Resolvable even cycle decompositions of the tensor product of complete graphs

P. Paulraja *, S. Sampath Kumar

Department of Mathematics, Annamalai University, Annamalainagar - 608 002, India

A R T I C L E I N F O

Article history:
Received 12 July 2010
Received in revised form 24 March 2011
Accepted 19 April 2011
Available online 13 May 2011

Keywords:
Tensor product
Resolvable cycle decomposition

A B S T R A C T

In this paper, we consider resolvable k-cycle decompositions (for short, k-RCD) of $K_m \times K_n$, where \times denotes the tensor product of graphs. It has been proved that the standard necessary conditions for the existence of a k-RCD of $K_m \times K_n$ are sufficient when k is even.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are simple and finite. Let C_k (resp. P_k), denote the cycle (resp. path) on k vertices. For two graphs G and H their wreath product $G \ast H$ has vertex set $V(G) \times V(H)$ in which (g_1, h_1) and (g_2, h_2) are adjacent whenever $g_1g_2 \in E(G)$ or $g_1 = g_2$ and $h_1h_2 \in E(H)$. Similarly, $G \times H$, the tensor product of the graph G and H has vertex set $V(G) \times V(H)$ in which two vertices (g_1, h_1) and (g_2, h_2) are adjacent whenever $g_1g_2 \in E(G)$ and $h_1h_2 \in E(H)$; see Fig. 1. It is clear that $(K_m \ast K_n) - nK_m \cong K_m \times K_n$, where nK_m denotes n disjoint copies of K_m. Clearly, the tensor product is commutative and distributive over edge disjoint union of graphs, that is, if $G = H_1 \oplus H_2 \oplus \cdots \oplus H_n$, then $G \times H = (H_1 \times H) \oplus (H_2 \times H) \oplus \cdots \oplus (H_n \times H)$. If G is a bipartite graph with bipartition (X, Y), where $X = \{x_0, x_1, \ldots, x_{m-1}\}$, $Y = \{y_0, y_1, \ldots, y_{n-1}\}$ and if G contains the set of edges $F_i(X, Y) = \{xy_j | 0 \leq j \leq n-1\}$, where addition in the subscript is taken modulo n), then G has the 1-factor of jump j from X to Y. Clearly, if $G = K_{m,n}$, then $E(G) = \bigcup_{i=0}^{n-1} F_i(X, Y)$. A word of caution! Note that $F_i(X, Y) = F_{m-i}(Y, X)$, $0 \leq i \leq n-1$, where we assume $F_{n}(Y, X) = F_{0}(Y, X)$.

Let G and H be simple graphs with vertex sets $V(G) = \{x_0, x_1, \ldots, x_{m-1}\}$ and $V(H) = \{y_0, y_1, \ldots, y_{n-1}\}$. Then $V(G \times H) = V(G) \times V(H)$. For our convenience, we write $V(G) \times V(H) = \bigcup_{i=0}^{m-1} X_i$, where X_i stands for $\{x_i\} \times V(H)$. Further, in what follows, we shall denote the vertices of X_i, $0 \leq i \leq m - 1$, by $\{x_i^j | 0 \leq j \leq n-1\}$, where x_i^j stands for the vertex (x_i, y_j). We shall call X_i, the ith layer of $G \times H$: see Fig. 1. It is clear that $G \times H$ is an m-partite graph with parts $X_0, X_1, \ldots, X_{m-1}$; it can also be considered as an n-partite graph with parts $Y_0, Y_1, \ldots, Y_{n-1}$, where $Y_i = V(G \times y_i)$. Further, we shall call $Y_i = \{y_i^j | 0 \leq i \leq m - 1, 0 \leq j \leq n - 1\}$, the jth column of $G \times H$: see Fig. 1. For terms not defined here, see [5, 6]. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S \rangle$. Similarly, the subgraph induced by $E_i \subseteq E(G)$ is denoted by $\langle E_i \rangle$.

For a graph G, if $E(G)$ can be partitioned into E_1, E_2, \ldots, E_k such that $\langle E_i \rangle \cong H$, for all $i, 1 \leq i \leq k$, then we say that H decomposes G, or that an H-decomposition of G, denoted by $H \mid G$, takes place. If the edge set of G can be partitioned into edge disjoint cycles of length k, then we write $C_k \mid G$, and in this case we say that G has a C_k-decomposition. A k-factor of G is a k-regular spanning subgraph. A k-factorization of a graph G is a partition of the edge set of G into k-factors. A C_k-factor of a graph is a 2-factor in which each component is a cycle of length k. A resolvable k-cycle decomposition (for short,
For any odd integer \(m \geq 3 \) and any even integer \(k \geq 4 \), \(C_k \parallel C_k \times K_m \).

2. Resolvable even cycle decompositions of \(K_m \times K_n \)

In this section we prove that the obvious necessary conditions for the existence of a \(k \)-RCD are sufficient when \(k \) is even.

Lemma 2.1. For any odd integer \(m \geq 3 \) and any even integer \(k \geq 4 \), \(C_k \parallel C_k \times K_m \).
For the construction of C^{k+2} from C^k, bold edges of Figure 2(a) are deleted and in the resulting graph we add two vertices x_k, x_{k+1} and the five bold edges in Figure 2(b).

Theorem 2.1 ([2] Walecki's Hamilton Cycle Decomposition). The complete graph K_n is Hamilton cycle decomposable for all $n \geq 3$.

Proof. Let $V(C_k) = \{x_0, x_1, \ldots, x_{k-1}\}$ and let $X_i = x_i \times V(K_m) = \{x_i^0, x_i^1, \ldots, x_i^{m-1}\}$, $0 \leq i \leq k - 1$, be the vertices of $C_k \times K_m$.

For $1 \leq i \leq m - 1$, we obtain a C_k-factor of $C_k \times K_m$ as follows:

$$G_i = \bigcup_{j=0}^{k-1} \{F_j(x_{2j}, x_{2j+1})\} \cup \bigcup_{j=0}^{k-1} \{F_{m-j}(x_{2j+1}, x_{2j+2})\},$$

where the subscripts of X are taken modulo k. Clearly, G_i, $1 \leq i \leq m - 1$, is a C_k-factor of $C_k \times K_m$. Thus $C_k \| C_k \times K_m$. □

For the sake of completeness we give the proof of the following **Theorem 2.1**, which can be seen in [2].

Remark 2.1. For an even integer $k \geq 4$, we define G^k and explain how to construct G^{k+2} from G^k.

Remark 2.1. For an even integer $k \geq 4$, we define a cubic graph G^k; let $G^4 = K_4$ and for $k \geq 6$ it is defined as follows: let $V(G^k) = \{x_0, x_1, x_2, \ldots, x_{k-1}\}$ and $E(G^k) = F_1^k \cup F_2^k \cup F_3^k$, where $F_1^k = \bigcup_{i=0}^{k-1} \{x_{2i}x_{2i+1}\}$, $F_2^k = \bigcup_{i=0}^{k-1} \{x_{2i+1}x_{2i+2}\}$, $F_3^k = \bigcup_{i=0}^{k-2} \{x_{2i+1}x_{2i+4}\} \cup \{x_{3k-3x_{k-1}}\}$, where the subscripts of x are taken modulo k. Clearly F_1^k, F_2^k and F_3^k are 1-factors of G^k. If $k = 4$, then $F_1^k = \{x_0x_1, x_2x_3\}$, $F_2^k = \{x_1x_2, x_3x_0\}$ and $F_3^k = \{x_0x_2, x_1x_3\}$.

It is easy to check that G^k is a cubic graph which admits a perfect 1-factorization with 1-factors F_1^k, F_2^k and F_3^k. Also, it is not difficult to check that G^k is isomorphic to the union of the last Hamilton cycle H_{k-2} and the 1-factor F in the Walecki’s Hamilton cycle decomposition of K_4; see the proof of Theorem 2.1.

The graph G^{k+2} can be constructed from G^k by deleting two of its edges and adding two new vertices and five new edges as in Fig. 2. Define namely $V(G^{k+2}) = V(G^k) \cup \{x_k, x_{k+1}\}$ and $E(G^{k+2}) = F_1^{k+2} \cup F_2^{k+2} \cup F_3^{k+2}$, where

$$F_1^{k+2} = F_1^k \cup \{x_kx_{k+1}\}, \quad F_2^{k+2} = (F_2^k - \{x_kx_0\}) \cup \{x_{k+1}x_0, x_{k-1}x_k\} \quad \text{and}$$

$$F_3^{k+2} = (F_3^k - \{x_{k-3}x_{k-1}\}) \cup \{x_{k-3}x_k, x_{k-1}x_{k+1}\}$$

are 1-factors of G^{k+2}; see Fig. 2. Let the graph G^k_j, $1 \leq i < j \leq 3$, denote the 2-factor $F_i^k \cup F_j^k$ of G^k. The graph G^{k+2} can also be defined from G^k_j by adding some vertices and edges; see Fig. 3. □

As our proofs of the results in this section rely heavily on G^k_j, we often invoke the above **Remark 2.1**.
Weprovethislemmaintwocases. Foroddintegerm1844asfollows:

\[F \times K \]

Correspondingtothe2-factor

\[G \]

Nextwedescribetheconstructionofa6-RCDof

\[G \]

Let

\[\text{Weinitiallyconstructa4-RCDanda6-RCDof} \]

and even integer k

\[\text{and possibly for} \ (k, m) = (4, 3), \text{where} \]

\[G \]

is the cubic graph defined in Remark 2.1.

Proof. We prove this lemma in two cases.

Case 1: \(m \equiv 1 \pmod{4} \).

We initially construct a 4-RCD and a 6-RCD of \(G^4 \times K_m \) and \(G^6 \times K_m \), respectively. Then for \(k \geq 6 \), we obtain, recursively, a \((k + 2)\)-RCD of \(G^{k+2} \times K_m \) from the \(k\)-RCD of \(G^k \times K_m \).

Let \(m = 4 \ell + 1 \) for some integer \(\ell \geq 1 \). First we prove this result when \(k = 4 \), that is, we find a 4-RCD of the graph \(G^4 \times K_m \). In this case, by definition, \(G^4 \cong K_4 \). In what follows, \(F^4_{2}(X_i, X_j) \) denotes the 1-factor of jump \(t \) from \(X_i \) to \(X_j \) in the subgraph \((X_i \cup X_j) \) of the graph \(G^4 \times K_m \), where \(X_i = (X_i \times V(K_m)) \) is the \(i \)th layer of the graph.

Corresponding to the 2-factor \(G_{12i}^4 \) of \(G^4 \), we obtain \(2\ell \) edge disjoint \(C_4 \)-factors, namely, \(G_{12i-1}^{4} \) and \(G_{12i}^{4} \), \(1 \leq i \leq \ell \), of \(G^4 \times K_m \) as follows:

\[
G_{12i-1}^{4} = F_{4}^{i}(X_0, X_1) \oplus F_{m-i}^{4}(X_1, X_2) \oplus F_{4}^{4}(X_2, X_3) \oplus F_{m-i}^{4}(X_3, X_0), \\
G_{12i}^{4} = F_{m-i}^{4}(X_0, X_1) \oplus F_{4}^{i}(X_1, X_2) \oplus F_{m-i}^{4}(X_2, X_3) \oplus F_{i}^{4}(X_3, X_0).
\]

The graphs \(G_{12i-1}^{4} \) and \(G_{12i}^{4} \) are \(C_4 \)-factors of \(G^4 \times K_m \), since the g.c.d. of \(\sum j \) and \(m \) is \(m \), that is, \((\sum j, m) = m \), where \(\sum j \) stands for the sum of the jumps of the 1-factors (between the layers, that is, \(F_{j}(X_i, X_s) \) for some \(r \) and \(s \)) that we have chosen for the construction of the 2-factors.

Corresponding to the 2-factor \(G_{23}^{4} \) of \(G^4 \), we describe \(2\ell \) edge disjoint \(C_4 \)-factors, \(G_{23i-1}^{4} \) and \(G_{23i}^{4} \), \(1 \leq i \leq \ell \), of \(G^4 \times K_m \) as follows:

\[
G_{23i-1}^{4} = F_{4}^{i}(X_0, X_2) \oplus F_{m-i}^{4}(X_2, X_1) \oplus F_{4}^{4}(X_1, X_3) \oplus F_{m-i}^{4}(X_3, X_0), \\
G_{23i}^{4} = F_{m-i}^{4}(X_0, X_2) \oplus F_{4}^{i}(X_2, X_1) \oplus F_{m-i}^{4}(X_1, X_3) \oplus F_{i}^{4}(X_3, X_0).
\]

Corresponding to the 2-factor \(G_{13}^{4} \) of \(G^4 \), we obtain \(2\ell \) edge disjoint \(C_4 \)-factors, \(G_{13i-1}^{4} \) and \(G_{13i}^{4} \), \(1 \leq i \leq \ell \), of \(G^4 \times K_m \) as follows:

\[
G_{13i-1}^{4} = F_{4}^{i}(X_0, X_1) \oplus F_{4}^{i}(X_1, X_3) \oplus F_{m-i}^{4}(X_3, X_2) \oplus F_{m-i}^{4}(X_2, X_0), \\
G_{13i}^{4} = F_{m-i}^{4}(X_0, X_1) \oplus F_{m-i}^{4}(X_1, X_3) \oplus F_{i}^{4}(X_3, X_2) \oplus F_{i}^{4}(X_2, X_0).
\]

Thus \(G_{12i}^{4} \), \(G_{23i}^{4} \), \(1 \leq i \leq 2\ell \), together yields a 4-RCD of \(G^4 \times K_m \).

Next we describe the construction of a 6-RCD of \(G^6 \times K_m \).

Corresponding to the 2-factor \(G_{12}^{6} \) of \(G^6 \), we describe \(2\ell \) edge disjoint \(C_6 \)-factors, \(G_{12i-1}^{6} \) and \(G_{12i}^{6} \), \(1 \leq i \leq \ell \), of \(G^6 \times K_m \) as follows:

\[
G_{12i-1}^{6} = F_{6}^{i}(X_0, X_1) \oplus F_{m-i}^{6}(X_1, X_2) \oplus F_{6}^{i}(X_2, X_3) \oplus F_{m-i}^{6}(X_3, X_4) \oplus F_{m-i}^{6}(X_4, X_5) \oplus F_{m-i}^{6}(X_5, X_0), \\
G_{12i}^{6} = F_{m-i}^{6}(X_0, X_1) \oplus F_{i}^{6}(X_1, X_2) \oplus F_{m-i}^{6}(X_2, X_3) \oplus F_{i}^{6}(X_3, X_4) \oplus F_{m-i}^{6}(X_4, X_5) \oplus F_{i}^{6}(X_5, X_0).
\]
Corresponding to the 2-factor G^k_{13}, we obtain 2ℓ edge disjoint C-factors, $G^k_{13,2i-1}$ and $G^k_{13,2i}$, $1 \leq i \leq \ell$, of $G^k \times K_m$ as follows:

$$G^k_{13,2i-1} = F^k_{m-\ell}(X_0, X_1) \oplus F^k_{m-\ell+1}(X_0, X_1) \oplus F^k_{m-\ell+2}(X_0, X_1) \oplus F^k_{m-\ell-1}(X_0, X_1) \oplus F^k_{m-\ell+1}(X_0, X_1) \oplus F^k_{m-\ell-1}(X_0, X_1),$$

$$G^k_{13,2i} = F^k_{m-\ell}(X_0, X_1) \oplus F^k_{m-\ell+1}(X_0, X_1) \oplus F^k_{m-\ell+2}(X_0, X_1) \oplus F^k_{m-\ell-1}(X_0, X_1) \oplus F^k_{m-\ell+1}(X_0, X_1) \oplus F^k_{m-\ell-1}(X_0, X_1).$$

Corresponding to the 2-factor G^k_{23} of G^6, we obtain 2ℓ edge disjoint C-factors, $G^k_{23,2i-1}$ and $G^k_{23,2i}$, $1 \leq i \leq \ell$, of $G^k \times K_m$ as follows:

$$G^k_{23,2i-1} = F^k_{m-\ell}(X_0, X_1) \oplus F^k_{m-\ell+1}(X_0, X_1) \oplus F^k_{m-\ell+2}(X_0, X_1) \oplus F^k_{m-\ell+1}(X_0, X_1) \oplus F^k_{m-\ell+1}(X_0, X_1) \oplus F^k_{m-\ell+1}(X_0, X_1).$$

The basic idea behind the proof of this lemma is to obtain a $(k + 2)$-RCD of $G^{k+2} \times K_m$ out of the k-RCD of the graph $G^k \times K_m$ for even $k \geq 6$. We start with the k-RCD of the graph $G^k \times K_m$ obtained above for $k = 6$. In what follows, we suppose that if the edge x_i is common to both G^k and G^{k+2}, then $F^k_i(x_i, Y_i) = F^{k+2}_i(x_i, Y_i), 1 \leq i \leq m - 1$, in the common subgraph $(X_i \cup Y_i)$ of the graphs $G^k \times K_m$ and $G^{k+2} \times K_m$. Using the following recursive construction we obtain a $(k + 2)$-RCD of $G^{k+2} \times K_m$ for all $k \geq 6$.

Corresponding to the 2-factor G^k_{12} of G^{k+2}, we obtain 2ℓ edge disjoint C-factors, namely, $G^{k+2}_{12,2i-1}$ and $G^{k+2}_{12,2i}$, $1 \leq i \leq \ell$, of $G^{k+2} \times K_m$ as follows:

$$G^{k+2}_{12,2i-1} = \{G^k_{12,2i-1} - F^k_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{i}(X_0, X_1) \oplus F^{k+2}_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1),$$

$$G^{k+2}_{12,2i} = \{G^k_{12,2i} - F^k_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1).$$

Corresponding to the 2-factor G^k_{23} of G^{k+2}, we obtain 2ℓ edge disjoint C-factors, $G^{k+2}_{23,2i-1}$ and $G^{k+2}_{23,2i}$, $1 \leq i \leq \ell$, of $G^{k+2} \times K_m$ as follows:

$$G^{k+2}_{23,2i-1} = \{G^k_{23,2i-1} - F^k_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1),$$

$$G^{k+2}_{23,2i} = \{G^k_{23,2i} - F^k_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1).$$

Corresponding to the 2-factor G^k_{13} of G^{k+2}, we obtain 2ℓ edge disjoint C-factors, $G^{k+2}_{13,2i-1}$ and $G^{k+2}_{13,2i}$, $1 \leq i \leq \ell$, of $G^{k+2} \times K_m$ as described below:

$$G^{k+2}_{13,2i-1} = \{G^k_{13,2i-1} - H^k_{13,2i-1} \oplus H^{k+2}_{13,2i-1},$$

$$G^{k+2}_{13,2i} = \{G^k_{13,2i} - H^k_{13,2i} \oplus H^{k+2}_{13,2i},$$

where

$$H^k_{13,2i-1} = \{F^k_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1),$$

$$H^k_{13,2i} = \{F^k_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1) \oplus F^{k+2}_{m-\ell+1}(X_0, X_1).$$

Since the g.c.d. of $\sum j$ and m is m, that is, $(\sum j, m) = m$, where $\sum j$ stands for the sum of the jumps of the 1-factors (between the layers, that is, $F^i(X_0, X_1)$ for some r and s) that we have chosen for the construction of the 2-factors, it is straightforward to check that the 2-factors described above yield a $(k + 2)$-RCD of the graph $G^{k+2} \times K_m$ consisting of the 2-factors $G^{k+2}_{12j, i}$, $G^{k+2}_{23j, i}$ and $G^{k+2}_{13j, i}$, $1 \leq i \leq 2\ell$.

Case 2: $m \equiv 3 \pmod{4}$.

Subcase 2.1: $m = 4\ell + 3$ for some $\ell \geq 1$.

1845
First we consider the case \(k = 4 \). Corresponding to the 2-factor \(G^4_{12} \) of \(G^4 \), we obtain \(2\ell + 1 \) edge disjoint \(C_4 \)-factors, namely, \(G^4_{12,i}, 1 \leq i \leq 2\ell + 1 \), of the graph \(G^4 \times K_m \) as described below:

\[
G^4_{12,i} = F^4_i(X_0, X_1) \oplus F^4_{m-i}(X_1, X_2) \oplus F^4_i(X_2, X_3) \oplus F^4_{m-i}(X_3, X_0).
\]

Corresponding to the 2-factor \(G^4_{23} \) of \(G^4 \), we obtain \(2\ell + 1 \) edge disjoint \(C_4 \)-factors of the graph \(G^4 \times K_m \) as follows:

For each \(i, 1 \leq i \leq \ell \), we obtain two edge disjoint \(C_4 \)-factors, namely, \(G^4_{23,2i-1}, G^4_{23,2i} \) and after getting these \(2\ell \) \(C_4 \)-factors, finally we get one more \(C_4 \)-factor \(G^4_{23,2\ell+1} \) of the graph \(G^4 \times K_m \):

\[
G^4_{23,2i-1} = F^4_{i+i+1}(X_0, X_2) \oplus F^4_{m-i-1}(X_1, X_2) \oplus F^4_{m-i-1}(X_1, X_3) \oplus F^4_i(X_3, X_0)
\]

\[
G^4_{23,2i} = F^4_{m-i}(X_0, X_2) \oplus F^4_{m-i-1}(X_1, X_2) \oplus F^4_i(X_1, X_3) \oplus F^4_{m-i}(X_3, X_0)
\]

and

\[
G^4_{23,2\ell+1} = F^4_{m-i}(X_0, X_2) \oplus F^4_{m-i}(X_1, X_3) \oplus F^4_{m-i}(X_3, X_0).
\]

For \(1 \leq i \leq \ell + 1 \), we define

\[
 j_i = \begin{cases}
 i & \text{if } 1 \leq i \leq \ell + 1, \\
 i + 2\ell + 2 & \text{if } \ell + 2 \leq i \leq 2\ell, \\
 2\ell + 2 & \text{if } i = 2\ell + 1.
\end{cases}
\]

Corresponding to the 2-factor \(G^4_{13} \) of \(G^4 \), we obtain \(2\ell + 1 \) edge disjoint \(C_4 \)-factors, \(G^4_{13,i}, 1 \leq i \leq 2\ell + 1 \), of \(G^4 \times K_m \) as described below:

\[
G^4_{13,i} = F^4_{m-i}(X_0, X_1) \oplus F^4_{m-i}(X_1, X_3) \oplus F^4_{m-i}(X_3, X_0).
\]

Thus \(G^4_{12,i}, G^4_{13,i} \) and \(G^4_{13,i} \), \(1 \leq i \leq 2\ell + 1 \), constitute a 4-RCD of \(G^4 \times K_m \).

We proceed as in Case 1 and begin by constructing a 6-RCD of \(G^6 \times K_m \).

Corresponding to the 2-factor \(G^6_{12} \) of \(G^6 \), we obtain \(2\ell + 1 \) edge disjoint \(C_6 \)-factors, namely, \(G^6_{12,i}, 1 \leq i \leq 2\ell + 1 \), of \(G^6 \times K_m \) as follows:

\[
G^6_{12,i} = F^6_i(X_0, X_1) \oplus F^6_{m-i}(X_1, X_2) \oplus F^6_{m-i}(X_2, X_3) \oplus F^6_{m-i}(X_3, X_4) \oplus F^6_{m-i}(X_4, X_5) \oplus F^6_{m-i}(X_5, X_0).
\]

Corresponding to the 2-factor \(G^6_{23} \) of \(G^6 \), we obtain \(2\ell + 1 \) edge disjoint \(C_6 \)-factors, \(G^6_{23,2i-1} \) and \(G^6_{23,2i}, 1 \leq i \leq \ell \), and after getting these \(2\ell \) \(C_6 \)-factors we get one more \(C_6 \)-factor \(G^6_{23,2\ell+1} \) of \(G^6 \times K_m \) as described below: for each \(i, 1 \leq i \leq \ell \),

\[
G^6_{23,2i-1} = F^6_{i+i+1}(X_0, X_2) \oplus F^6_{m-i}(X_1, X_2) \oplus F^6_{m-i}(X_1, X_4) \oplus F^6_{m-i}(X_4, X_5) \oplus F^6_{m-i}(X_3, X_5) \oplus F^6_{m-i}(X_5, X_0)
\]

\[
G^6_{23,2i} = F^6_{m-i}(X_0, X_2) \oplus F^6_{m-i}(X_1, X_2) \oplus F^6_{m-i}(X_1, X_4) \oplus F^6_{m-i}(X_4, X_5) \oplus F^6_{m-i}(X_3, X_5) \oplus F^6_{m-i}(X_5, X_0)
\]

\[
G^6_{23,2\ell+1} = F^6_{m-i}(X_0, X_2) \oplus F^6_{m-i}(X_1, X_2) \oplus F^6_{m-i}(X_1, X_4) \oplus F^6_{m-i}(X_5, X_3) \oplus F^6_{m-i}(X_3, X_5) \oplus F^6_{m-i}(X_5, X_0)
\]

Corresponding to the 2-factor \(G^6_{13} \) of \(G^6 \), we obtain \(2\ell + 1 \) edge disjoint \(C_6 \)-factors, \(G^6_{13,i}, 1 \leq i \leq 2\ell + 1 \), of \(G^6 \times K_m \) as follows:

\[
G^6_{13,i} = F^6_{m-i}(X_0, X_1) \oplus F^6_{m-i}(X_1, X_4) \oplus F^6_{m-i}(X_4, X_5) \oplus F^6_{m-i}(X_3, X_2) \oplus F^6_{m-i}(X_2, X_0),
\]

where

\[
 j_i = \begin{cases}
 i & \text{if } 1 \leq i \leq \ell + 1, \\
 i + 2\ell + 2 & \text{if } \ell + 2 \leq i \leq 2\ell, \\
 2\ell + 2 & \text{if } i = 2\ell + 1.
\end{cases}
\]

As in Case 1, we recursively construct a \((k+2)\)-RCD of \(G^{k+2} \times K_m \) out of a \(k \)-RCD of the graph \(G^k \times K_m \) for even \(k \). We start with the 6-RCD of the graph \(G^6 \times K_m \) obtained above. Having constructed a \(k \)-RCD of \(G^{k+2} \times K_m \), using the following recursive construction we obtain a \((k+2)\)-RCD of \(G^{k+2} \times K_m \) for all \(k \geq 6 \).

Corresponding to the 2-factor \(G^{k+2}_{12} \) of \(G^{k+2} \), we obtain \(2\ell + 1 \) edge disjoint \(C_{k+2} \)-factors, namely, \(G^{k+2}_{12,i}, 1 \leq i \leq 2\ell + 1 \), of \(G^{k+2} \times K_m \) as described below:

\[
G^{k+2}_{12,i} = \{ F^k_{m-i}(X_{k-1}, X_0) \} \oplus F^{k+2}_{m-i}(X_{k+1}, X_0) \oplus F^{k+2}_{m-i}(X_{k-1}, X_k) \oplus F^{k+2}_{m-i}(X_k, X_{k+1}).
\]

Corresponding to the 2-factor \(G^{k+2}_{23} \) of \(G^{k+2} \), we obtain \(2\ell + 1 \) edge disjoint \(C_{k+2} \)-factors of \(G^{k+2} \times K_m \) as follows:
For each i, $1 \leq i \leq \ell$, we obtain two edge disjoint C_{k+2}-factors, $G_{23,2i-1}^{k+2}$ and $G_{23,2i}$ of $G^{k+2} \times K_m$:

$$G_{23,2i-1}^{k+2} = \{G_{23,2i-1}^k - F_{m-2i-1}(X_{k-3}, X_{k-1}) - F_i(X_{k-1}, X_0) \} \oplus F_{m-2i+1}(X_{k-3}, X_k)$$

$$G_{23,2i}^{k+2} = \{G_{23,2i-1}^k - F_{m-2i}(X_{k-3}, X_{k-1}) - F_i(X_{k-1}, X_0) \} \oplus F_{m-2i+1}(X_{k-3}, X_k)$$

and

$$G_{23,2i+1}^{k+2} = \{G_{23,2i+1}^k - F_{m-2i}(X_{k-3}, X_{k-1}) - F_i(X_{k-1}, X_0) \} \oplus F_{m-2i-1}(X_{k-3}, X_k)$$

Corresponding to the 2-factor G_{13}^{k+2} of G^{k+2}, we obtain $2\ell+1$ edge disjoint C_{k+2}-factors, $G_{13,i}^{k+2}$, $1 \leq i \leq 2\ell+1$, of $G^{k+2} \times K_m$ as follows:

$$G_{13,i}^{k+2} = \{G_{13,i}^k - H_{13,i}^k \} \oplus H_{13,i}^{k+2},$$

where

$$H_{13,i}^k = \begin{cases} F_k(X_{k-3}, X_{k-1}) & \text{if } k \equiv 0 \pmod{4} \\ F_{m-1}(X_{k-1}, X_{k-3}) & \text{if } k \equiv 2 \pmod{4} \end{cases}$$

and

$$H_{13,i}^{k+2} = \begin{cases} F_i(X_{k-3}, X_{k-1}) \oplus F_{m-1}(X_{k-1}, X_{k-3}) & \text{if } k \equiv 0 \pmod{4} \\ F_{m-1}(X_{k-1}, X_{k-3}) \oplus F_i(X_{k-3}, X_{k-1}) & \text{if } k \equiv 2 \pmod{4} \end{cases}$$

For the same reason given in Case 1, it is straightforward to check that the constructions of the 2-factors described above yield a $(k+2)$-RCD of the graph $G^{k+2} \times K_m$ consisting of the 2-factors $G_{12,i}^{k+2}, G_{23,i}^{k+2}, G_{13,i}^{k+2}$, $1 \leq i \leq 2\ell+1$.

Subcase 2.2: $m = 3$ and $k \geq 6$.

First we prove this result for $k = 6$. Let G^6 be the cubic graph defined in Remark 2.1.

$$G_{12}^6 = F_6(X_0, X_1) \oplus F_6(X_1, X_2) \oplus F_6(X_2, X_3) \oplus F_6(X_3, X_4) \oplus F_6(X_4, X_5) \oplus F_6(X_5, X_0)$$

$$G_{23}^6 = F_6(X_0, X_2) \oplus F_6(X_2, X_3) \oplus F_6(X_3, X_4) \oplus F_6(X_4, X_5) \oplus F_6(X_5, X_0)$$

$$G_{13}^6 = F_6(X_0, X_1) \oplus F_6(X_1, X_4) \oplus F_6(X_4, X_5) \oplus F_6(X_5, X_2) \oplus F_6(X_3, X_2) \oplus F_6(X_2, X_0)$$

Clearly, G_{12}^6, G_{23}^6 and G_{13}^6 form a 6-RCD of the graph $G^6 \times K_m$.

Having constructed a k-RCD of $G^k \times K_3$ for $k = 6$, we proceed as in Subcase 2.1 to obtain a $(k+2)$-RCD of $G^{k+2} \times K_3$ for all $k \geq 6$.

This completes the proof of the lemma. □

Theorem 2.2. For any odd integer $m \geq 3$ and for any even integer $k \geq 4$, we have $C_k \parallel K_m \times K_m$ except possibly for $(k, m) = (4, 3)$.

Proof. By Walecki’s Hamilton cycle decomposition, $K_k = C_k \oplus C_k \oplus \cdots \oplus C_k \oplus G^4$, where G^4 is the cubic graph defined in

$$\frac{1}{2} - \text{times}$$

Remark 2.1. Clearly, $K_k \times K_m = (C_k \times K_m) \oplus (C_k \times K_m) \oplus \cdots \oplus (C_k \times K_m) \oplus (G^6 \times K_m)$. Now apply Lemmas 2.1 and 2.2 to complete the proof. □

A resolvable modified group divisible design with block size 3 (for short, 3-RMGDD) [see [8]] is nothing but a 3-RCD of $K_m \times K_n$. We state the result in [8] about 3-RMGDD’s in terms of 3-RCD’s as follows.

Theorem 2.3 ([8]). There exists a 3-RCD of $K_m \times K_n$ if and only if $m, n \geq 3$, $mn \equiv 0 \pmod{3}$ and either m or n is odd except when $(m, n) = (3, 6)$ or $(6, 3)$. □

Lemma 2.3. If $n \geq 3$ is any integer and $k \geq 3$, $m \geq 3$ are odd integers such that $k \mid m$, then $C_k \parallel K_m \times K_n$ except when $(k, m, n) = (3, 3, 6)$.

Proof. We assume $k \geq 5$, since the case $k = 3$ follows from Theorem 2.3. Since $m \equiv 0 \pmod{k}$ and m is odd, we have $m \equiv k \pmod{2k}$. Hence $C_k \parallel K_m$, by Theorem 1.1, that is, $K_m = F_1 \oplus F_2 \oplus \cdots \oplus F_{m-1}$, where each F_i is a C_k-factor. As the tensor product is distributive over edge disjoint subgraphs, $K_m \times K_n = (F_1 \times K_n) \oplus (F_2 \times K_n) \oplus \cdots \oplus (F_{m-1} \times K_n)$; further, as each F_i is a C_k-factor, $F_i \times K_n = (C_k \times K_n) \oplus \cdots \oplus (C_k \times K_n)$. But $C_k \parallel (C_k \times K_n)$ for all odd integer $k \geq 5$, by Theorem 1.2. Hence $C_k \parallel (F_i \times K_n)$, $1 \leq i \leq \frac{m-1}{2}$, and therefore $C_k \parallel K_m \times K_n$. □
The following theorem is used in the proof of Theorem 2.5 given below.

Theorem 2.4 ([16]). The graph $C_{2n+1} \times K_{2m}$ has a Hamilton cycle decomposition. □

Theorem 2.5. For m, $n \geq 3$ and even integer $k \geq 4$, $C_k \mid K_n \times K_m$ if and only if (1) either m or n is odd and (2) $k \mid mn$ except possibly for $(k, m) = (4, 3)$.

Proof. The necessity of the conditions follows from the standard divisibility relations. We deal with the sufficiency. As the tensor product is commutative, we assume that m is odd. Since k is even, n must be even.

Case 1: $n \equiv 0 \pmod{k}$.

Subcase 1.1: $(k, n) \neq (6, 12)$.

Let $n = kt$ for some $t \in \mathbb{N}$. If $t = 1$, then the proof follows from Theorem 2.2 and hence we assume that $t > 1$. Consequently, $K_n = K_{kt} = H_1 \oplus H_2$, where H_1 consists of t vertex disjoint copies of K_2 and $H_2 = K_t - E(H_1) = K_t \setminus \hat{K}$.

Hence, $K_n \times K_m = (H_1 \oplus H_2) \times K_m = (H_1 \times K_m) \oplus (H_2 \times K_m)$. The graph $H_1 \times K_m$ is the union of t vertex disjoint copies of $K_2 \times K_m$ and $C_k \mid K_2 \times K_m$ by Theorem 2.2. Also $C_k \mid H_2$, by Theorem 1.3. Let us denote this k-RCD of H_2 by \mathcal{S}. To each C_k-factor in \mathcal{S}, we get the union of t vertex disjoint copies of $C_k \times K_m$ in the graph $H_2 \times K_m$. By Lemma 2.1, $C_k \mid C_k \times K_m$. This completes the proof of this subcase.

Subcase 1.2: $(k, n) = (6, 12)$.

We have to show that $C_6 \mid (K_{12} \times K_{12})$. For that, we factorize K_{12} into 4 C_6-factors H_1, H_2, H_3 and H_4 and a cubic subgraph consisting of two components G^6 and \hat{G}^6 as follows: let the vertex set of K_{12} be $V(K_{12}) = \{x_0, x_1, x_2, x_3, x_4, x_5, y_1, y_2, y_3, y_4, y_5\}$.

$$
H_1 = \{(x_0y_1, x_1x_2y_3y_5), (x_1y_2, x_2x_3y_4y_5)\} \\
H_2 = \{(x_0y_2, x_2x_3y_1y_4), (x_3y_0, x_3x_4y_1y_5)\} \\
H_3 = \{(x_0y_3, x_4x_5y_1y_2), (y_0y_1, y_1y_2y_3y_4)\} \\
H_4 = \{(x_0y_4, x_5x_1y_2y_3), (y_0y_5, y_3y_4y_5y_1)\}.
$$

Clearly, $K_{12} - \{\bigcup_{i=1}^{6} E(H_i)\}$ is a cubic graph whose components are G^6 and \hat{G}^6 having vertex sets $\{x_0, x_1, x_2, y_0, y_1, y_2\}$ and $\{x_1, x_2, x_3, y_1, y_2, y_3\}$, respectively. Clearly, $G^6 = F^6_1 \oplus F^6_2 \oplus F^6_3$, where $F^6_1 = \{x_0y_0, x_1y_1, x_2y_2, \}$, $F^6_2 = \{y_0x_1, x_3y_1, \}$, and $F^6_3 = \{x_3y_3, x_4y_3, x_5y_3, \}$. It is easy to see that for $H_1 = F^6_1 \oplus F^6_2$ and $\hat{G}^6 = F^6_1 \oplus F^6_3$, $1 \leq i \leq j \leq 3$, are cycles of length six each. Since, each H_i, $1 \leq i \leq 4$, contains only cycles of length 6 and $C_6 \mid C_6 \times K_m$, by Lemma 2.1, $C_6 \mid H_1 \times K_m$. It can be checked that the graph G^6 is isomorphic to the graph defined in Remark 2.1 (see Fig. 4a) and $\hat{G}^6 \cong K_{1, 3}$. Therefore, $C_6 \mid G^6 \times K_m$, by (Subcase 2.2) of Lemma 2.2.

Now it remains to show that $C_6 \mid \hat{G}^6 \times K_m$. For that we relabel the vertices x_3, x_4, y_3, y_4 and y_5 of $V(\hat{G}^6)$ as z_0, z_2, z_4, z_5, and z_2, respectively; see Fig. 4b. Hence $\hat{F}^6_1 = \{z_0z_1, z_2z_3, z_4z_5\}$, $\hat{F}^6_2 = \{z_0z_5, z_2z_1, z_4z_3\}$, $\hat{F}^6_3 = \{z_0z_3, z_2z_5, z_4z_1\}$. Since m is odd, we assume that $m = 2\ell + 1$.

For each i, $1 \leq i \leq \ell$, we obtain three C_6-factors of the graph $\hat{G}^6 \times K_m$, namely, $\hat{G}^6_{12, i}$, $\hat{G}^6_{23, i}$, and $\hat{G}^6_{13, i}$ as follows:

$$
\hat{G}^6_{12, i} = F^6_{\ell+i}(Z_0, Z_1) \oplus F^6_{\ell+i}(Z_1, Z_2) \oplus F^6_{m-2\ell+i}(Z_2, Z_3) \oplus F^6_{\ell+i}(Z_3, Z_4) \oplus F^6_{\ell+i}(Z_4, Z_5) \oplus F^6_{m-2\ell+i}(Z_5, Z_0) \\
\hat{G}^6_{23, i} = F^6_{\ell+i}(Z_0, Z_2) \oplus F^6_{\ell+i}(Z_1, Z_4) \oplus F^6_{m-2\ell+i}(Z_1, Z_2) \oplus F^6_{\ell+i}(Z_2, Z_3) \oplus F^6_{\ell+i}(Z_3, Z_4) \oplus F^6_{m-2\ell+i}(Z_4, Z_5) \\
\hat{G}^6_{13, i} = F^6_{\ell+i}(Z_0, Z_1) \oplus F^6_{m-2\ell+i}(Z_1, Z_4) \oplus F^6_{\ell+i}(Z_4, Z_5) \oplus F^6_{\ell+i}(Z_5, Z_2) \oplus F^6_{\ell+i}(Z_2, Z_3) \oplus F^6_{m-2\ell+i}(Z_3, Z_0).
$$

Clearly, $\hat{G}^6_{12, i}$, $\hat{G}^6_{23, i}$, and $\hat{G}^6_{13, i} \leq i \leq \ell$, is a 6-RCD of $\hat{G}^6 \times K_m$.

This completes the proof of this subcase.

Case 2: $n \not\equiv 0 \pmod{k}$.

Let $k = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$ be the prime factorization of k. Since k does not divide both m and n, some prime factors of k divide m and some prime factors of k divide n. Without loss of generality we may assume that $\beta_1 = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$ divides m and $\beta_2 = p_1^{a_1-\alpha_1} p_2^{a_2-\alpha_2} \cdots p_t^{a_t-\alpha_t}$ divides n; thus $m = \beta_1 r$ and $n = \beta_2 s$, where some a_i’s and $(\alpha_i - a_i)$’s may be equal to zero; β_1 is odd, as m is odd and β_2 is even as $k = \beta_1 \beta_2$ is even.

First we partition the vertex set of K_m, into s subsets each having β_2 vertices. Each of these β_2-subsets of K_m gives rise to a copy of $K_m \times K_{\beta_2}$ in $K_m \times K_m$. Let the union of these s vertex disjoint copies of $K_m \times K_{\beta_2}$ be H_1. Since β_1 and m are odd and $\beta_1 \mid m$, we have $C_{\beta_1} \mid K_m$, by Theorem 1.1. Now $K_m \times K_{\beta_2} = \left(\bigoplus_{i=1}^{m-1} (\epsilon_i \times K_{\beta_2})\right) \times K_{\beta_2}$, where each ϵ_i is a C_{β_1}-factor of K_m. Consequently, $K_m \times K_{\beta_2} = \bigoplus_{i=1}^{m-1} (\epsilon_i \times K_{\beta_2})$; by Theorem 2.4, each of the graphs $\epsilon_i \times K_{\beta_2}$ admits a $C_{\beta_1}\beta_2$-factorization and hence we have $C_{\beta_1}\beta_2 \mid K_m \times K_{\beta_2}$. This proves that H_1 admits a $C_{\beta_1}\beta_2$-factorization, as each copy of $K_m \times K_{\beta_2}$ in H_1 admits a $C_{\beta_1}\beta_2$-factorization.
After deleting the edges of H_1 in $K_m \times K_n$ what remains is H_2, say. To each of the β_2 subsets of K_m we have a β_2 subset of vertices in each of the layers of H_2. In H_2, identify each of these β_2 subsets of vertices in each of the layers of H_2 into a single vertex and join two of them by an edge if and only if the corresponding β_2 subsets induce a K_{β_2,β_2} in H_2. Let the graph thus obtained from H_2 be H'_2. Then $H'_2 \cong K_m \times K_s$ (Here we can assume $s \geq 2$ since if $s = 1$, $K_m \times K_n \cong K_m \times K_{\beta_2}$ and consequently, $K_m \times K_n - E(H_1)$ is a graph without edges).

Using the graph $H'_2 \cong K_m \times K_s$, we obtain a C_{β_1,β_2}-factorization of H_2 to complete the proof of the theorem.

Subcase 2.1: s is odd.

Since m is odd and $\beta_1 \mid m$, $C_{\beta_1} \parallel K_m \times K_s$ by Lemma 2.3. When we lift back each C_{β_1}-factor of $K_m \times K_s$ to H_2, we get the union of $\frac{m}{\beta_1}$ vertex disjoint copies of the graph isomorphic to $C_{\beta_1} \ast K_{\beta_2}$ in the graph H_2. Now the relation $C_{\beta_1,\beta_2} \parallel C_{\beta_1} \ast K_{\beta_2}$ follows from Theorem 1.5.

Subcase 2.2: s is even.

Since m is odd and $\beta_1 \mid m$, $C_{\beta_1} \parallel K_m$ by Theorem 1.1. Let $\varphi_1, \varphi_2, \ldots, \varphi_{m-1}$ be the C_{β_1}-factorization of K_m. As s is even, K_s has a 1-factorization $\mathcal{F} = F_1 \oplus F_2 \oplus \cdots \oplus F_{s-1}$ and hence $K_m \times K_s = K_m \times K_s \cong (F_1 \times K_m) \oplus (F_2 \times K_m) \oplus \cdots \oplus (F_{s-1} \times K_m)$, where each $F_i \times K_m = (K_2 \times K_m) \oplus (K_2 \times K_m) \oplus \cdots \oplus (K_2 \times K_m)$. Now each $K_2 \times K_m = (K_2 \times \varphi_1) \oplus (K_2 \times \varphi_2) \oplus \cdots \oplus (K_2 \times \varphi_{m-1}) = \bigoplus_{i=1}^{m-1} (K_2 \times \varphi_i) = C_{2\beta_1} \oplus C_{2\beta_1} \oplus \cdots \oplus C_{2\beta_1}$, as each component of φ_i is a C_{β_1}. Hence $C_{2\beta_1} \parallel K_m \times K_s$. When we lift back each $C_{2\beta_1}$-factor of $K_m \times K_s$ to H_2, we get the union of $\frac{m}{2\beta_1}$ vertex disjoint copies of the graph $C_{2\beta_1} \ast K_{\beta_2}$ in the graph H_2. Now by Theorem 1.4 we have $C_k \parallel C_{2\beta_1} \ast K_{\beta_2}$, as $2\beta_1 \mid k$.

This completes the proof of the theorem. □

Acknowledgments

The authors would like to thank the referees for their remarks which improved the presentation. Also the authors would like to thank the Department of Science and Technology, Government of India, New Delhi, for partial financial assistance through Grant No: SR/S4/MS:481/07.

References
