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Abstract

The upper chromatic number �(H) of a hypergraph H= (X,E) is the maximum number k for which there exists a partition of X
into non-empty subsets X = X1 ∪ X2 ∪ · · · ∪ Xk such that for each edge at least two vertices lie in one of the partite sets. We prove
that for every n�3 there exists a 3-uniform hypergraph with n vertices, upper chromatic number 2 and �n(n − 2)/3� edges which
implies that a corresponding bound proved in [K. Diao, P. Zhao, H. Zhou, About the upper chromatic number of a co-hypergraph,
Discrete Math. 220 (2000) 67–73] is best-possible.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The classical coloring theory of graphs and hypergraphs deals with the problem of partitioning the vertex set subject to
the restriction that every edge has vertices in at least two partite sets. The chromatic number of a hypergraphH=(X,E)

is the minimum number k for which there exists a partition of X into k non-empty sets meeting this restriction. Since
the maximum such number is trivially equal to the number of vertices, the main concern of classical coloring theory is
to find the minimum such number.

It is very natural to consider partitions of the vertex set X of a hypergraph into non-empty subsets such that for each
edge at least two vertices lie in one of the partite sets. Obviously, this leads to maximum vertex set partitions and many
results on related colorings of hypergraphs can be found in [1–8]. We now repeat the exact definition of the upper
chromatic number of a hypergraph.
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Definition 1.1. Let H = (X,E) be a hypergraph. The upper chromatic number �(H) of H is the maximum number
k for which there exists a partition of X into non-empty sets X = X1 ∪ X2 ∪ · · · ∪ Xk such that for each edge at least
two vertices lie in one of the partite sets.

A hypergraph H= (X,E) is r-uniform if |E| = r �2 for every E ∈ E. Trivially, �(H)�r − 1 for every r-uniform
hypergraph H. In [3] it was proved that a 3-uniform hypergraph H = (X,E) with |X| = n and �(H) = 2 has at least
�n(n − 2)/3� edges. In the present paper we prove that this lower bound is best-possible.

2. Result

We immediately proceed to our main result.

Theorem 2.1. For each n�3 there exists a 3-uniform hypergraph Hn = (Xn,En) such that �(Hn)= 2, |Xn| =n and
|En| = �n(n − 2)/3�.

Proof. Let Xn = {1, 2, . . . , n}. If E3 = {{1, 2, 3}},E4 = {{1, 2, 3}, {2, 3, 4}, {1, 3, 4}} and E5 = {{1, 2, 3}, {1, 3, 4},
{1, 4, 5}, {2, 3, 5}, {2, 4, 5}}, then it is easy to see that H3,H4 and H5 satisfy the desired properties of the theorem.
We will recursively define Hn+3 using Hn and consider two distinct cases.

Case 1: n�4 and n is even.
Let n = 2k and let E1 = ⋃k

i=1{{2i − 1, 2i, n + 1}},E2 = ⋃k
i=1{{2i − 1, n + 1, n + 3}},E3 = ⋃k−1

i=1 {{2i, 2i + 1, n +
2}} ∪ {{2k, 1, n + 2}},E4 = ⋃k

i=1{{2i, n + 2, n + 3}} and En+3 = En ∪ {{n + 1, n + 2, n + 3}} ∪ E1 ∪ E2 ∪ E3 ∪ E4.
Clearly, |En+3|= |En|+4k +1=�n(n−2)/3�+2n+1=�(n+3)(n+1)/3�. Now we assume that there is a partition
of Xn+3 into non-empty subsets A, B and C such that for each edge at least two vertices lie in one of the partite sets.
Since �(Hn) = 2, we can assume that A ⊆ {n + 1, n + 2, n + 3}.

If A = {n + 1}, then the edge {n + 1, n + 2, n + 3} implies that n + 2 and n + 3 are in the same partite set, say B.
Now the edges in E2 imply that 1, 3, . . . , n − 1 ∈ B. Now the edges in E1 imply that 2, 4, . . . , n ∈ B. Hence C = ∅,
which is a contradiction. Similarly, the two assumptions A = {n + 2} or A = {n + 3} lead to a contradiction.

If A = {n + 1, n + 2}, then the edges in E2 imply that 1, 3, . . . , n − 1 and n + 3 are in the same partite set, say B.
Now the edges in E4 imply that 2, 4, . . . , n ∈ B. Hence C =∅, which is a contradiction. Similarly, the two assumptions
A = {n + 1, n + 3} or A = {n + 2, n + 3} lead to a contradiction.

If A = {n + 1, n + 2, n + 3}, then the edges in E1 imply that for 1� i�k the vertices 2i − 1 and 2i are in the same
partite set and the edges in E3 imply that for 1� i�k − 1 the vertices 2i + 1 and 2i are in the same partite set and the
vertices 1 and 2k are in the same partite set. Hence B or C is empty, which is a contradiction.

Case 2: n�3 and n is odd.
Let n=2k+1 and let E1 =⋃k

i=1{{2i −1, 2i, n+1}},E2 =⋃k+1
i=2 {{2i −1, n+1, n+3}},E3 =⋃k

i=1{{2i, 2i +1, n+
2}},E4=⋃k

i=1{{2i, n+2, n+3}} andEn+3=En∪{{n+1, n+2, n+3}, {1, n+1, n+2}, {1, n, n+3}}∪E1∪E2∪E3∪E4.
Clearly, |En+3|= |En|+4k +3=�n(n−2)/3�+2n+1=�(n+3)(n+1)/3�. Now we assume that there is a partition
of Xn+3 into non-empty subsets A, B and C such that for each edge at least two vertices lie in one of the partite sets.
As above we can assume that A ⊆ {n + 1, n + 2, n + 3}. Similar arguments as in the first case imply that either B or C
is empty. This completes the proof. �

In [3] the authors actually prove their lower bound on the number of edges for r-uniform hypergraphs with r �3.
For r �4 it is still open whether this bound is best-possible.
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