by assumption, R’ is a
relator derivable from D. Thus psiq is a relator derivable from D.

Lemma 4. &klI possi,ble edges of I’(Gj have beea: colouted by the colout-
ing rule, u&g a set o,f relators D, then $zny A-telartot whose A-circuit con-

tains an urxoloured edge cannot be derived ,f?om D.

Proof. Assume that the lemma is false and let R be a A-relator derivable
from D which contains an uncoloured edge E This means that there is a
finite chain of relators

R-R,,R, ,..., R, =R’,

where R’ E D or is the identity, such that Ri+l is obtained from Rj by
the application of one of the rules of Definition 3.

3. Construction of the graph of a group modu!o a subgroupP 111

Corresponding to this chain of relators we have a chain of circuits
beginning with n(1, R) and ending with R(1, &‘). Now the circuit
n(1, R) contains a single uncofoured edge, while all the edges of n(I , R’)
are coloured. An application of rules (i) or (ii) to Ri has the effect on
the circuit IT(1, Ri) of introducing or removaag either a block of coloured
edges or a pair of adjacent uncoloured edges (corresponding to the trivial
relator sjsIT l).

However, since n(1, R) has one unc&loured edge while la(1, R’) has aI1
its edges coloured, it is clear that we cannot get from n(1, I?) to n(I., R’)
by the rules of Definition 3. So our ;;rssumption that R is derivable from
D must be false.

3. Construction of the graph of a group moduBo a subgroup

The algorithm for constructing defining relations depends upon the
availability of efficient methods for constructing the group graph1 with
respect to some generating set. In this section, we shall discuss the mora,
general problem of constructing the graph ‘(G IH) of G moldulo some
subgroup H as this shall be needed in Section 6.

We begin by stating a straightforward algorithm for constructing the
edge table T of l?(GIH), simultaneously with a set of coset representa.
tives for H in G, given a set of permutation or matrix generators

E(l), ..‘9 E(r) for G. It is convenient to actually construct the extended
edge table T which is the 1 G: HI X 2r array whose entries are &:ftixd by

T(i, j) = k if (i) E(j) = h for j = 1, r;

T(i, j) = 1 if (i) E(j - r’)-1 = l for j = r + 1, 2.

Each row of T corresponds to a coset of H. In particular, row 1 of T
corresponds to H itself.

Algorithm 1. Construct graph.
r - number of generators of G.
E - array whose elements are the given generators of G.
T - extended edge table.
F - 8 [G: H] -dimensional vector in which a set of canonical coset re-

presenlt&ives for H will be stored. The definition of a canonical represen-
tative will be discussed below,,

112 J: J. Canon, Defining rela tom for finite groups

i and j index the rows and columns of T, respectively.
PTi - number of coset representatives generated so far.
(i) [Initialize] i + 0; F(1) + I (the coset representative for coset H);

m+ 1.
(5) [Increment row count] i + i + 1. If i :> m, exit (the construction

of I’(G IH) is complete). Else j + 0.
(iii) [Increment column count] j f j + 1. If j > r go to (ii) (row fin-

ished). Else,
(iv) [Compute T(i, j.) 1 Find the canonical representative x for coset

F(i)&‘(j). IIf for some I, 1 5 15 m, x = F(l), then T(& j) + 1, T(Z, r + j) + i
(inverse entry). Go to (iiij. Otherwise, ~ZZ + m + 1, T(i, j) +- m,
Tim, I’ + .I:) + i, F(m) + x (store new coset representative). Go to (iii).

The t wo critical operations in this algorithm are the determination of
the canonical representative of a coset and the location of a canonical
coset representative among the elements of F (the first two operations
of step (iv)). Let us discuss the second of these first. A very efticient way
of doing this lookup is to store the elements of F in a hash table [9].

A simple and effective means of compdting the hash address is the
followng. Assuming th&at a group element is stored as a (right-justified)
packed integer string spread over several machine words, the contentc of
the -machine words containing a group element are simply multiplied to-
gether (ignoring overflow) to form a single length product. The hash
acldress of the group element is then taken as the remainder when Ph..
product is divided by the size of the hash table. To avoid right to left
zero propagation each intermediate product is shifted one place to t.&
right. Provided that the .hash table is never more than seventy percent
full, it has been found that, on the average, less than two comparisons
are necessary 31 order to locate an element in the hash table.

A solution to the first problem is not so easy and it is convenient to
distinguish three situations. If H is the identity, then there is a single
element in each coset so that there is no problem in this case, If H is not
the identity but is small enough so that all its elements can be stored,
the following procedure can be used. We suppose the elements of G, as
represented in the machine, are ordered and if H = {x1, xn}, take the
smallest of the elements x l.g, . . ., xng as the canonical representative for
coset Hg. This is rot quite as inefficient as it seems, for it is only neces-
sary to form a short initial segment of many of the products Xig in order
to rule them out as being the canonical representative. However, the
technique cannot be used. on groups of order greater than 1 ti .

3. Conwuction of the graph of a group module a subgroup 113

If G is represented as a permutation group, then we may use some
ideas of Sims [111 to define a canonical coset representative which may
be cheaply computed without storing the elements of H. Following Sims
let G be a permutation group on the set C2. A base for G is a sequence
Z”CYr, cyt of points such that the only element of G fixing all of the
c+ is the identity. Suppose 2 = cyl , at is a base for G and let G(S) be
the stabilizer of 01, ai_1. Then G(l) = G and G(t+l) = I. Let Ui be a
set of right coset representatives for Gci+l) in G@ and let Xi be a set of
generators for C@. If a set of generators for G(Z) is known, it is a simple
matter to Tte down a set of coset representatives Ui for G(‘+l) in G(?
Then by Schreier’s theorem [51, G(i+l) is generated by

where 4(g) is the choosen representative for the coset containink A,:.
A knowledge of the sets C’i enables us to write any permutation o? G

in a unique form. For if g E G, there exists a g1 E U, such that ggil
fixes al, a g2 E U2 such that ggi’g2 -l fixes a2 and so on. Eventually we
find elements gi E Ui, i = 1, t such that

i.e.,

ggi’gfl . ..gt’ = I,

We now return to our problem of assigning a cheaply computable
canonical representative to the cosets of subgroup H in a permutation
group G. The solution described below is due to Richardson. Let

“1 , CQ be a base for H and assume that the elements of fi are ordered
in some manner. Using Sims’ algorithm, the sets Ui are constructed for
the stabilizer chain

H = G(1) > G(2) > . . . > G(f) > G(t+.l) = I.

.i permutation x of G is the canonical representative for coset dYg
provided that it is the minimal element of i?Ig with respect !o the order-
ing- < which is defined as follows: If y, z E G, then y 5 z if and only if
there exists a k, 1 5 k 5 t + 1 such that aj’ = cyf for i = 1, k -- 1 and
4 < ayi (if k_ 5 t). While 5 is not a total ordering on G, it may be
shown that it is a total ordering on any coset Hg of H in G.

114 J. J. Camon, Defining relators for f?nite groups

The canonical representative x of coset Hg is easily calculated. Select
h, to be an element of Z$ such that ar:lg 5 gllfg , for all u E ZJ, . Similar-
ly, select h, E ZIz such that cu2 h2h!g 5 a!rhlg, for ail u E L/z, and continue
in this way to eventually obtain the required canonical representative,
x = h,h,_, . . . h ,g. Note that since G(o stabilizes cyl , cYi_1, we have

This canonica?. representative is fairly cheap to compute as a typical
base will seldom contain more than 10 letters. Using such a scheme it is
possible to compute *graphs in very large permutation groups indeed, the
main limitation being the storage space need ta store I’(G MY). Note that
if we compute the sets Vi for G as well as H, we may write a canonical
representative x in the G-canonical form of equation (l), so that it is then
not necessary to actually store the canonical coset representatives for H
in G (the F vector in Algorithm I).

4. Construction of a minimal spanning tree

Our algorithms for constructing defining relations for a group G re-
quire that the spanning tree A for T’(G !H) be minimal in the sense that
the path in A from node 1 to any node i be of minimum length. This is
so that the relators vie produce will be as, short as possible. In this sec-
tion, we describe a simple but fast algorithm for constructing a mini-
mal spanning tree A for I’(G IH), given the extended edge table T for
r(G IH).

The distance between two nodes of a :;raph is defined to be the length
of a path of minimum length joining them. The algorithm proceeds as
follows. If Xi denotes the ;(l,et of nodes of I’(GIH) at precisely distance j
from node 1, suppose that a minimal tree Ar_1 has been constructed
containing the nodes of X0 u X1 u . . . u Zt_l. Now At_r is extended to
include the nodes of z, by examining all nodes (II adjacent to each node

Pof&._1 and adding the edge joining cy to p to the tree if (Y is not al-
ready in the tree.

The algorithm outputs A as a set of coset representatives stored re-
cursively in an n X 3 array W, where y1 is the number of rows of 7’.
W@, 2) contains the number, 4 say, of a coset representative cy and

5. Si?@e stage presentation algorithm 115

w@, 3) contains the name, j say, of an element Sj E X U X-1 synch that

cP = cqsj, where the length of the word c4 is less than the word cp. in
particular, cl is the identity. IV@, 1) is a bookkeeping entry which links
together the rows of W in the order in which they are generated. $f
W@, 1) is zero, then node p is not yet included in the spanning tree.

Algorithm 2. Construct a minimal spanning tree.
n- number of rows of 7’.
S- number of columns of T.

k - counts the number of coset representatives which have thus far
been constructed.

i- current row of T being examined.

i- current column of T being examined.
2 - links the rows of T together in the order in which they are to be

examined.
(i) [Initialize] ZerothearrayW;W(1,2),+ l;i+ l;j+O;k+- 1;

I+ 1.
(ii) [Examine all nodes adjacent to node i] i + i + 1. If ,.i > s, go to

(iv). (End of T row reached, so all nodes adjacent to i have been exam-
ined.) If W(T(i, j), 1) # 0 or T(i, j) = I, go to (ii). Node T(i, j) is already
in spanning tree.)

(iii) [Add node T(i, j) to the spanning tree] k +- k + 1; W(T(i, I), 2) + i;
W(T(i, j), 3) + j; W(2, 1) + T(i, j); I + T(i, j). Go to (ii).

(iv) [Check if finished] If k = n, finish. Else i + W(i, 1), i +- 0, and go
to (ii).

5. Single stage presentation algorithm

We can now describe the basic algorithm for constructing a set of
defining relators for a finite group C.

Algoritkn 3. Single stage presentation algorithm.
(i) Construct the extended edge table T for l?(G), using Algorithm 1.

While it is not theoretically necessary to use the extended edge table, its
use by the minimal spanning tree algorithm leads to shorter .words re-
presenting the group elements, and consequently to more concise re-
lators.

116 J.J. Cannon, Defining relators for finite groups

(ii) Construct the array W containing a minimal spanning tree A for
r(G) using Algorithm 2. The IGl words ci corresponding to the set of
pat& of A beginning at the root (node 1) and ending at each node form
a set of word representatives for the IG I elements of G. (By construction,
this set of words is actually a left Schreier system for I in G, although
this fact is not explicitly used.) Thus the effect of Algorithm 2 is to set
up the array W containing a set of word re:presentatives for the elements
of G.

Since A is a minimal spanning tree with respect to path length from 1
to each node, the words Ci will be as short as possible. Initially, all the
ledges of P’(G) are supposed uqcoloured. Concurrently with the construc-
tion of A, we colour all those edges of l?(G) which are also edges of A,
together with their inverses. (If e is an si-edge joining nodes i and k,
directed from j to k, then the edge inverse to E is the srl -edge joining
nodes j and i’c, directed from k to i. Recall that in the extended edge
table an edge and its inverse have distinct representations).

Mow the set of all remaining uncoloured edges of I’(G) (excluding the
inverse edges) is prelcisely the set of chords of L’(G) relative to A, so that
as each one of these edges is -coloured a new fundamental circuit becomes
coloured.

(iii) Construct a new relator. Let D denote a set of defining relators.
%nitiaiiy D is empty. We define the distancle d(e) of an edge e of r(G)
from node 1 (relative to A) as follows. Suppose E joins nodes i and k.
Then d(e) is defined to be the sum of the lengths of the words cj and ck .

If e is an uncolourlzd edge at minimum distance from node 1, then the
word corresponding !o the fundamental circuit which becomes coloured
after e is coloured is taken as the next relator to be added to D.

Specifically, suppose the edge e is Pabelled Si and joins nodes i and k,
being directed from] to k. Let cj = siI
we add relator

.)... SjP and ck = Sk, skq . ‘Then

R 7 sil
-1

s l l l l Sjp SiSkJ

to 8. By construction, R’ is a A-relator. The minimal property of A
firstly ensures that R Is the shortest possible relator which cannot be
derived from the other relators of D, and secondly prevents the occur-
rence of elrpressions of the form ststl in R.

If there are no remaining uncoloured edges of I?(G), then, by Lemmas
2 and 3,D comprises d set of defining relators for G and the algorithm

5. Siqle state presentation a&orithm 117

terninates. Otherwise, each time a new relator is added to D we colour
the edge e and go to step (iv).

I iv) Derivation of the implications of the relators of D. Each time a
new relator is added to D, we colour in edges of I’(G) to ensure that alli

fur damental circuits corresponding to all those A-relators derivable from
Lr \iave all their edges coloured. This is done using the colouring rule of
S,ec tion 2. If a circuit corresponding to any relator of D, beginning ad
any node of I’(G), contains a single uncoloured edge, then colour this
edge. When no more edges of r(G) can be coloured by repeated a.pphca-
tic.! IS of this rule we return to step (iii). The use of this rule was justified
in Lemmas 3 and 4. Methods of implementing this colouring rule are
discussed below.

We now consider the efficiency of this algorithm. The construction of
T’(G) involves rlGi group element multiplications and not more than
2r I G I comparisons of group elements, where we assume that the hash
table of elements is suih that, on the average, less than two comparisons
are required per lookup. The work involved in forming A and actually
finding the relators is insignificant. The most critical part of the algorithm
is the colouring-in procedure (step (iv)).

There are two obvious ways of doing V au, tbic The simp!est method is to
make a number of passes over l?(G), where each pass involves applying
every relator of D to every node. The procedure terminates when no
edges h.ave been coloured during an entire pass. Much of the time no new
edges are coloured during the second pass and it is rare for any more
edges to be coloured during the third pass, so that if a is the average num:
ber of passes each time step (iv) is executed, we have 2 < a < 3. If the
total number of defining relators constructed is f. then the total ~~umb(:r
of relator cycles traced is easily seen to be

iat@ + 1)IGI - t2 IGI.

This is the method that we have used in our implementation of the
presentation algorithms.

A more complicated colouring-in procedure mvolves keeping a list d’.‘
of those edges which become coloured as the rtxult of constructing a ;lew
relator in step (iii). When step (iv) is entered, C contains the singk: edge c
which is coloured to give the new relator. Each edge in C is examjinetl in
turn to see if it forms part of some relator cycle containing a singi.e un-
co‘ioured edge. Each slxh edge is coloured and added to C to a-wa ,t its

118 J.J. Omton, Defining rehtors for finite groups

turn for examination. It is not known ho?w much more efficient this
procedure is over the one described in the previous paragraph.

Coloured edges of I’(G) :may be converliently represented in the ma-
chine by simply negating the corresponding entry in array T. Thus if the
si-edge E joining nodes 1 and k is coloured, then TV, Q is set equal to -k.

The algorithms described in this paper have been implemented in
ANSI Fortran (with an exception to be noted below) on the CDC6600
computer as part of the Sydney Group Theory System. The only ma-
chine dependent fe&ue is a suite of routines (known collectively as
the Stack Handler) through which all arrays are accessed. The Stack
Handler provides dynalmic storage allocation and the ability to process
packed arrays whose field sizes are known only at run time. Packing is
desirable for the components of a matrix or permutation representation
of a group element, as these components usually only occupy a few bits
each, and also for the elements of the array T. Run times quoted in this
paper then refer to this Fortran implementation running on the
CDC6600.

Examples 1. We give five examples of presentations constructed by
Algorithm 3. Given f he standard representat.ions of the familiar small
groups (e.g. S4, S,5 , :$, , A,, A,, A,, PSL, 47) etc.), the algorithm finds
the usual presentations so that we shall o~3y give one such example. In
each case, we reproduce the relators in ,ihe order in which they were
constructed by the algorithm.

(1) The symmetric group S4 of order 24 generated by

a=(1 2)
b=(2 3 4)

is presented as
a2 = b3 = @a)” = 1.

Execution time was 0..24 seconds of which 0.13 seconds was taken up
by Algorithms 1 and 2.

(2) The si.mple group PSL,(E 1) of order 660 generated by

a=(1 11 2 5 7)(iO 3 6 4 9)
b=(2 11 3 10 9)(6 1 5 4 8)

is presented as

5. Single mge presentation algorithm 269

(ab)2 =a5 = bS = (ba-I)6 = baZbZa-I ba-1 b-Za-2ba -1 = 1,

Execution time was 16 seconds of which 6 seconds was taken up by
Algorithms 1 and 2.

(3) Tne symmetric group S, of order 5040 generated by

a=(l 2)
b=(l 2 3 4 5 6 7)

is presented 3s

a2 = b7 = (ba)6 = (b&-la)3 = (b’ab--2a)2 = 1.

N.B. This presentation for S, has one less relator than the corresponding
one given in Coxeter and Moser [3; p. 1371. Execution time was 1218
seconds of which 43 seconds were taken up by Algorithms 1 and 2.

(4) The following two permutations (due to John McKay) generate
the unitary simple group U3 (3) of order 6048:

a=(1 5 7 3 12 24 11)(2 23 4 27 13 14 26)
(6 20 18 8 25 21 28)(9 10 17 15 22 16 19)

b=(3 4)(5 17 7 16 8 20 6 13)
(9 19 11 14 12 18 10 15)
(21 23 26 28 24 22 27 25)

This group is presenxed as

(ba-1)s = a7 = b8 = ba2baba--%-‘ab2a-1
= bab-3a-I b-da-2 = 1. c.

Execution time was 320 seconds of which 88 seconds were taken up by
Algorithms 1 and 2. This example exhibits a behaviour occasiona? (I ob-
served when the algorithm is applied to larger groups where a large Mom-
her of colouring passes (12 in this case) are re:quired after the lsst relator
is added to D. This suggests that one should perhaps modify Algolthm
3 slightly so that if more than. three colou ring passes are required a fter
the addition of a relator of D, instead of doing the extra colouting passes,
one should attempt to show that D i:: defining using the Todd-Coxeter
algorithm. If that strategy had been used on this example, execution
time would have been reduced to about 1!00 seconds.

120' J.J. Cannon, Defining relators for finite groups

(51 ‘The following four permutations generate the Mathieu simple
groui M,, of order ‘7920 (see [111).

a=(2 6)(3 5)(4 7)(9 10)
b=(l 5 7)(2 9 4)(3 8 10)
c-=(1 11)(:2 7)(3 5)(4 6)
6=(2 5)(3; 6)(4 7)(11 12)

The group is presented as

a2 = ~2 = & = b3 = (ca)” = (da)2 = (de)3 = (db-1)4

= (ha)’ a?b-1ab-ld =abab-kdb-‘db-1
= abcbac,bel cb-” = 1.

Execution time was 550 seconds 01’ which 125 seconds were taken up
by Algotithms 1 and 2:. After the arldition of the last relator 10 colouring
passes were required, so that if the strategy suggested at the end of the
last example were adopted, the execution time for this example would
drop to about 370 seconds.

We may summarise the behaviour of the algorithm for this example in
Table 1 9 where column 3 contains the total colouring time after the ad-
dition of the indicated relator to D.

Table 1

Relator added to D No. of colouring passes Colouring time in seconds

b3
&I2
(&I2
(dc:j3
(db -’ 1’
(hz)2db-1ab-‘d
abab-‘adb-’ d&” 1
abcbacb’” cb-’

_

2
2
2
2
2
2
2

10

5.5
10.0
14.4
19.7
25.4
31.0
37.3

268.4

6. 7’wo stage p?,esentation sllgorithm 121

6. Two stage presentation algorithm

The algorithm of Section 5 is not directly apI;licable to groups much
greater than 10,000 because of storage requirements. ?n addition, the
execution time starts to become significant at this stage. So we consider
the possibility of constructing a presentation for G from the graphs
I?GIII) and I’(H), where H is some subgroup of G, rather than from tl;e
graph T’(G). Since I’(G) is not always determined by l?(GIH) and i?(K),
we cannot lsxpect that such a procedure would work in every case. How-
ever, with a little care in the choice of H, the following semialgorithm
will usually manage to construct a set of defining relators for 6. We as-
sume that we are given a set of permutation or matrix generators
:;: ,....~oLF;G~zcl; s;; offwOrds {h, , ..*, h,l in the g’s, generating

. ’ , = . . .

Algorithm 64. Two stage presentation algorithm.
(i) Using Algorithm 3, construct a presentation for H. Then rewrite

these relators as words in the g’s and call the set of rewritten relators D.
(ii) Using Algorithm 1, construct the extended edge table T for the

graph l-'(GIH).
(iii) Construct a minimal spanning tree A for l?(GIH) using .Algo$thm

2. This sets up the array W containing a set of co& representatives
{Cl, .*., cf) for IYin G.

(iv) Using the same colouring rule as in Algorithm 3, :;tep (iv), colour
edges of I’(G IH) according to the relators of D. 1 t should be noted that,
s.:nce fundamental circuits in l?(G IH) do not necessarily correspond to
fundamental circuits in I?(G), this colouring rule may, on the one hand,
miss colouring circuits in l?(GIH) corresponding to relators which can
be derived from D and, on the other hand, it may colour circuits of
I’(GIIY) corresponding to relators which cannot be derived from D. ,

While it is possible to give fairly simple colouring rules which avoid
colouring circuits corresponding to relators independent of D, such rules
have the drawback that they often result in the generation of a large
nu:,nber af redu,ldant relators. Colouring rules which manage to avoid
both difficulties agi;;arently have to be of considerably greater complex-
ity than the one suz!ested here. The current simple-minded rule works
quite well m practice so that we have not felt it necessary to undertake
the complicated progamming involved in a complicated colouring nk

122 J’. J. Cmnon, Defining relators for finite groups

(v) Construct a new relator. As in Algorithm 3, step (iii), we look for
an uncoloured edge E at minimum distance from node 1. Suppose c is
labelled Si and joins nodes j and k, being directed from j to k. Hence
Cficgl E iY. To get a relator from this, we use the given representation
of G to obtain CjdiCil as an element, Itz say, of the representation. Now
there are two ways of expressing ?z as a w 3rd in the generators of H. In
general, one savf!s the elements of H and the corresponding word table
WH, for I’(H) (storing them on disc between uses if necessary). Then
one can simply look h up in the list of elements of H and read the cor-
responding word off the WH array.

Alternatively, ;f G is represented as a permutation group, one may
write h as a word in the generators of H using the canonical form given
by equation 1 in Section 3. While this method requires the storage of
little information about II it sometimes r ;sults in an unnecessarily com-
plicated word for h.

Having found h as a word in the ger4erator-s of H, it is immediately
rewritten as a word, w say, in the generators of G. Suppose ci = si s.
c -S kl l =** Skq andw =Sm,Smu. Then the relation CjSiCk’ w- 1 = 11s

JP ’

w&en in the form

and added to D. Then we return to step (iv). If all the edges of I’(GIH)
are coioured, we go to the next step.

(vi) Using the Todd-Coxeter algorith.ii [61, determine if D is a set of
defining relators for G. At this stage the relators of D may or may not be
sufficient to define G. We check this by attempting to enumerate the
cosets of H in the group defined by D using a Todd-Coxeter program [23 .
If the program finds that H has index [C’:Ei] in this group, then the
relators of D certainly define G. On the other hand, if the Todd-Coxeter
program finds an index greater than [G:H] or, if after a reasonable time
has passed (determined by experience), it has not obtained any index,
we assume that the relators of D are not defining.

The set of relators produced b-y Algorithm 4 will sometimes contain a
small number of redundant relators. If tiesired, these may be removed
with the aid of the Todd-Coxeter a.lgori:hm.

At this stage, little is known about how the embedding of H in G is
correlated with the success or fail!ure of Algorithm 4 to construct a

T
ab

le
 2

5

P
er

fo
rm

an
ce

 o
f

th
e

tw
o-

st
ag

e
pr

es
en

ta
ti

on
 a

lg
or

it
hm

z

G
ro

u
p

R
em

ar
ks

O

rd
er

H

I
H
I

V
-
4

N
o
.
 of

N

o.
 o

f
S

u
cc

es
s

(J
)

or

3 $
ge

n
er

at
or

s
of

 G

re
la

to
rs

 co
n

-
ft

il
ur

e
(X

)
‘C

I
st

ru
tt

ed

3 E

p”

14
G

l
P

S
L

z(
13

)
10

92

(0
13

, b
%

78

14

3

11

J
z

12
G

2
E

L
2(

ll
)

13
20

(a

rr
,W

11

0
18

3

9
4

B

8G
5

13
44

(0

7
,

c7
)

16
8

8
3

7
&

lO

G
7

14
40

(0

9,
 c

9
)

72

20

3

12

>
3 5

:6
5:

3
19

20

(~
lS

d
1
6
)

8
0

24

3
6

I;

3
14

G
2

=L
z(

f3
)

2i
84

%

3
,

b1
3
)

15
6

14

3
8

16
G

15

28
80

(a

r5
er

sA
6)

24

0
12

3

6
18

G
l

P
Y

L
2(

1-
7)

24

48

(q
7,

&

13

6
18

3

8
:

17
G

6
P

S
L

z(
l6

)
40

80

(w
b~

l6
)

24
0

17

3
9

J
ll

rG
2

E
L

z(
l7

)
48

96

(a
r7

Jr
7)

27

2
18

3

9
13

G
7

P
S

L
3(

3)

56
16

!a

p
j)

13

43

2
2

6
$

16
G

16

57
60

(a

ls
+.

at
fi

)
24

0
24

3

6
16

G
17

57

60

(a
ls

A
W

36

0
16

3

12

I;

2O
G

2
pG

L
z(

19
)

68
40

(a

r9
,.W

34

2
20

3

9
4

17
G

7
81

60

(y
%

al
6
)

24
0

34

3
12

J

f2
G

3
M

::
79

20

(a
la

,
W

60

13

2
3

9
J

16
G

18

11
,5

20

(a
r5

,
c1

5
)

72
0

16

3
11

J

l7
G

8
16

,3
20

(~

lS
%

,~
P

6)

24
0

68

3
13

\/

17

G
8

16
,3

20

~~
1
5
e1

5
,w

J
,e

1
6
)~

6
0

17

3
15

J

16
G

19

40
,3

20

(k
&

5)

25
20

16

3

11

J

124 J. J. Cmnon, Defining rela tots for finite groups

presentation for G. In many situations where Algorithm 4 currently fails
the reason is that, while T’(G IH) and I’(H) contain sufficient information
to present G, much of this information is destroyed by the crude colour-
ing rule used in step (iv). The main heuristic rule that emerges from use
of the algorithm is that the larger the index of I.? in C the more likely the
algorithm will be successful. Usually larger indexes also result in fewer
redundant relators and more elegant relators. In Table 2, we summarise
the performance of Algorithm 4 with respect to twenty presentations
taken at random from Sim’s table of primitive groups of degrees not ex-
ceeding 20 [11 J . In most cases the subgroup H was taken to the stabilizer
of a point so that [G:H] is often small compared to WI. The notation is
the same as that used in [111.

If Algorithm 4 is unsuccessful, one simply chooses another subgroup
K and tries again. If the relators found using K are also insufficient, one
puts together the two sets of relators and, using the Todd-Coxeter pro-
gram, tests whether this new set is defining. ln practice, it has been found
to be an extremely rare occurrence for these techniques to fail to present
a group of order less than 106.

A useful feature incorporated in both the single stage and two stage
presentation 13rograms is the ability to input relators along with the
generators of G. l&Jot only does this enable one to construct presentations
containing specified relators but it can often mean considerable savings
in execution time. In the case of the two stage algorithm, user supplied
re.lators (such as the orders of the gent:rators) may help in the construe
tion of a defining set.

The two stage algorithm !s restricted by storage considerations to
groups G.and subgroups H such that IHI < 10,000 and [G:H] c: 10,000.
In the case ofpermrstation groups, we have seen in Section 3 that it is
possible to construct graphs IY(GIH) without storing the elements of H.
Thus it is possible to present much lzger groups by increasing the num-
ber of stages in Algorithm 4 and inducing a presentation for G up a
chain of subgroups

XH,<...<H,<G.

However, defining relators constructel~ by such an algorithm may
become very long for the following two reasons: Firstly, unless the gener-
ators of the subgroups Ht can be given as very short words in the genera-
tors of G, the defining relators for the Hl w3.i become lengthy when re-

6. Two stage presentation akoorithm 125

written as words in the generators of G. Secondly, if as in step (v) of
Algorithm 4, CjS~C~’ W-I is a relator constratcted for IIt, then the word’w
may be excessivily long because the canonical form of equation (1) in
Section 3 has to be used to o%in it.

Examples 2. We give five examp’nes of presentations constructed using
the two stage algorithm. In each case the relators up to the semicolon
are those constructed for H.

(1 j The group generated by

a=(l 2 3 4 5 6 7 8 9 10 Bl 12 13)
b=(2 3)(5 lOj(7 11)(9 12)

is the simple group PSZ, (3) of order 56 16. TakingH = ila> we have 1 H I= 13,
[G:H] = 432 and we get

aI3 = 1; 62 = (a3b)3 = [a, c” 13 = baba2 ba-2 ba-1 ba-” ba2
= (fJ5a)2ba-3)2 = 1 .

Note that here [G:H] is large relative to EC
(2) The group generatecl by

a=(1 15 7 5 12)(2 9 13 14 8)(3 6 10 11 4)
b= (1 7)(2 11)(13 12) (4 13) (5 10) (8 14)
~(1 16)(2 3)(4 5)(6 7)(8 9)(10 11)(12 13j(14 15)

is a primitive group of order 11,520. Taking H = (a, c), we have IHI =
720, [G:H] = 16 and we get

b2 =a5 = [b, aI3 = (bc)6 = ((ba)2(ba-1)2)2 = 1;
c2 = ca2b-l,ba-2 = cacba-Ica--I ca2b-Ia-1

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= &a-lb-laca-lb-lab-1
= ca-hzbca-lb-hb-lab-la = 1.

Here [C :H] is small compared to IHI.
(3) Using the same four permutations for the Mathieu group M,, of

order 7920, as in (5) of Examples 1, i.e.,

a=(2 6)(3 5)(4 7](9 10)
b=(l 5 7)(2 9 4)[3 8 10)
c=(l 11)(2 7)(3 5)(4 6)
d=(2 5)(3 6)(4 7)(11 12)

and taking H = (a, b) we have l1il =t 60, [G:H] = 132, and we get

c2 = d2 = cbcab-’ cb-‘lab = (dcj3 = cb(daj2 b-l c
= cbdb-’ dbcbab(albW1)?’ = 1; i12 = b3 = @a>s = 1.

No?e that this is a more compact presentation than the one found using
the single stage algorithm!

(4) The group generated by

a=(l 4 5)(2 8 10)(3 12 15j(6 13 11)(7 9 14)
b=(l 9 5 14 13 2 6)(3 15 4 7 8 12 11)
c=(l 16)(2 3)(4 5)(6 7)(8 9)(10 11)(12 13)(14 15)

is of order 40,320 (see [1 i]), Taking H = (b, c), we have IHI = 2520,
[G:H] = 16 and we get

a3 = b7 = (ba-lb-la- I)2 z (ab2)3 = (a-lb)5 = 1;

c2 = (a# = cbzaca-1 S-2 = cba-‘b-la-lcba-lb-la-1
=ca-lba-lb-Pca-1b~?-lb-~ = (cb-l)=I;-Icab” = 1,

Using the Todd-Coxeter algorithm the second last relator can be seen
to be redundant and hence can be removed.

(5) The group generated by

a=(1 2 3 4 5 6 7 8 9 10 11)
b=(2 5)(4 6)(3 11)(7 8)
c= (2 6 5 4) (3 7 Al 8)
d=(l 12)(2 3)(4 9)(5 7)(6 I!!)(10 11)

is the Mathieu group A/I,, of order 95,040. Taking H = (a, b), we have
IHi = 660, [G:H] = 144 and we get

b2 = (a-lb)5 = 011 = (ba2&-2)2 .= (a_3b)3 =r 1;

7. Applictrtbrs 127

czb = d2 = dcdc-la-‘ba2ba--l b = @a)%-1 ba
= ca-2ba-1 c-1 b(a-1 bj2aba-1 = dada-2dba2 ba-1 b
= cda-lba-2dc-1(C1-1b)2a-4b =dabac-ra-ld(a-lb)“a-4=1.

Execution time for this example was 30 seconds.

7. Applications

The availability of defining relations for a group G means that the Todd-
Coxeter algorithm may be used to enumerate cosets of subgroups of G.
T&his enables us to carry out certain investigations of G which may other-
wise be very difficult. For example, it is then a simple matter to compute
the transitive permutation representation of G afforded by the cosets of
a specified subgroup K.

The techniques of this paper may be used to produce an economical
generating set for G. Suppose X is a set of elements known to generate
G and that X contains r elements. The first step is to construct a set of
defining relators for G on the set X. Then, using the Todd-Coxeter algo-
rithm, we enumerate the cosets in G of all those subgroups of G generated
by r-l element subsets of X. If any of these subgroups has index 1 in G,
then the corresponding subset X’ of X generates G. We may inturn apply
this process to all the r-2 element subsets of X’ and continue in this way
until Ather a sufficiently small generating set is found or it is not possible
to proceed further.

If the set X does not contain a sufficiently small subset generating G,
one may use the Todd-Coxeter algorithm to test small sets of words in
the elements of X for the property of generating G. It is usually easy to
find two or three words generating G in this way. I-Iaving found a suffi-
ciently small generating set for G, we construct defining relators for G
in terms qf these generators.

To l:nustrate this procedure, we construct a 2-generator presentation
for Qd(S), of order 3000, which is the group obtained by allowing the
special linear group SL(2, 5) to act in the natural way on the two dimen-
sional vector space over GF(5). From the definition of Qd(5) and using
the generators and defining relations for SL(2, 5) given in [3, Section
7.51 we obtain

328 J. J. Cannon, Defining relators for finite groups

Qd(5) = gp (.s, v, t, z, x, yks = 1, v-% =s-l9
,2 = t2 = (St)3 = (tv)2 = (s2 to)3 = z, z2 = 1,
x5 =ys z ~-ly-lxy = 1, s-lxs =x, s-lys =xy,
t-‘xt = y, t-lyt =x-l, rlxu = X2) v-l y0 = y3).

Usi;ne i!ne Todd-Coxeter algorithm we find that Qd(5) is generated by
{ IIIX, sl- 11. Taking the faithful permutation representation of Qd(5) af-
forded by the cosets of 0, v, t) and applying Algorithm 3, we obtain

Qd(5) = gp (a, bla4 = b3 = cab)5 = (a2bj2a-l ba-2b-la-1 b = l),

where a = vx and b = St-l.
Generally, presentations produced by Algorithms 3 and 4 are close to

ideal from the point of view of the Todd-Coxeter algorithma Thus given
a presentation of G which causes the Todd-Coxeter algorithm to perform
badly, we may use Algorithm 3 to construct a better presentation, pro-
vided thiat it is possible to enumerate the cosets of the identity using the
otiginal presentation.

.Prog;azs [1, 101 for investigating the structure of groups of moderate
order need fast methods for constructing subgroup normalizers. The best
method currently known, which does not depend upon the way the group
is represented, involves the use of the Todd-Coxeter algorithm and hence
requires that a set of defining relations be known for the group. This re-
quiremem was the initial motivation for the development of the algorithms
described in this paper. Now, whenever a set cDf generators for a :goup G ,

is input to the suite of routines constituting the Sydney Group ‘l’heory
System, a presentation is automatically constructed for G.

Finally, we note that the ability to input relators along with the gener-
ators of G enables us to construct presentations for G involving specific
relators. This is particularly useful if one is tcving to find a family of
related presentations for a family of related groups.

The relatively old notion of the graph of a group can be used as the
basis fc)r a straightforward yet powerful algotithrn for constructing de-
fining relations. While it is impractical to apply the method to groups
much !arger r,han 10,000, one may introduce the graph of a group modulo

References 129

a subgroup and apply the method inductively over two or more stages.
This means that the method is applicable to groups of order up to at
least 108 and possibly in some cases’ to much larger groups.

The availability of these algorithms has already lead to a variety of
applications in such areas as group structure programs, investigation of
the behaviour of the Todd-Coxeter algorithm, calculation of Schur multi-
pliers of groups and the determination of families of similar presentations
for families of related groj&ps.

Acknowledgement

This work grew out of conversations with Lucien A. Dim.ino while the
author was visiting Bell Telephone Laboratories in 1970. I would like to
express my appreciation to Lou Dimino and also to those in the Com-
puting Science Research Centre who made the visit possible.

References

p l] J.J. Cannm, Computing local structure of large finite groups, in: G. Birkhoff and M. Hall
Jr., eds., Computers in algebra and number theory, SIAM-AMS Proc., vol. 3 (Am. Math.
Sot., Prolidence, RI., 1971) 161-176.

[2] J.3. Canno:1, L.A. Dimino, G. Havas and J.M. Watson, Implementation and analysis of the
ToddCor.eter algorithm, Math. Comp., to appear.

[3] H.S.M. Coxeter andW.0.J. Moser, Generators and relations for discrete groups, second
edition (!i p:inger, Berlin, 1965).

[4] J. Grover L. Rowe and L. Wilson, Applications of coset enumeration, in: Proc. 2nd symp.
on symbc lit and algebraic manipulation, 197 1 (Association for Computing Machinery,
New York, 1971).

[S] M. Ha& Theory of groups (Macmillan, New York, 1959).
[6] J. Leech, Coset enumeration on digital computers, Proc. Cambridge Philor. SOC. 59 (1963)

257-267,
[7] C.L. Liu, Introduction to combinatorial mathematics (McGnw-Hill, New York, 1968).
[8] W. Magnus, A. Karass and D. Solitar, Combinatorirl group theory (Interscience, New York,

1966).
[9] R. Morris, Scatter storage techniques, Comm. AClC’, 11 (Jan. 1968) 38-44.

[lo] J. Neubii?sr, Computing moderately large groups: ;ome methods and applications, in:
G. Birkhoff and M. Hall, Jr., eds., Compu:ers in al;;ebra and number theory, SIAM-AMS
Proc., vol. 3 (A/n. Math. Sot,, Providence, RI., 19 71) 183- 190.

[111 C.C. Sims, Computational methods in the study ,i permutation groups, in: J. Leech, ed.,
Computational problems in abstract algebra (Pzrgamon, London, 1970) 169-183.

