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Abstract. Given a faithful representation of a group G of order up to 104, we describe an algo-
rithm, based on the notion of the graph of G, for constructing a concise presentation for G. This
technique may be generalized to give a semialgorithm which is usually successful in fizding

presentations for groups of order up to 10°. :
*

1. Introduction

Suppose G is a finite group for which a faithful permutation or matrix
representation is known. A preblem which often arises is to construct
a set of defining relations (presentation) for G with respect to a given
set of generators. For example, whilie it is a comparatively simple matter
to show that the two permutations

a=(1 2),b=(12345617)

generate the symmetric group S, of order 5040, it is a much more dif-
ficult task to construct a corresponding set of defining relations, such as

a2 =b7 = (ab)6 = (ab—'ab)3 = (ab—2ab?)? =1,

for the group.

Not only do we wish to be able to construct sets of defining relations
from faithful permutation or matrix generators of G but we usually insist
in addition that the resulting set of defining relations be concise both in
the sense that the number of relations in the set be small and the actual

.
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relations be as uncomplicated as possible. No practical hand method of
constructing defining relations for an arbitrary group appears to be
known.

The oaly non-trivial application of computers to this problem appears
to have been the use of programs implementing the Todd-Coxeter algo-
rithm to check whether sets of relations holding in a group are indeed
defining. (The Todd-Coxeter algorithm [6] determines the index of a
subgroup H in a group G, given defining reiations for G and a set of words
generating H.) For some examples of this type of work see [6]. Other-
wise, computers have been merely used to multiply permutations or
matrices together to assist hand computations of defining relations. A
sophisticated example of such a program has been described in [4].

In this paper, we describe an efficient machine algorithm for construct-
ing fairly concise sets of defining relations for groups of order up to 108,
Our method is based on the notion of the graph of a group modulo a sub-
group (defined in Section 2). If the subgroup is taken as the identity,
then a subset S of the complete set of circuits passing through any node
of the graph will correspond to a concise set of defining relations for the
group. The crux of our algorithm is an efficient technique for identifying
this subset of circuits. Because of storage limitations this method is not
directly applicable to groups of order greater than 104 and so in Section
6 we describe an inductive version of the method which can be applied to
much larger groups but which may occasionally fail.

In [3, Chapter 3], a method of constructing defining relations is
described which also makes use of the tact that relators correspond to
circuits in the graph of the group over the identiiy. However, their
method of constructing S involves topological techniques (such as sym-
metrically embedding a graph in a surface) which cannot be easily real-
ized algorithmically.

2. Theory

We begin by defining the graph of a group modulo a subgroup and
summarising some of its properties. Throughout this paper, we shall as-
sume that the identity element is excluded from sets of generators
X={g,..g} of a group. We shall write X-! to denote the set
{erl, .. g1}
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Definition 1. Let H be a subgroup of the group G and suppose
G=Hc, + ..+ Hc,,

where we shall always assume that ¢; =/, the identity of G. Wezassociate
a directed graph I'(G |H) with the group G, generating set X = {3z, ..., g}
for G and subgroup H of G as follows: With each coset Hc; of E in G as-
sociate a node a; of I'(G 1 H) so that there is a one-to-one corsespondence
between the cosets of H and the nodes of I'(G|H). Two nodes, «; and

a; of I'(GIH) are joined by an edge €5 directed from ¢; to a ’ if and only
if

Hcgy = Hc;, for some g; € X.

The edge € is called a g, -edge. The graph I'(G|H) is called the graph of
G modulo H. '

In the literature, this graph is sometimes called a Schreier diagram. 1f
H = {I}, the graph is called a Cayley diagram or colowr group in older
works but we shall refer to it simply as the graph of G and denote it hy
I'(G). Basically, the graph of G is a very compact means of representing
the multiplication table of G.

For convenience, we shall suppese that the node ¢; of U'(G15) cor-
responding to coset Hc; is simply labelled by the integer i. Thus if i is
any node of I'(GIH) and w is an element of G written as a word in the
g’s, we write w(i, w) for the path in I'(G|H) beginning at node i and
defined by w. On the other hand if €, , ..., €, is the sequence of edges
corresponding to some path 7 in ['(GIH) and if s, € X U X -1 js the label
of edge ¢;, we say that the word s, ... s, is the word corresponding to
path w.

We summarise a2 number of elementary properties of these graphs in
the following lemma. In each case the proof is obvious.

Lemma 1. Suppose that G is a group with generating set X = {g,, ..., &},
F is the free group on X and T'(G\H) is the graph of G modulo some sub-
group H. Suppose further that under the natural homoinorphism of F
into G, the image of an element w € F is w.

(i) For every node i in T(G1H) and every word w € F, the path (i, w)
exists in I'(G\H) and is unique. Thus we denote the unique end node of
the path (i, w) by (w.
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(ii) The graph I'(Gid) is connected.

(iii) If for any w € F, (1)w =i, then w € He;. So any such w can be
taken as our coset representative c;.

(iv) If w = I is a relation holding in G and i is any node, then (ilw =1,
so that vv determines a circuit at every node of I'(G\H). In particular, if

Rl(gla ercy gr)= eor =Rs(gl y ooy gr)=1

is a presentation for G, then each relator forms a circuit around each
node of I'(G|H).

(v) If ()Y =i then c;weyt € H. Ir particular, if H= {I}, then w = I,
i.e.,w isarelator.

(vi) If H= {1}, the sets of circuits at any nodes i and j are identical.

A more extensive discussion of the properties of I'(G) together with
examples of group graphs, may be found in [8].
We next recall the definition of fundamental circuit.

Definition 2. Let I' be a graph aaving p edges and ¢ nodes and suppose
further that A is any spanning tree of '. An edge of I" not in A is called
a chord. The set of p — g + 1 circuits obtained by adding thep — g + 1
chords to A one at a time is called the fundamental system of circuits
relative to A. A circuit in the fundamental system of circuits is called a
Sfundamental circuit.

If A and B are two sets whose elements are edges of graph I', we de-
fine the sum A + B of A and B to be the set

AU B)—(ANB).

The edge-disjoint union of circuits 1ieans the union of a set of circuits
having no common edges. It is well kuown that the set of all circuits and
edge-disjoint unions of circuits in a graph 1" forms a vector space over
GF(2), the so-called circuit space of I'. Further, the fundamental system
of circuits relative to a spanning tree is a basis for the circuit space of I"
(see [7]). This leads to the following important result [3]:

Lemma 2. The relators corresponding to a fundamental system of circuits
belonging to I'(G) are sufficient to define G.
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Let us call a circuit belonging to the fundamental system of circuits
relative to spanning tree A of I'(G) a A-circuit and a relator correspond-
ing to a A-circuit a A-relator. The complets set of A-relators will be
called a A-system for G.

A A-system will contain (r — 1)IG|+ 1 1elators and, except in the case
of the very smallest groups, will form a highly redundant set of defining
relators. The heart of our technique for constructing non-redundant sets
of defining relations is an algorithm for colouring all the edges of all
those A-circuits in I'(G) whose corresponding A-relators can be deduced
from a given set of A-relators.

Our strategy for constructing a non-redundant set D of defining rela-
tions for a finite group G thus becomes clear. First the graph I'(G) of G,
relative to the given set of generators, is constructed and a spanning tree
A for I'(G) found. Initially, we suppose that only those edges of I" cor-
responding to the edges of A are coloured. Now each A-circuit v is pro-
cessed as follows:

(a) If some edge of v is uncoloured we ¢dd the corresponding A-rela-
tor to D (initially D is empty). Now we colour ali the edges of A-circuits
corresponding to all A-relators implied by the relators of D by repeated-
ly applying the following colouring rule until no more edges of i'(G)
can be coloured: 1f a circuit corresponding to any relator of D, starting
at any node of I'(G), contains a single uncoloured edge, then colour this
edge. When the colouring procedure has finished, we proceed to examine
the next A-relator.

(b) If all the edges of y are coloured we simply proceed to the next
A-relator.

A circuit is said to be coloured if all its edges are coloured. If an Sj-
edge is coloured, we automatically assume that the corresponding 87 1.
edge is coloured. This means that if the circuit corresponding to relator
R is coloured, then the circuit corresponding to R—1 is also coloured.
We now establish that the above colouring rule will colour precisely
those A-circuits corresponding to A-relators derivable from D. First,
however, we shall make precise the notion of a relator being derivable
from D. '

Definition 3. Suppose D = {R,R,, ...,R,,} is a set of relators of a
group G. A relator R is said to be derivable from D if it can be trans-
formed into the identity by a finite number of applications of the follow-
ing rules:
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(i) Insert cne of the relators Ry, Ry 1, Ry, R5 -, .., R, , R;;! or one
of the trivial relators between any two consecutive symbols of R or at
either end of R.

(ii) Delete one of the relators R, Ry!, R,, R31, ..., R, ,R;;! orone
of the trivial relators if it forms a block of consecutive symbols in R.

Lemma 3. Suppose that the coloured edges of I'(G) correspond either
to the edges of the spanning tree A or to A-circuits corresponding to A-
relators derivable from D. If R is a relator of D such that, for some node
i of I'(G), the path n(i, R) contains a single uncoloured edge e, then the
A-relator corresponding to the A-circuit including e is derivable from D.

Proof. Suppose R =5,.... 5;,5, € XU X-1 foru=1, .., t and that € isan
s;-edge joining nodes i and k, being directed from i to k. Lat w(1, ps,-q)
be the A-circuit containing e with both the paths n(1, p) and n(%, q)
coloured. We need to prove that ps;q is a relator in G using only the re-
lators of D. ' !

Using rule (i) of Definition 3,

= -1 -1, -1 =1
psl-q - pS]-,_l ceae sl -)l cone S"_lsis]'.'.l eves stst caes Si_,_lq

=ps;71 ... s7ls Lsslg =R, say.

The second step is possible by rule (ii) of Definition 3, because s, .... s,

is a relator of D. Since € is the only uncoloursd edge of (i, R), the circuit
w(1,ps; ] ..os7lse sﬂ} q) is coloured and so by assumption, R’ isa
relator derivable from D. Thus ps;q is a relator derivable from D.

Lemma 4. [ cli possible edges of I'(G) have beer: coloured by the colour-
ing rule, usirg a set of relators D, then any A-relator whose A-circuit con-
tains an ur.coloured edge cannot be derived from D.

Proof. Assume that the lemma is false and let R be a A-relator derivable
from D which contains an uncoloured edge e This means that there isa
finite chain of relators

R =R1,R2, ...,Ru =R,,

where R’ € D or is the identity, such that R,,, is obtained from R; by
the application of one of the rules of Definition 3.
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Corresponding to this chain of relators we have a chain of circuits
beginning with 7(1, R) and ending with #(1, R'). Now the circuit
w(1, R) contains a single uncoloured edge, while all the edges of (1, R")
are coloured. An application of rules (i) or (ii) to R, has the effect on
the circuit m(1, R;) of introducing or removing either a block of coloured
edges or a pair of adjacent uncoloured edges (corresponding to the trivial
relator s;571).

However since (1, R) has one uncoloured edge while (1 , R") has all
its edges coloured, it is clear that we cannot get from w(1, R) to m(1, R')
by the rules of Definition 3. So our assumption that R is derivable from
D must be false.

3. Construction of the graph of a group modulo a subgroup

The algorithm for constructing defining relations depends upon the
availability of efficient methods for constructing the group graph with
respect to some generating set. In this sec“ion, we shall discuss the morz
general problem of constructing tiie graph “(GIH) of G modulo some
subgroup H as this shall be needed in Section 6.

We begin by stating a straightforward algorithm for constructing the
edge table T of I'(GIH), simultan=ously with a set of coset representa-
tives for H in G, given a set of permutation or matrix generators
EQ1), ..., E(r) for G. li is convenient to actually construct the extended
edge table T which is the | G: H| X 2r array whose entries are defined by

TG, N=kifDEG) =k forj=1,..,r;
TG, )=l ifDEG—-n! = forj=r+1, .., 2r.

Each row of T corresponds to a coset of H. In particular, row 1 of T
corresponds to H itself.

Algorithm 1. Construct graph.

r — number of generators of G.

E — array whose elements are the given generators of G.

T — extended edge table.

F — a [G: H]-dimensional vector in Wthh a set of canonical coset re-
presentatives for H will be stored. The definition of a canonical represen-
tative will be discussed below.



112 J.J. Cannon, Defining relators for finite groups

i and j index the rows and columns of T, respectively.

m — number of coset representatives generated so far. ‘

(i) [Initialize] i < 0; F(1) « I (the coset representative for coset H);
me« 1. :

(ii) [Increment row count] i « i + 1. 1f i > m, exit (the construction
of I'(G|H) is complete). Else j « 0.

(iii) [Increment column count] j < j + 1. 1f j > r go to (ii) (row fin-
ished). Else,

(iv) iCompute T(i, j)] Find the canonical representative x for coset
F@EG). Y forsome I, 1 SIS m, x =F(),then TG, j) « L, T4, r +j) « i
(inverse entry). Go to (iii). Otherwise, m « m + 1, T(i, j) « m,

T(m, r +7) « i, F(m) < x (store new coset representative). Go to (iii).

The two critical operations in this algorithm are the determination of
the canonical representative of a coset and the locaticn of a canonical
coset representative among the elements of F (the first two operations
of step (iv)). Let us discuss the second of these first. A very efficient way
of doing this lookup is to store the elements of F in a hash table [9].

A simple and effective means of computing the hash address is the
follow:ng. Assuming that a group element is stored as a (right-justified)
packed integer string spread over several machine words, the contents of
the machine words containing a group element are simply multiplied to-
gether (ignoring overflow) to form a single length product. The hash
acldress of the group clement is then taken as the remainder when th::
product is divided by the size of the hash table. To avoid right to left
Zero propagation each intermediate product is shifted one place to ti:
right. Provided that the hash table is never more than seventy percent
full, it has been found that, on the average, less than two comparisons
are necessary in order to locate an element in the hash table.

A solution to the first problem is not so easy and it is convenient to
distinguish three situations. If H is the identity, then there is a single
element in each coset so that there is no problem in this case. If H is not
the identity but is small enough so that all its elements can be stored,
the following procedure can be used. We suppose the elements of G, as
represented in the machine, are ordered and if H= {x, ..., x,}, take the
smallest of the elementsx g, ..., x, £ as the canonical representative for
coset Hg. This is rot quite as inefficient as it seems, for it is only neces-
sary to form a short initial segment of many of the products x;g in order
to rule them out as being the canonical representative. However, the
technique cannot be used on groups of order greater than 106 .
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If G is represented as a permutation group, then we may use some
ideas of Sims [11] to define a canonical coset representative which may
be cheaply computed without storing the elements of H. Following Sims
let G be a permutation group on the set §2. A base for G is a sequence:
Z=a,, .., a, of points such that the only element of G fixing all of the
a, is the identity. Suppose Z =« ..., &, is a base for G and let G be
the stabilizer of a, ..., ;_;. Then G1) =G and GU*1) =]. Let U; be a
set of right coset representatives for GU*1) in G® and let X; be a set of
generators for ¢@ . If a set of generators for G@ is known, it is a simple
matter to  ite dowr a set of coset representatives U; for GU*1) in GO,
Then by Schreier’s theorem [51, G¢+1) is generated by

{u(i)x(i)¢ (u(i)x(i))—-l lu® e [jv x® e Xi}’

where ¢(g) is the choosen representative for the coset containinz ;.

A knowledge of the sets U; enables us to write any permutation o7 G
in a unique form. For if g € G, there exists ag; € U; such that gg'fl
fixes a;,a g, € U, such that gg{lgg 1 fixes a, and so on. Evenitually we
find elementsg; € U;,i = 1, ..., t such that

1,-1 1 =

gg1'°gy -8 =1,

ie.,
a1 €881 - 81~

We now return to our problem of assigning a cheaply computable
canonical representative to the cesets of subgroup H in a permutation
group G. The solution described below is due to Richardson. Let
0y s @ be a base for H and assume that the elements of £ are ordered
in some manner. Using Sims’ algorithm, the sets U, are constructed for
the stabilizer chain

H=GW >G> ..> G0 > Gu) =],

A permutation x of G is the canonical representative for coset fg
provided that it is the minimal element of fig with respect *o the order-
ing < which is defined as follows: If y, z € G, then y < zifand only if
there existsa k, 1 < k< ¢+ 1 such that o =af fori=1,..,k-—-1and
of <o (fk < f). While < is not a total ordering on G, it may be
shown that it is a total ordering on any coset Hg of Hin G.
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The canonical representative x of coset Hg is easily calculated. Select
h; to be an element of U; such that o118 < o8, for allu € U, . Similar-
ly, select k, € U, such that of2%:8 < o418 for all u € U,, and continue
in this way to eventually obtain the required canonical representative,
x=hh,_; ... h,g. Note that since G® stabilizes a;, ..., @;_; , we have

oii- g = i M8 forj=1,..,i— 1.

This canonical representative is fairly cheap to compute as a typical
base will seldom contain more than 10 letters. Using such a scheme it is
possible to compute graphs in very large permutation groups indeed, the
main limitation being the storage space need to store I'(G!H). Note that
if we compute the sets U; for G as well as H, we may write a canonical
representative x in the G-canonical form of equation (1), so that it is then
not necessary to actually store the canonical coset representatives for H
in G (the F vector in Algorithm 1).

4. Construction of a minimal spanning tree

Our algorithms for constructing defining relations for a group G re-
quire that the spanning tree A for I'(GiH) be minimal in the sense that
the path in A from node 1 to any node i be of minimum length. This is
so that the relators we produce will be as short as possible. In this sec-
tion, we describe a simple but fast algorithm for constructing a mini-
mal spanning tree A for I'(G |H), given the extended edge table T for
I'(GIH).

The distance between two nodes of a ;;raph is defined to be the length
of a path of minimum length joining them. The algorithm proceeds as
follows. If Z; denotes the set of nodes of I'(G1H) at precisely distance j
from node 1, suppose that a minimal tree A, _ 1 has been constructed
containing the nodesof Z, U Z, U ..U Z,_,.Now A, _, is extended to
include the nodes of Z, by examining all nodes « adjacent to each node
Bof Z,_; and adding the edge joining « to 8 to the tree if « is not al-
ready in the tree.

The algorithm outputs A as a set of coset representatives stored re-
cursively in an n X 3 array W, where » is the number of rows of 7",

W(p, 2) contains the number, q say, of a coset representative Cq and
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W(p, 3) contains the name, j say, of an elements; € X U X~1 such that
Cp = €,5j, Where the length of the word €q is less than the word Cp
particular, c, is the identity. W(p, 1)isa bogkk_eemng enfry why_:h 1 _k_s

together the rows of W in the order in which they are generated. if
W(p, 1) is zero, then node p is not yet included in the spanning tree.

Algorithm 2. Construct a minimal spanning tree.

n — number of rows of T.

s — number of columns of 7.

k -- counts the number of coset representatives which have thus far
been constructed.

i — current row of T being examined.

j — current column of T being examined.

! — links the rows of T together in the order in which they are to be
examined.

(i) [Initialize] Zero the array W; W(1,2)« 1;i« 1;j <« 0;k < 1;
l« 1.

\u, [Dxanulc all nodes a J&Cﬁ‘lt to node il jej+ 1.1f i> s, 8010
(iv). (End of T row reached, so all nodes adjacent to i have been exain-
ined) If W(T@, j), 1) # 0 or T(i, j) =1, go to (ii). Node T1i, j) is already
in spanning tree.)

(iii) [Add node T(, j) to the spanning tree] k « k+ 1, W(T(, j), 2) «i;
W(TG, ), 3) <« j; W, 1)« TG, j); 1< T@E, 7). Go to (ii).

(iv) [Check if finished] If & = n, finish. Else i < W(, 1),j + 0, and go
to (ii).

5. Single stage presentation algorithm

We can now describe the basic algorithm for constructing a set of
defining relators for a finite group G.

Algorith:n 3. Single stage presentation algorithm.

(i) Construct the extended edge table T for I'(G), using Algorithm 1.
While it is not theoretically necessary to use the extended edige table, its
use by the minimal spanning tree algorithm leads to shorter words re-
presenting the group elements, and consequentiy to more concise re-
lators.
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(ii) Construct the array W containing a minimal spanning tree A for
I'(G) using Algorithm 2. The |G| words ¢; corresponding to the set of
paths of A beginning at the root (node 1) and ending at each node form
a set of word representatives for the |G| elements of G. (By construction,
this set of words is actually a left Schreier system for /in G, although
this fact is not explicitly used.) Thus the effect of Algorithm 2 is to set
up the array W containing a set of word representatives for the elements
of C.

Since A is a minimal spanning tree with respect to path iength from 1
to each node, the words ¢; will be as short as possible. Initially, all the
edges ¢f I'(G) are supposed uncoloured. Concurrently with the construc-
tion of 4, we colour all tho-e edges of I'(G) which are also edges of A,
together with their inverses. (If € is an 5;-edge joining nodes j and k,
directed fromj to k, then the edge inverse to € is the s 1 edge joining
nodesj and k, directed from X to j. Recall that in the extended edge
table an edge and its inverse have distinct representations).

Now the set of all remaining uncoloured edges of I'(G) (excluding the
inverse edges) is precisely the szt of chords of I'(G) relative to A, so that
as each one of these edges is coloured a new fundamental circuit becomes
coloured.

(iii) Construct a new relator. Let D denote a set of defining relators.
Initiaily D is empty. We define the distance d(€) of an edge € of I'(G)
from node 1 (relative to A) as follows. Suppose € joins nodes j and k.
Then d(e) is defined to be the sum of the lengths of the words ¢jand cy.
If € is an uncoloured edge at minimum distance from node 1, then the
word corresponding o the fundamental circuit which becomes coloured
after € is coloured is taken as the next relator to be added to D.

Specifically, suppose the edge e is labelled s; and joins nodes j and k,
being directed from to k. Let ¢; =s;, ..... Sip and ¢ =g ... Skq* Then
we add relator

to D. Ey construction, R is a A-relator. The minimal property of A
firstly ensures that R is the shortest possible relator which cannot be
derived from the other relators of D, and secoridly prevents the occur-
rence of expressions of the form s,s;! in R.

If there are no remaining uncoloured edges of I'(G), then, by Lemmas
2 and 3, D comprises 4 set of defining relators for G and the algorithm
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terminates. Otherwise, each time a new relstor is added to D we colour
the edge € and go to step (iv).

1iv) Derivation of the implications of the relators of D. Each time a
new relator is added to D, we colour in edges of I'(G) to ensure that all
fur damental circuits corresponding to all those A-relators derivatle from
D \ave all their edges coloured. This is done using the colouring rule of
Section 2. If a circuit corresponding to any relator of D, beginning at
any node of I'(G), contains a single uncoloured edge, then colour this
edge. When no more edges of I'(G) can be coloured by repeated ag plica-
ti-:1s of this rule we return to step (iii). The use of this rule was justified
in Lemmas 3 and 4. Methods of implementing this colouring rule are
discussed below.

We now consider the efficiency of this aigorithm. The construction of
I'(G) invoives r1G| group element multiplications and not more than
2rlG| comparisons of group elements, where we assume that the hash
table of elements is such that, on the average, less than two comparisons
are required per lookup. The work involved in forming A and actually
finding the relators is insignificant. The most critical part of the algorithm
is the colouring-in procedure (step (iv)).

There are two obvious ways of doing this. The simplest method is to
make a number of passes over I'(G), where each pass involves applying
every relator of D to every node. The procedure terminates when no
edges have been coloured during an entire pass. Much of the time no new
edges are coloured during the second pass and it is rare for any moie
edges to be coloured during the third pass, so that if a is the average num-
ber of passes each time step (iv) is executed, we have 2 < a < 3. If the
total number of defining relators constructed is ¢, then the total number
of relator cycles traced is easily seen to be

lat + DIGI~ 221G

This is the method that we have used in our implementation of the
presentation algorithms. .

A more complicated colouring-in procedure involves keeping a list ¢’
of those edges which become coloured as the result of constructing a iiew
relator in step (iii). When step (iv) is entered, C contains the single edg: €
which is coloured to give the new relator. Each edge in C is examined in
turn to see if it forms part of some relator cycle containing a single un-
coloured edge. Each such edge is coloured and added to C to awa't its
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turn for examination. 1t is not known how much more efficient this
procedure is over the one described in the previous paragraph.

Coloured eds;..s of I'(G) may be converuently represented in the ma-
chine by simply negating the correspondmg entry in array T. Thus if the

s;-edge € joining nodes j and k is coloured, then T(] 5;) is set equal to —k.

The algorithms described in this paper have been implemented in
ANSI Fortran (with an exception to bs noted below) on the CDC6600
computer as part of the Sydney Group Theory System. The only ma-
chine dependent feaiure is a suite of routines (known collectively as
the Stack Handler) through which all arrays are accessed. The Stack
Handler provides dynamic storage allocation and the ability to process
packed arrays whose field sizes are known only at run time. Packing is
desirable for the components of a matrix or permutation representation
of a group element, as these components usually only occupy a few bits
each, and aiso for the elements of the array 7. Run times quoted in this

paper then refer to this Fortran impiementation running on the
CDC6600.

Examples 1. We give five examples of presentations constructed by
Algorithm 3. Given the standard representations of the familiar small
groups (e.8. 84, S5, &, Ay, A5, Ag, PSL,(7) etc.), the algorithm finds
the usual presentations so that we shall only give one such example. In
each case, we reproduce the relators in the order in which they were
constructed by the algorithm.

(1) The symmetric group S, of crder 24 generated by

a=(1 2)
b=2 3 4)
is presented as
a? =p3 = (ba)* = 1.

Execution time was 0.24 seconds of which 0.13 seconds was taken up
by Algorithms 1 and 2
(2) The simple group PSL,(11) of order 660 generated by

a=(1 11 25 7)(10 9)
b=(2 11 3 10 9)(6 8)

is presented as -
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(@b)? =a5 = b5 = (ba-1)6 = ba2b2a~1ba-1b-2a-2ba-! = 1.

Execution time was 16 seconds of which 6 seconds was taken up by
Algorithms 1 and 2.

(3) The symmetric group S, of order 5040 generated by

a=(1 2)
b=(1 234567

is presented as
a2 =b7 =(ba)é = (bab—1a)3 = (b2ab~2a)? = 1.

N.B. This presentation for S; has one less relator than the corresponding
one given in Coxeter and Moser [3; p. 137]. Execution time was 128
seconds of which 43 seconds were taken up by Algorithms 1 and 2.

(4) The following two permutations (due to John McKay) generate
the unitary simple group Uj;(3) of order 6043:

a=(1 35731224 11)(2 23 4 27 13 14 26)

(6 20 18 8 25 21 28)(9 10 17 15 22 16 19)
b=(3 45 17 7 16 8 20 6 13)

9 19 11 14 12 18 10 15)

(21 23 26 28 24 22 27 25)

This group is presenied as

(ba-1)3 =a7 = b® = ba2baba-1b-'ab?a-!
=bab-3a-1b-4%a-2 =1.

Execution time was 320 seconds of which 8(0 seconds were taken up by
Algorithms 1 and 2. This example exhibits a behaviour occasiona! v ¢b-
served when the algorithm is applied to larger groups where a large num-
ber of colouring passes (12 in this case) are required after the lzst relator
is added to D. This suggests that one should perhaps modify Algorithm

3 slightly so that if more than three colouring passes are required after
the addition of a relator of D, instead of doing the extra colouring passes,
one should attempt to show that D i defining using the Todd-Coxeter
algorithm. If that strategy had been used on this example, executicn
time would have been reduced to about 2100 seconds.
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~(5)The following rfourpermuktations generate the ’,Ma,thjeu simple
group M,; of order 7920 (see [11]).

a=(2 6)(3 5@ 7 10)
b=(157294@3 8 10)
c=(1 11)(2 7)(3 5)4 6)
d=2 53 6@ (1 12)

The group is presented as

a2 =¢2 =d? =p3 =(ca)? =(da)? = (dc)3 = (db-1)4

= (ba)? db-lab-'d = abab-'adb-1db-!

=abcbach~'chb7! = 1.
Execution time was 550 seconds of which 125 seconds were taken up
by Algorithms 1 and 2. After the arldition of the last relator 10 colouring
pesses were required, so that if the strategy suggested at the end of the
last example were adopted, the execution time for this example would
drop to about 370 seconds.

We may summarise the behaviour of the algorithm for this exampie in
Tzble 1, where column 3 contains the total colouring time after the ad-
dirion of the indicated relator to D.

Table 1
Relator added to D No. of colouring passes Colouring time in seconds
»® 2 55
(Ba)? 2 10.0
(da)? 2 14.4
@cy® 2 19.1
@ 2 25.4
ba)?db~tabd 2 31.0
abab adb™? dp~! 2 37.3
abcbach™" cb™* 10 268.4
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6. Two stage presentation algorithm

The algorithm of Section 5 is not directly applicable to groups much

el 13 UL =222 v"—- Sppriavs

greater than 10,000 because of storage requirements. 11t addition, the
execution time starts to become significant at this stage. So we consider
the possibility of constructing a presentation for G from the graphs
I'GIH) and I'(A), where H is some subgroup of G, rather than from the
graph I'(G). Since I'(G) is not always determined by I'(G|H) and I'(4 );.
we cannot expect that such a procedure would work in every case. How-
ever, with a little care in the choice of H, the following semialgorithm

will usually manage to construct a set of defining relators for G. We as-
sume that we are given a set of permutation or matrix generators

{g;, ..., 81} for G and a set of words {4, ..., i} in the g’s, generating
the subgroup H. Let [G:H] =f.

Algorithm 4. Two stage presentation algorithm.

(i) Using Algorithm 3, construct a presentation for H. Then rewrite
these relators as words in the g’s and call the set of rewritten relators D.

(ii) Using Algorithm 1, construct the extended edge table T for the
graph I'(G | H).

(iii) Construct a minimal spanning tree A for I'(G1H) using Algoxl'thm
2. This sets up the array W containing a set of coset representatives
{eg, ., ot for Hin G.

(iv) Using the same colouring rule as in Algorithm 3, step (iv), colour
edges of I'(G|H) according to the relators of D. 1t should be notec that,
smce fundamental circuits in I'(G|H) do not necessarily correspond to
fundamental circuits in I'(G), this colouring rule may, on the one hand,
rniss colouring circuits in I'(G|H) corresponding to relators which can
be derived from D and, on the other hand, it may colour circuits of
I'(GIH) corresponding to relators which cannot be derived from D.

While it is possible to give fairly simple colouring rules which avoid
colouring circuits corresponding to relators independent of D, such rules
have the drawback that they often result in the generation of a large
number of reduadant relators. Colouring rules which manage to avoid
both difficulties apparently have to be of considerably greater complex-
ity than the one sugzested here. The current simple-minded rule werks
quite well in practice so that we have not felt it necessary to undertake
the complicated programming involved in a complicated colouring rule.
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(v) Construct a new relator. As in Algorithm 3, step (iii), we look for
an uncoloured edge € at minimum distance from node 1. ‘Suppose € is
labelled 5; and joins nodes j and k, being dgirected from J to k. Hence
¢sici ! '€ H. To get a relator from this, we use the given representation
of G to obtain ¢;s;c z1 as an element, 4 say, of the representation. Now
there are two ways of expressing 4 as a ward in the generators of H. In
general, one saves the elements of H and the corresponding word table
Wy, for I'(H) (storing them on disc between uses if necessary). Then
one can simply look % up in the list of elements of H and read the cor-
responding word off the Wy, array.

Alternatively, if G is represented as a permutation group, one may
write A as a word in the generators of H using the canonical form given
by equation 1 in Section 3. While this method requires the storage of
little information about H it sometimes r :sults in an unnecessarily com-
plicated word for A.

Having found 4 as a word in the generators of H, it is immediately
rewritten as a word, w say, in the generators of G. Suppose c =5
€ =Sp, e Sg, andw=s, .5, .Then the relation ¢;s; ck ll = 1 1s
written in the form

-1

-1 1
Sjy - Sj, 518k, S

R Ak e we
and added to D. Then we return to step {iv). If all the edges of I'(GIH)
are coloured, we go to the next step.

(vi) Using the Todd-Coxeter algorithin [6], determine if D is a set of
defining relators for G. At this stage the relators of D may or may not be
sufficient to define G. We check this by attempting to enumerate the
cosets of H in the group defined by D using a Todd-Coxeter program [2].
If the program finds that A has index [C':H] in this group, then the
relators of D certainly define G. On the other hand, if the Todd-Coxeter
program finds an index greater than [G:H] or, if after a reasonable time
has passed (determined by experience), it has not obtained any index,
we assume that the relators of D are not defining.

The set of relators produced by Algorithm 4 will sometimes contain a
small number of redundant relators. If desired, these may be removed
with the aid of the Todd-Coxeter algori’hm:.

At this stage, little is known about how the embedding of H in G is
correlated with the success or failure of Algorithm 4 to construct a



123

6. Two stage presentation algorithm

N 11 € 91 0Z8T (Sipesiqy 0ze‘op 61991
N St £ L1 096 (9191 *S15S1p) 0zE91 8OLT
A €1 € 89 obe (M Slasly) 0zE'91 85L1
N 11 € 91 0ZL (Sto<Sipy 0Zs‘11 81991
N 6 € ZET 09 (01q ‘0lp) 0z6L Yy £otl
N (4 € be (1} S1o*siaslp) 0918 LOLT
N 6 € 0z 473 (61q“6lp) 089 (6D¥15d 50T
N 4! € 91 09¢ (S1q<sio) 09LS L1991
X ] £ ¥ oy (Flprrissip) 09.$ 51991
N 9 r4 1434 €1 (Elo; 919§ (€)¢18d LIET
N 6 € 81 (44 (Lig tip)y 968Y (LN¥19d To81
N 6 £ L1 ovz  (OpSiasipy 080% (91)%18d 99L1
I 8 € 81 9¢1 (Lrq Loy 8¥iT D=ISa 1981
X 9 € 4! oy (FipSiasly) 0887 S1D91
N 8 £ a! 96T (€l g ‘€lp) +812 (€104 o%1
X 9 £ 174 08 (9o Slp)y 0Z61 £1091
N 4 £ 0C 42 (62 “6p) iT24! LD01

X L € ] 891 (Lo‘lpy pPel $D8
N 6 € 8T o1t (g lpy 0zZ€l an&ind (43741
I 1 € 14! 8L (€1q ‘1) 2601 (€118 19%1

pajpnns
(X) anfseg -u09 S10JB[aI 9 JO SIo)eISUa]

1o (/N) sse0ong Jo 'oN JooN 1 )] 1H H 19pI10 syIeuay dnoin

unpiuos[e uonejussard aFeis-om] oYy} Jo OUBWIOJI

(4 Cia



124 J.J. Cannon, Defining relators for finite groups

presentation for G. In many situations where Algorithm 4 currently fails
the reason is that, while I'(G|H) and I'(H) contain sufficient information
to present G, much of this information is destroyed by the crude colour-
ing rule used in step (iv). The main heuristic rule that emerges from use
of the algorithm is that the larger the index of H in G the more likely the
algorithm will be successful. Usually larger indexes also result in fewer
redundant relators and more elegant relators. In Table 2, we summarise
the performance of Algorithm 4 with respect to twenty presentations
taken at random from Sim’s table of primitive groups of degrees not ex-
ceeding 20 [11]. In most cases the subgroup H was taken to the stabilizer
of a point so that [G:H] is often small compared to |HIl. The notation is
the same as that used in [11}.

If Algorithm 4 is unsuccessful, one simply chooses another subgroup
K and tries again. If the relators found using X are also insufficient, one
puts together the two sets of relators and, using the Todd-Coxeter pro-
gram, tests whether this new set is defining. In practice, it has been found
to be an extremely rare occurrence for these techniques to fail to present
a group of order less than 106,

A useful feature incorporated in both the single stage and two stage
presentation programs is the ability to input relators along with the
generators of G. Not only does this enable one to construct presentations
containing specified relators but it can often mean considerable savings
in execution time. In the case of the two stage algorithm, user supplied
relators (such as the orders of the gencrators) may help in the construc-
tion of a defining s=t.

The two stage aizorithm is restricted by storage considerations to
groups G and subgroups H such that 1/1< 10,000 and [G:H] < 10,000.
In the case of permuitation groups, we have seen in Section 3 that it is
possible to construct graphs I'(G1H) without storing the elements of H.
Thus it is possible to present much lazger groups by increasing the nuin-
ber of stages in Algorithm 4 and inducing a presentation for G up a
chain of subgroups

I<H <..<H,<G.

However, defining relators constructe:: by such an algorithm may
become very long for the following two reasons: Firstly, unless the gener-
ators of the subgroups H, can be given as very short words in the genera-
tors of G, the defining relators for the H, wili become lengthy when re-
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written as words in the generators of G. Secondly, if asin step (v) of
Algorithm 4, c].s,.c,::'l w1 isa relator constructed for H,, then the word w
may be excessivily long because the canonical form of equation (1) in
Section 3 has to be used to o**ain it.

Examples 2. We give five exampiex of presentations constructed using
the two stage algorithm. In each case the relators up to the semicolon
are those constructed for H.

{1) The group generated by

a=(12345678910 11 12 13)
b=@2 3)( 100 (7 t1) (9 12)

is the simple group PSL3 (3) of order 5616. Taking H = ‘a) we have |H| =13,
[G:H] = 432 and we get

al3 =1; b2 =(a3b)3? = [a, 3 = baba?ba~2ba ! ba~?ba?
= ((ha)tba=3)? = 1.

Note that here [G:H] is large relative to |HI.
(2) The group generated by

a={1157512)(2 9 13 14 8)({3 6 10 11 4)
b=(1 7)(2 11)(13 12){4 13)(S 10) (8 14)
c=(1 16)(2 3)(4 5)(6 (8 9 (10 11)(12 13)(14 15)

is a primitive group of order 11,520. Taking H = (a, c¢), we have |H| =
720, [G:H] = 16 and we get

b2 =a5 = [b, a3 = (bc)® = ((ba)?(ba~1)?)2 = 1;

c2 =ca?b-1cha-? = cacba—'ca-1ca’b-1a-!
=chcab~la-1b-1cb—lab~la-1b-1
=chca—1b-laca—1b-1lab-!
=ca-lcbea~1b-1cb-lab-la=1.

Here [C:K] is small compared to |H|.
(3) Using the same four permutations for the Mathieu group M,,; of
order 7920, as in (5) of Examples 1, i.e.,
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a=(2 6)(3 54 7O 10)
b=(157QR 9 43 8 10
ce=(1 12 73 3@ &)
d=(25)(3 6)4 7)(11 12)

and taking H = (a, b) we have |Hl = 60, [G:f] = 132, and we get

c2 =d? = cbcab='cb~'ab = (dc)® = ch(da)®b~'c
= cbdb~dbcbab(ab=1)? = 1; u? = b3 = (ba)® = 1.

Note that this is a more compact presentation than the one found using
the single stage algorithm!
(4) The group generated by

a=(145Q 81003 12156 12 11)(7 9 14
b=(195141326)(3 154781211
c=(116)(2 3)(4 5)(6 7)(8 9 (1C 11)(12 13) (14 15)

is of order 40,320 (see [11]). Taking H = {5, ), we have |H| = 2520,
{G:H] =16 and we get

a3 = b7 = (ba—l b—la—i )2 = (ab2)3 = (a‘-lb)s = l;
c? =(ac)3 = cb?aca—'b-2 =cba-'b-la-lcba—1b-1q-1
=ca-lba-1b-tca—1ba-1b-1 = (cb-1)a-1cab? =1,

Using the Todd-Coxeter algorithm the second last relator can be seen
to be redundant and hence can be removed.
(5) The group generated by

a=(1234567891011)

b=(2 54 6)B 11 (7 8)
c=(2654)(371138)

d=(1 12)(2 3)(4 9(5 7)(6 8) (10 11)

i the Mathieu group A, of order 95,040. Taking H = (a, b), we have
IHi= 660, [G:H] = 144 and we get

b2 = (a—lb)5 :all = (baZba—2)2 = (a-—3b)3 = ]’
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c2b=d? =dcdc-a-'ba2ba-1b = (ca)2c-1ba
=ca-2ba-tc-1b(a-1b)2aba-! = dada~2dba2ba-1b
= cda~1ba-2dc-1(a~1b)2a—4b = dabac-la-1d(a-1b)2a—4=1.

Execution time for this example was 30 seconds.

7. Applications

The availability of defining relations for a group G means that the Todd-
Coxeter algorithm may be used to enumerate coscts of subgroups of G.
This enables us to carry out certain investigations of G which may other-
wise be very difficult. For example, it is then a simple matter to compute
the transitive permutation representation of G afforded by the cosets of
a specified subgroup K.

The techniques of this paper may be used to produce an economical
generating set for G. Suppose X is a set of elements known to generate
G and that X contains r elements. The first step is to construct a set of
defining relators for G on the set X. Then, using the Todd-Coxeter algo-
rithm, we enumerate the cosets in G of all those subgroups of & generated
by r—1 =lement subsets of X. 1f any of these subgroups has index 1 in &,
then the corresponding subset X’ of X generates G. We may in -turn apply
this process to all the r—2 element subsets of X’ and continue in this way
until vither a sufficiently small generating set is found or it is not possible
to proceed further.

If the set X does not contain a sufficiently smalil subset generating G,
one may use the Todd-Coxeter algorithm to test small sets of words in
the elements of X for the property of generating G. It is usually easy to
find two or three words generating G in this way. Having found a suffi-
ciently small generating set for G, we construct defining relators for G
in terms ~f these generators.

To iaustrate this procedure, we construct a 2-generator presentation
for Qd(5), of order 3000, which is the group obtained by allowing the
special linear group SL(2, 5) to act in the natural way on the two dimen-
sional vector space over GF(5). From the definition of d(5) and using
the generators and defining relations for SL(2, 5) given in [3, Section
7.5] we obtain
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Qd(5)=gp (s, v, 1, 2, x, yIsS =1, v-lsw =5-1,
2= == =06"n)e=z 22=1,
x5=yS=x-ly-lxy=1, s-lxs=x, s~lys=xy,
t-lxt=y, t-lyt=x-1, vixv=x2 v lyp=pd,

Using i"ie Todd-Coxeter algorithm we find that Qd(5) is generated by
{ox, st—1}. Taking the faithful permutation representation of Qd(5) af-
forded by the cosets of (s, v, ¢) and applying Algorithm 3, we obtain

Qd(5)=gp<a, bla* =b3 = (ab)5 = (a2b)2a-lba2b-la-lb=1),

wherea =vx and b =st-1,

Generally, presentations produced by Algorithms 3 and 4 are close to
ideal from the point of view of the Todd-Coxeter algorithm. Thus given
a presentation of G which causes the Todd-Coxeter algorithm to perform
badly, we may use Algorithm 3 to construct a better presentation, pro-
vided that it is possible to enumerate the cosets of the identity using the
original presentation.

Programs [1, 10] for investigating the structure of groups of moderate
order need fast methods for constructing subgroup normalizers. The best
method currently known, which does not depend upon the way the group
is represented, involves the use of the Todd-Coxeter algorithm and hence
requires that a set of defining relations be known for the group. This re-
quiremens was the initial motivation for the development of the algorithms
described in this paper. Now, whenever a set of generators for a group G
is input to the suite of routines constituting the Sydney Group Theory
System, a presentation is automatically constructed for G.

Finally, we note that the ability to input relators along with the gener-
ators of G enables us to construct presentations for G involving specific
relators. This is particularly useful if one is trying to find a family of
related presentations for a family of related groups.

o -l
8. Conclusion

The relatively old notion of the graph of a group can be used as the
basis for a straightforward yet powerful algorithm for constructing de-
fining relations. While it is impractical to app!y the method to groups
much larger than 10,000, one may introduce the graph of a group modulo
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a subgroup and apply the method inductively over two or more stages.
This means that the method is applicable to groups of order up to at
least 108 and possibly in some cases to much larger groups.

The availability of these algorithms has already lead to a variety of
applications in such areas as group structure programs, investigation of
the behaviour of the Todd-Coxeter algorithm, calculation of Schur multi-
pliers of groups and the determination of families of similar presentations
for families of rclated groups.
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