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Investigations from multiple laboratories support the existence of melanoma initiating cells (MICs) that
potentially contribute to melanoma’s drug resistance. ABT-737, a small molecule BCL-2/BCL-XL/BCL-W inhibitor,
is promising in cancer treatments, but not very effective against melanoma, with the antiapoptotic protein MCL-1
as the main contributor to resistance. The synthetic retinoid fenretinide N-(4-hydroxyphenyl)retinamide (4-HPR)
has shown promise for treating breast cancers. Here, we tested whether the combination of ABT-737 with 4-HPR
is effective in killing both the bulk of melanoma cells and MICs. The combination synergistically decreased cell
viability and caused cell death in multiple melanoma cells lines (carrying either BRAF or NRAS mutations) but not
in normal melanocytes. The combination increased the NOXA expression and caspase-dependent MCL-1
degradation. Knocking down NOXA protected cells from combination-induced apoptosis, implicating the role
of NOXA in the drug synergy. The combination treatment also disrupted primary spheres (a functional assay for
MICs) and decreased the percentage of aldehyde dehydrogenase high cells (a marker of MICs) in melanoma cell
lines. Moreover, the combination inhibited the self-renewal capacity of MICs, measured by secondary sphere-
forming assays. In vivo, the combination inhibited tumor growth. Thus, this combination is a promising treatment
strategy for melanoma, regardless of mutation status of BRAF or NRAS.
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INTRODUCTION
Metastatic melanoma is a devastating disease resistant to
conventional therapies. Despite several recent Food and Drug
Administration-approved drugs for melanomas, there is still a
pressing need for therapies using novel approaches (Chapman
et al., 2011; Garbe et al., 2011; Arbiser et al., 2012; Finn et al.,
2012; Wong et al., 2013). It is proposed that cancer
stem cells, or cancer initiating cells (CICs), are responsible
for initiation, progression, and resistance to treatment
(Lee et al., 2014). Recent studies provide evidence that a
subpopulation of melanoma cells possess characteristics
similar to CICs, termed melanoma initiating cells (MICs)

(Fang et al., 2005; Monzani et al., 2007; Roesch et al., 2010;
Civenni et al., 2011; Santini et al., 2012). We previously
demonstrated the existence of human melanoma cells that
fulfill the criteria for MICs (self-renewal and differentiation),
and these cells are more resistant to chemotherapy (Luo et al.,
2012). As a strategy in preventing relapse, it is crucial to look
for therapies that de-bulk melanoma tumors and also target
MIC populations.

The BCL2 (BCL-2) family is important in regulating the
intrinsic apoptotic pathway and includes three groups: (1)
antiapoptotic proteins BCL-2, BCL2L (BCL-XL), BCLW (BCL-
W), MCL1 (MCL-1), A1, and BCL-B; (2) multi-domain pro-
apoptotic proteins BAX, BAK, and BOK, which are effectors of
apoptosis; and (3) BH3-only pro-apoptotic proteins BIM,
PUMA, BAD, NOXA, BIK, BMF, and tBID, which are initiators
of apoptosis (see review (Czabotar et al., 2014)). Interactions
between different members are not mutually exclusive or
equal. Some BH3-only proteins only bind to one group of anti-
apoptotic proteins––e.g., NOXA only binds to MCL-1/A1 and
BAD only to BCL-2/BCL-XL/BCL-W. Conversely, BIM, PUMA,
and tBID bind to multiple antiapoptotic proteins. These
various combinations of interactions control the initiation of
apoptosis.

The antiapoptotic BCL-2 protein family contributes to mela-
noma’s resistance to apoptosis (Soengas and Lowe, 2003;
Eberle and Hossini, 2008; Placzek et al., 2010; Haass and
Schumacher, 2014; Mohana-Kumaran et al., 2014), and
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clinical trials targeting antiapoptotic Bcl-2 family members are
currently underway (Thomas et al., 2013). ABT-737 and its
oral bioactive form, ABT-263, are small molecule BCL-2/BCL-
XL/BCL-W inhibitors that show promising results in cancer
therapy, either alone or in combination with other
chemotherapeutics (Oltersdorf et al., 2005; Thomas et al.,
2013). However, many labs, including ours, found that ABT-
737 by itself is not very effective for de-bulking melanoma and
that the antiapoptotic protein MCL-1 is the primary contributor
to resistance (Miller et al., 2009; Reuland et al., 2011, 2012).
Therefore, compounds targeting MCL-1 are good potential
partners to be combined with ABT-737.

To combine with ABT-737, we chose fenretinide N-(4-
hydroxyphenyl)retinamide (4-HPR) for its ability to inhibit
MCL-1 indirectly and for its killing action in CICs of other
cancers (Torrisi and Decensi, 2000; Kang et al., 2008; Zhang
et al., 2013). This combination has synergistic cytotoxicity in
other cancers (Kang et al., 2008; Fang et al., 2011; Bruno
et al., 2012); however, it has never been tested on melanoma
cell lines or any CIC populations.

One of the common ways of isolating or enriching CICs is
by the use of surface markers (Shakhova and Sommer, 2013;
Stecca et al., 2013). However, the use of surface markers like
CD271 or CD133 to enrich MICs has produced contradictory
results (Shakhova and Sommer, 2013). To avoid such issues,
we used three surface-marker–independent assays to examine
the effects of drug treatments on the MIC populations: primary
sphere-forming, secondary-sphere forming, and the Aldefluor
assays. Melanoma spheres display ‘‘stemness,’’ exhibit self-
renewal capacity and tumorigenicity, and sustain tumor growth
in vivo, allowing for the generation of human melanoma
xenografts (Santini et al., 2012; Stecca et al., 2013). We used a
primary sphere-forming functional assay to test drug potency
on melanoma cells harboring stem-like features, the MICs. Post
drug treatment, and using the cells from the primary sphere
assay, a secondary sphere assay described by Stecca et al.,
2013 quantified the self-renewal capacity of the enriched,
resistant MICs. Furthermore, we and others established that
cells with higher aldehyde dehydrogenase (ALDH) activity are
enriched in MICs (Luo et al., 2012; Santini et al., 2012).
Therefore, we used the Aldefluor assay to further examine the
effects of drug treatments on MICs.

The present study tested the effects of a combination
melanoma treatment with ABT-737 (a small molecule BCL-
2/BCL-XL/BCL-W inhibitor) and 4-HPR (an indirect MCL-1
inhibitor), focusing on de-bulking the melanoma and killing
MICs and/or inhibiting their self-renewal capacity.

RESULTS
4-HPR and ABT-737 synergistically reduced cell viability and
increased apoptosis in melanoma cells but not in melanocytes

To explore whether treatment with 4-HPR and ABT-737
affected the cell viability and apoptosis of the melanoma
cells, we used the MTS assay, the Annexin V assay, and bright-
field morphological analysis (Figure 1). The data from the MTS
assays were analyzed with Calcusyn to obtain the combina-
tion index (CI) value for all of the combinations (Supplemen-
tary Table S1 online). The combination treatment was strongly

synergistic over a wide range of drug concentrations, with CI
values o0.3 for all melanoma cell lines tested. Cells treated
with various doses of 4-HPR and ABT-737 showed synergy
occurring from 5 to 10mM 4-HPR and at or above 1.1mM ABT-
737 for all cell lines, except A375, which showed synergy at
much lower 4-HPR doses (Figure 1a and Supplementary
Table 1 online). The Annexin V assay demonstrated that a
combination of 4-HPR and 3.3mM ABT-737 caused marked
apoptosis in every melanoma cell line we tested, ranging from
B40 to 70%, even though the single agents had little effect
(Figure 1b). The combination induced similar effects in the
melanoma cell lines carrying mutated BRAF or NRAS and
significantly increased the percentage of Annexin Vþ cells for
all melanoma cell lines tested (Po0.01). Melanoma cells
treated with the combination showed signs of cell death, such
as detachment from the substrate, misshape morphology, and
blebbing, whereas melanocytes remained largely unaffected
(Figure 1c). Moreover, the primary melanocyte line HEMNLP2
was resistant to the drug combination (Figure 1a and b). The
immortalized melanocyte line PIG1 showed only modest
effects at the highest doses (Figure 1a). Overall, the above
assays indicated that the combination treatment synergistically
reduced cell viability and caused cell death in multiple
melanoma cell lines but not in melanocytes.

The combination induced caspase-dependent MCL-1
degradation and increased NOXA expression

We and others have shown that MCL-1 is the primary protein
that allows melanoma’s resistance to ABT-737, but an increase
in NOXA expression or a decrease in MCL-1 expression
overcomes this resistance (Miller et al., 2009; Reuland et al.,
2011; Lucas et al., 2012; Reuland et al., 2012). Only the
combination treatment notably increased NOXA expression
and cleaved poly (ADP-ribose) polymerase (PARP) (Figure 2a).
In addition, only the combination treatment decreased the
levels of MCL-1 (Figure 2a). Quantification indicated that the
combination treatment markedly increased the NOXA/MCL-1
ratio by at least 5-fold in all the melanoma cell lines tested
(Figure 2a).

Various triggers induce caspase-mediated MCL-1 degrada-
tion, contributing to accelerated apoptosis (Miller et al., 2009;
Ramirez-Labrada et al., 2014). We examined this potential
mechanism using a pan-caspase inhibitor as described (Miller
et al., 2009; Ramirez-Labrada et al., 2014). Co-treatment of
the pan-caspase inhibitor Z-VAD-FMK with the combination
blocked caspase 3 activity and PARP cleavage, as expected.
MCL-1 expression also increased in the combination-treated
cells to a level close to the control cells, suggesting that the
MCL-1 degradation is mediated by caspases (Figure 2b). Thus,
these data suggest that the combination induced expression of
pro-apoptotic NOXA and caspase-dependent degradation of
antiapoptotic protein MCL-1. Results were similar in both
BRAF mutated (451Lu) and NRAS mutated cells (WM852c
and SK-MEL-30).

Inhibition of NOXA lessened the effects of the drug combination

We examined the killing potency of the combination of 4-HPR
and ABT-737 on cells after knocking down NOXA, BIM, BID,
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PUMA, or TP53 (p53) (Figure 3). Of these, only knockdown of
NOXA resulted in a significant reduction in cell death com-
pared with the control in all the cell lines tested (Po0.05),
although the protections were not complete (Figure 3a–d, and
supplementary Figure S1 online). In addition, knockdown of
BIM significantly protected SK-MEL-30 (Po0.01) but not A375
cells, even though the knockdown efficiency seemed to be
compatible. Interestingly, BIM expression was higher in SK-
MEL-30 than in A375 cells (Supplementary Figure S2 online).
These data suggest that the combination-induced killing is
NOXA dependent, and BIM may have a role in a cell-line–
dependent manner.

The combination of 4-HPR with ABT-737 caused cytotoxicity in
MICs and also increased the NOXA/MCL-1 ratio in sphere
cultures of multiple melanoma cell lines

We examined whether this combination is also effective
against MICs using sphere-forming and the Aldeflour assays

(Figure 4). In all of the nine melanoma cell lines, the
combination severely disrupted the primary spheres compared
with the control (Po0.001, Figure 4a and b). The combination
also significantly decreased the number of spheres as com-
pared with ABT-737 alone in eight of the cell lines (Po0.001)
and as compared with 4-HPR in two of them (Po0.05 or
lesser, Figure 4b). 4-HPR significantly decreased the sphere
numbers in all the cell lines (Po0.01 or lesser) and ABT-737
significantly decreased the number in 1205Lu, WM852c, and
Hs852T compared with DMSO (Po0.01).

In eight out of nine melanoma cell lines, the combination
significantly decreased the percentage of ALDHhigh cells com-
pared with the DMSO control (Po0.01 or less) (Figure 4c). In
seven out of nine melanoma cell lines, the combination
significantly decreased the percentage of ALDHhigh cells
compared with ABT-737 (Po0.05) (Figure 4c). In Hs852T
and SK-MEL-2, the combination significantly decreased
the percentage of ALDHhigh cells compared with DMSO,
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ABT-737, as well as 4-HPR (Po0.05 or lesser) (Figure 4c).
Consistent with these results, the combination also reduced
JARID1B expression (Supplementary Figure S3 online), another
potential marker for MICs (Roesch et al., 2013). Interestingly,
single treatment of ABT-737 increased the JARID1B expression
compared with control in one of the cell lines.

With the sphere lysates, we then performed immunoblot
(Figure 4d). The data were similar to our findings in monolayer
conditions; the combination treatment increased the expres-
sion of NOXA and cleaved PARP and decreased the expres-
sion of MCL-1 (Figure 4d vs. Figure 2). Similarly, knockdown

of NOXA also reduced the effects of the combination treat-
ment in the sphere-forming ability of multiple cell lines
(Figure 4e and Supplementary Figure S4 online). Taken together,
results indicate that the combination treatment induced
NOXA-dependent cytotoxicity in the MIC population.

4-HPR combined with ABT-737 inhibited the self-renewal
capacity of MICs in multiple melanoma cell lines in vitro

One cause of cancer relapse is the self-renewal capacity of
CICs (Beck and Blanpain, 2013); the secondary sphere forma-
tion assay is a means of measuring this capacity in vitro.
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Instead of just enriching stem-like cells, as in the primary
sphere-forming assay, this assay measures the cell population’s
ability to regenerate after drug treatment. Primary spheres

formed after indicated drug treatments were dissociated and
replated at the same viable cell density. However, no drugs
were added during the secondary sphere-forming assay. This
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assay specifically assesses if any of the remaining cells—those
that escaped chemotherapeutics—are capable of self-renew-
ing and regenerating into a mass of tumor cells.

The most striking and consistent result across all cell lines
was that the combination treatment almost eliminated all
secondary sphere formation. Interestingly, unlike in the pri-
mary sphere assay, 4-HPR treatment alone did not signifi-
cantly inhibit the formation of the secondary spheres in most
of the cell lines (Figure 5a), indicating that 4-HPR did not kill a
subpopulation of MICs capable of proliferation post drug
treatment. Statistical analyses indicated that the combination
treatment significantly decreased the number of secondary
spheres formed compared with DMSO (Po0.01), ABT-737
(Po0.01), or 4-HPR treatment (Po0.05 or less) in all seven
cell lines (Figure 5b). Furthermore, single drug treatments
showed an increased number of secondary spheres, compared
with the control in some of the BRAF mutated cell lines
(Figure 5c), although the P-value reached significance only in
the 451Lu (Po0.05).

Visualization of these cells with EtBr/AO staining
indicated that the majority of cells in the control or
single drug treatments were alive, but the majority of
cells in the combination treatments were dead (Figure 5b).
Thus, the results show that the combination prevented the
formation of secondary spheres in multiple cell lines, demon-
strating that the combination decreased MIC’s self-renewal
capability.

In patient-derived samples, 4-HPR combined with ABT-737
significantly disrupted spheres

To determine whether the combination treatment of ABT-737
with 4-HPR had a similar effect on samples more clinically
relevant than cell lines, we examined the effects of the
combination in patient tumor samples maintained in a tumor
xenograft mouse model (patient-derived xenograft (PDX)).
Drug–responses more closely match clinical outcomes in the
PDX model, and the PDX model provides more material
compared with fresh tumor tissues (Tentler et al., 2012). Drug
treatment was tested in four patient samples that we
established in a PDX model for melanoma (Luo et al.,
2012). Spheres took longer to form in most of patient-
derived cells, delaying the start of drug treat-
ment, but otherwise cells were handled in the same way. Inter-
estingly, the effects of the combination treatment on primary
sphere formation were more similar to the effects of secondary
sphere formation of the melanoma cell lines. In the PDX model
cells, primary spheres were severely disrupted (Figure 6a), with
significantly reduced sphere numbers compared with all other
treatment conditions: DMSO (Po0.001), ABT-737 (Po0.01 or
less), and 4-HPR (Po0.01 or less) (Figure 6b).

4-HPR and ABT-737 reduce tumor growth in an in vivo mouse
xenograft model

In a mouse xenograft model, the rate of tumor growth in the
combination group was significantly slower compared with
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combination significantly reduced the number of spheres compared with all other treatments in multiple melanoma cell lines (Po0.05 or less).
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the control group (P¼0.002), with no significant difference in
the tumor growth rate among the control, ABT-737 alone, or
4-HPR alone groups. At the end of the treatment period on days
19 and 21, the relative tumor volume of the combination group
was significantly reduced compared with both the control
group (Po0.001) and the 4-HPR alone group (Po0.05)
(Figure 6d). Single-drug treatments, ABT-737 or 4-HPR alone,
were not significantly different from the control. These results
show that the combination of ABT-737 and 4-HPR significantly
reduced the growth of melanoma tumors in vivo compared
with vehicle or individual drugs (Figure 6c).

To determine whether treatments in vivo also affect tumor
cells’ capacity to form spheres, we performed sphere-forming
assays with the single cell suspensions isolated from the
surviving tumors of the above experiment. No drugs were
added to the cells during the sphere assay. These mouse-
xenograft–derived tumor cells took longer compared with the

cell lines to form spheres, and the combination significantly
reduced the number of spheres compared with vehicle or
individual treatments (Po0.05) (Figure 6d). Immunoblots
show that the combination induced PARP cleavage and
increased the NOXA/MCL-1 ratio (Supplementary Figure 5
online), similar to the in vitro results.

DISCUSSION
This study examined the effects of combining ABT-737 with 4-
HPR on melanoma, looking at the efficacy of killing both the
bulk of tumor cells and the MICs. Regarding de-bulking the
tumor cells, we confirmed by MTS assays, Annexin V assays,
and the detection of PARP cleavage by immunoblot that the
combination treatment synergistically decreased cell viability
and induced apoptosis in multiple cells lines (Figures 1 and 2).
Moreover, BRAF or NRAS status did not affect the sensitivity to
the drug combination. Given the lack of treatment options for
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Figure 6. The combination of 4-HPR with ABT-737 had cytotoxic effects in patient-derived xenograft (PDX) tumor samples and in a mouse xenograft model. (a)

Bright-field analysis of PDX tumor samples showing complete disruption of spheres after 48 hours of combination treatment. Scale bar¼100mm. (b) Quantification

of the number of spheres for the PDX samples. The combination treatment significantly reduced the number of spheres compared with vehicle (DMSO, Po0.001)),

ABT-737 (Po0.01 or less), and 4-HPR (Po0.01 or less) in multiple PDX samples. (c) Relative tumor volumes in a mouse xenograft model. The tumor volume at

day 0 was set as 100%. The combination significantly inhibited the tumor growth compared with control and 4-HPR. (d) Sphere assays with the tumor cells

collected at the end of the xenograft experiment from c. The combination significantly reduced the number of spheres compared with vehicle or individual

treatments (Po0.05). The graph represents the mean of three different sets of tumors collected. (e) A simplified model to illustrate how the combination of ABT-737

plus 4HPR triggers apoptosis by altering Bcl-2 family members. Initially, the combination eliminates the functions of multiple apoptotic inhibitors and activates

apoptosis in two ways: ABT-737 alone blocks BCL-2/BCL-XL/BCL-W, and the combination induces NOXA expression, which inhibits MCL-1. Consequently, the

combination treatment’s synergistic mechanism is achieved by MCL-1 degradation by a small percentage of activated caspases, which produces a positive

feedback signal for further apoptosis activation.
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NRAS mutated melanomas, it is exciting that this combination
may lead to better patient outcomes.

To examine the effect on MIC populations, we utilized
primary and secondary sphere formation assays and an ALDH
activity assay. In multiple melanoma cell lines, the combina-
tion and 4-HPR alone significantly disrupted the primary
spheres and decreased the percentage of ALDHhigh cells,
compared with vehicle (DMSO) and ABT-737. Strikingly, only
the combination significantly inhibited the formation of
secondary spheres in these cells. The primary spheres and
ALDHhigh cell populations are enriched in MICs, but the
secondary sphere assay measures the capacity of self-renewal.
Only the combination treatment significantly decreased self-
renewal capacity, preventing proliferation post treatment,
essentially inhibiting the regrowth of tumor cells. Thus, the
combination was more potent compared with the control or
either drug alone in eliminating MICs and has the potential to
prevent relapse in melanoma patients.

Overall, in melanoma cell lines and PDX patient samples,
the combination treatment, but not individual treatments, is
cytotoxic to the bulk of melanoma cells and more importantly
to the MICs. This treatment would potentially hinder relapse by
blocking tumor regeneration. Collectively, results of in vitro
monolayer, sphere and ALDH assays, and mouse in vivo all
show that the combination treatment vigorously kills mela-
noma cells and MICs compared with vehicle or the single drug.

We investigated several potential mechanisms for the
synergistic effects between ABT-737 and 4-HPR in melano-
mas. Although 4-HPR is known to cause cell death by
inducing reactive oxygen species and ceramide synthesis
(Maurer et al., 2000), our results indicated that reactive
oxygen species or ceramide were not involved in melanoma
death (Supplementary Figures 6 and 7 online). Instead, the
combination induced caspase-dependent MCL-1 degradation
and increased NOXA expression (Figure 2). Changes in the
expression of NOXA and MCL-1 were similarly observed in
both mutated BRAF and NRAS melanomas and may serve as
biomarkers of sensitivity to the combination treatment. More-
over, blocking NOXA expression partially protected multiple
melanoma cell lines from the combination (Figure 3 and
Supplementary Figure 1 online). Thus, our data suggest that
this drug combination induces cell death in melanoma by
antagonizing multiple antiapoptotic BCL-2 family members,
including BCL-2, BCLXL, and BCL-W (by ABT-737) and MCL-1
(by induction of NOXA and caspase-dependent MCL-1 degra-
dation) (Figure 6e). Consequently, a small amount of activated
caspases led to further degradation of MCL-1, producing a
positive feedback signal for further activation of apoptosis, as
seen in the combination-induced synergy (Figure 6e).

Currently, two leading activation models, direct and indir-
ect, address how interactions between members of the BCL-2
family regulate the activation of apoptosis (Czabotar et al.,
2014). The consensus is that these two models are not
mutually exclusive, and the predominant pathway depends
on the biological context (Czabotar et al., 2014). In the direct
activation model, certain BH3-only proteins directly activate
the effectors BAX and BAK, and antiapoptotic BCL-2 members
primarily sequester BH3-only proteins. In the indirect model,

BAX and BAK become activated only if all of the antiapoptotic
proteins are neutralized by BH3-only proteins. Our results are
consistent with the indirect activation model.

We have tested a few combinations with ABT-737 pre-
viously and found that combination with proteasome inhibitor
Velcade was very toxic (Miller et al., 2009; Reuland et al.,
2011, 2012), and the MIC populations were quite resistant
to TMZ (Luo et al., 2012). In contrast, 4-HPR is considered
a chemoprevention agent because of its low toxicity (Malone
et al., 2003). Moreover, current targeted melanoma trea-
tments, with PLX4032 for instance, only kill tumor cells
harboring BRAF mutations. Of BRAF carriers, the response
rate is 50% and relapse is all too common. Consequently,
melanoma oncology is in dire need of multiple therapies using
novel mechanistic approaches that target non-BRAF mutated
tumors or heterogeneous populations within the same
melanoma. The combination of 4-HPR and ABT-737 may
provide a potent treatment option, regardless of mutation
status.

MATERIALS AND METHODS
Primary and secondary sphere-forming assays

All sphere assays were performed with poly-hema (Sigma, St Louis,

MO) coated plates or dishes (Reginato et al., 2003), in stem cell

media as described previously (Dontu et al., 2003; Iwanaga et al.,

2012). Specifically, the media contained DME/F12 (Hyclone, South

Logan, UT) supplemented with B27 (Invitrogen, Grand Island, NY),

20 ng ml-1 EGF and 20 ng ml-1 bFGF (BD Biosciences, Redford, MA),

and 4mg ml-1 heparin (Sigma).

Primary sphere assay. Cells were plated at a density of 1–5
viable cellml-1 for melanoma cell lines and 20 viable cellml-1 for
the patient samples. Fresh medium was added every 2–3 days.
The criteria described in the study by Stecca et al., (2013) were
used to define a sphere. Briefly, a sphere is a compact spherical-
roundish mass of cells with an approximate diameter greater than
50mm. The spheres were treated with indicated drugs on day 5.
After 48 hours, the numbers of spheres were counted.

Secondary sphere assay. Primary spheres, formed as mentioned
above for indicated drug treatments, were dissociated into single
cells and replated as described in the study by Stecca et al.,
(2013). The procedures were the same as for the primary sphere
assay, except that no drugs were added during the secondary
sphere assays. At least three repeats of both the primary and
secondary sphere assays were carried out for each cell line. The
data were normalized as the relative fold compared with the
vehicle (DMSO) control, and the number of spheres in the DMSO
control was set at ‘‘1’’. The ethidium bromide/acridine orange
staining assay, as described previously (Ribble et al., 2005; Smith
et al., 2012), was used to estimate live, dead, or apoptotic cells of
the secondary spheres dissociated with phospate-buffered saline-
EDTA (Stecca et al., 2013).

Other methods

Further information about other materials and methods is provided in

the Supplementary Material online.
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