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Abstract

We show that th&(A) ambiguity in the pole mass can be fixed in a natural way by introducing a modified non-perturbative
V-scheme momentum space couplifag(g) where the confining contributions have been subtracted out. The method used
is in the spirit of the infrared finite colipg approach to power corrections, agives a non-perturbative definition of the
‘potential subtracted’ mass. The short distance expansion of the static potential is derived, taking into account an hypothetical
short distance linear term. The magnitude of the standard OPE contributions are estimated in quenched QCD, based on results
of Lischer and Weisz. It is observed that the expansion is raijiable at the shortest distances presently measured on the
lattice.
00 2004 Elsevier B.V. Open access under CCBY license.

1. Introduction

Historically, the pole masaf and the heavy quark potentitl(r) were among the first quantities where renor-
malons[1] have been discussed in a physical context in QCD. Latter, the connection Of theambiguity in
the pole mas§2,3] with a corresponding ambiguity in the coordinate space potddfialas pointed out. It was
observed5,6] that the leading renormalon contribution cancels in the total static erfgygye=2M + V(r), a
physical quantity which should be free of ambiguitiesisiédancellation is a non-trivial finding. Indeed, one might
have expected that the pole mass and the static potential should be separately well defined: for instance, in the
Schrddinger equation, the quark mass normalizes the kinetic energy. Furthermore, although the potential appears
to be non-perturbatively defined only up to an arbitrary tanis(in particular only the force is the quantity free of
ambiguity in lattice calculations), it is difficult to maintain the view that the arbitrary normalizatiét(of implies
an arbitrary normalization of7, which nevertheless would follow from the non-ambiguity of the static energy if
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there were no independent way to fix the normalization of either the mass or the potential. In this Letter | suggest
that there is in fact a natural way to define unambiguously the pole mass at the non-perturbative level (at least as far
as theleadingrenormalon ambiguity is concerned) even in a confining theory like QCD, by properly subtracting
out the confining contributions to the self-energy, hendixtalso the ‘constant term’ in the potential. In Sectiyn

the definition of the)(A) term in the pole mass is given, in term of a properly defined non-perturbative momentum
spaceV-scheme couplin@y (¢). The method used is in the spirit of the infrared (IR) finite coupling approach to
power correction§?]. In Section3, theoretical constraints aiy (¢) are reviewed. In Sectiofthe short distance
expansion ofV (r) is derived, including the effect of an hypothetical linear short distance term, and the standard
IR power corrections are estimated on theoretical grolinsl.shown that present lattice data are not available at
distances short enough for a reliable short distance analysis to be performed yet.

2. Thenon-perturbative pole mass

To define the pole mass, one has to fix its well-known renormalon ambi@ &} | start from the resulf5,6]
that the leading IR contributiofiMp)r to the perturbative pole maggpt (When expressed in term of a short
distance mass like: = myg), is related (presumably to all orders of perturbation th¢bfyto the leading long
distance contributioVpr)r to the perturbative coordinate space poteritiat by the relation

1
SMpir(iy) = —§5VPT\IR(Mf)» (2.1)
where
a3
SVPmIR(p ) = WVPT(CI)- (2.2)
gl <p s

Vp1(q) is the momentum space perturbative potential, relatéior) by Fourier transformation

d3a D O\ Y7
VPT(r)=/wEXFXlQ~r)VPT(Q)7 (2.3)

and s is an IR factorization scale. Defining to all orders of perturbation theory a momentum space potential
effective couplingry pt(g) by

Ver(g) = _47TCFO”/57;(L])7 (2.4)
Eqg.(2.1)can be rewritten as
C i

SMpmir(1 ) = f/dan\PT(CI)- (2.5)

0

The right-hand side of E¢2.5)is presumably ill-defined, sge it involves an integration over the IR Landau singu-
larity thought to be present iy |p1(g), and represents (taking, ~ A) the O(A) ambiguity in the pole mass. To
solve this problem, one would be tempted, in analogy with the IR finite coupling approach to power corf@gtions
to replace the perturbative effective couplisgpt(g) inside the integral in E(2.5) by the correspondingon-
perturbativecouplingay (¢) defined by

ay(q)

V(g)=—47CF o

(2.6)
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where this time\7(q) is the Fourier transform of the full non-perturbative potentigt):

% G .F)V 2.7

V(r)= Wequq.r)V(q). 2.7)
However, in a confining theory, (¢) either does not exist (e.g.,¥(r) ~ B logr + C for r — 00), or is anyway too
singular at smaly (reflecting the singular large distance behaviok@f)), making the integral in Eq2.5) (with
the non-perturbativey (¢)) divergentay = 0. For instance, in the case of a linearly raising poteitial) = O(r)
for r — oo, one getsyy (¢) = O(1/4?) for ¢ — 0. This observation suggests one should first subtract out the
confining long-distance part of the potential to define a suitable non-perturbative coupligpg To this end, the
following procedure appears the most natural one: expand the potential areusd and subtract fronV (r) the
first few leading terms in this expansion (including an eventual constant term) which do not vanisk-foo.
There is by construction onlyfanite number of such terms. Let us call their sayni(r). Then we have

V(r) = Veoni(r) + 8V (r), (2.8)
which, assuming the largeexpansion can actually be performedjquelydefinessV (r), such thatV(r) — 0
both forr — 0 (from asymptotic freedomgndfor » — oc. It is clear thats V (r) now admits a standard Fourier
representation

d3q R

sV (r)= W expiq -r)sV(g), (2.9)

and one can define the newen-perturbativeouplingay (¢) by

av(q)
g%

8V(q) = —4nCr (2.10)
One should note that the perative part of these quantities are preserved, nan&pr(r) = Vp7(r) and
SVPT(q) = VpT(q), sincedV differs from V by the Veoni(r) term, which, viewed from short distances, appears
as a finite sum of non-perturbative power-like corrections, invisible order by order in perturbation theory. Indeed,
the terms occurring in perturbation theory should scale /as ence vanish for — oo, which excludes them
from Veonf(r). Thusaypt(q) = av|p1(g) is the same as in E§2.4), i.e.,ay anday have identical perturbative
expansions.

As an example, consider the potential in quenched QCD (this is actually the only case where the analytic form
of ther — oo expansion is known in low orders). Theoretical expectations give the long distance expansion for
r — o0

12r r2

Although theO(1/r) term is not a rigorous result of QCD, since it has been derived within an effective bosonic
string theory[8], it has been numerically confirmg#l] in high precision lattice simulations. We shall therefore
assume that Eq2.11)gives the correct large distance behavior of the static potential. It follows that

V(r):Kr—l—C—l}—i-(?(i). (2.11)

Veoni(r) = Kr + C, (2.12)
and one defines
Vir)y=Kr+C+6§V(r). (2.13)

In this case, the couplingsy (¢) (if it can be defined non-perturbatively, i.e.,Gf= 0 as previously noted) and
avy (¢) just differ by a ¥¢?2 term, arising from the Fourier transform of tife- piece.
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The prescription for th@on-perturbativedefinition of the pole mass now reads as follows. Introduce the ‘po-
tential subtracted’ mags]

Mps(uf) = Mpt — SMpTIR (1L £), (2.14)
and define the non-perturbative IR contribution to the pole mass by

1
SMR(py) = —§5V|R(/Lf), (2.15)
where
dq -
= — 2.1
SVIR(i ) (271)35‘/(61)’ (2.16)
gl<mf
which yields
Cc i
SMir(py) = f/dq&v(q), (2.17)

0
in complete analogy with Eq$2.1), (2.2) and (2.5)Then the pole mass is given by

M = Mps(juf) + MR (pg) +---, (2.18)

where the dots represent non-leadiddl/m) IR contributions from higher order renormalons, andtyedepen-
dence approximatively cancels between the two terms ondghéhiand side. The interpegton of the prescription

Eq. (2.18)is transparent: it says one should remove frifr its ambiguous IR paldMpTr(w r), as suggested

in [5], and substitute for it the corsponding non-perturbative (ambn-ambiguous) IR contributiofM|r (1 £).

One should note the similarity between E2.18)and the corresponding expressions in the IR finite coupling ap-
proach to power correctiorjg]. In the present context, however, the non-perturbative coupling is unambiguously
identified. With the pole mass well-defined, the constant t€rin the large distance expansion of the potential
(Eg. (2.11) is in turn fixed, since the corresponding constant term in the large distance expangeg:igf),

which should be unambiguous and calculable s 2 C.

3. Constraintson the non-perturbative @y (q)

Egs.(2.11) and (2.13yield 8V (r) ~ —(/12)(1/r) for r — oo, hencesV (q) ~ —(72/3)(1/q?) for ¢ — 0,
which yields
Criv(g=0) =T,

i.e.,ay (¢ =0) ~0.196, a rathesmallIR fixed point value. Substituting this value as a rough estimadg ¢§) in
the integrand of Eq2.17)gives

(3.1)

12

which represents a correction of about 100 MeV for the rangeofjuoted in[5] for b-quarks.
A more refined estimate is obtaineyl imputting the information about th@(1/r2) term in Eq.(2.11) which
was obtained ifi9] from a fit to high precision large lattice data and yields for— oo
Tl wb

V) =15, T 15,2

Cr . 1
SMir(pf) =~ 7Fotv(€1 =0y =51y, (3.2)

(3.3)
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with b >~ 0.04 fm, hence fog — 0

721 731

and
Cray(q) ~ 112<1+ b%q). (3.5)

Note that, sincé > 0, @y (¢) increasedrom its IR value ag; increases, hence must be nhon-monotonous in the
IR region, since asymptotic freedom implies it should ultimately decrease to 0 aiglafgeu r = 1.2 GeV, the
second term in the parenthesis in £8§.5) represents a correction of abot@% to the IR value. Substituting
Eq.(3.5)in the integrand of Eq2.17)gives

12 4
which yieldss Mir (1 r) > 120 MeV foru y = 1.2 GeV.

1 big
SMiR(p ) =~ —M,f(1+b—ﬂf‘)» (3.6)

4. Short distance expansion of the heavy quark potential

In this section | show that, barring constant terms, the short distance expansion of the heavy quark potential
can be obtained directhfrom Eq.(2.7), despite the singular behavior #f(g) at smallg. Introducing again the
factorization scalg s, Eq.(2.7)can be written as

Hf

V(r)=—2ﬂ /dq(smqr)av(q)+/dq(sml>av(q) : (4.1)
T qr qr
0

K

At short distances, we can expand theggirfactor in the low momentum integral, which gives the IR power
corrections. Making the further assumption thatl¢) has no large power corrections at laggand may be well
approximated by its perturbative paft|pt(q) aboveu r

ay(q) = avpt(q) (4.2)
(this assumption will be modified below, E@.7)), one ends up with the— 0 expansion
Iy 1y
2CF r? 2 4
V(r) >~ Vpr(r,uy) — 7 dgav(q) — 5 dqq®ay(q) +O(r") |, (4.3)
0 0
where
2cr[ [ (s
sin
Ver(r, uy) = ——F[/dQ< qr)aVPT(CI)i| (4.4)
b qr

" f

is the IR subtracted perturbative poten{). The normalization of the standac@(r%) and O(r?) renormalon-
related power corrections in E@.3)is thus giveR by low-energy moments afy (¢). Note that the?(°) term

1| assume the non-perturbative Fourier transform @) exists at least in a formal sense, in particular that a long dist&iogr + C
contribution is not present, as previously observed.
2 The corresponding expressions in term of non-local opesatan be found in the effective field theory frameworkd].
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is actually infinite, as expected frothe divergent IR behavior @fy (¢). In particular in quenched QCD E(B.5)
implies forg? — 0

21<
Cray(q) ~ 12<1+b%q>. (4.5)

But since theO(rO) term contributes only an overall normalization constant to the potential, which in this section
is left arbitrary, one can drop it out. On the other hand,de?) and higher order-dependent contributions are
finite. In particular, using Eq(4.5) as a rough approximation @y (¢) in the range O< ¢ < s one obtains in
guenched QCD for — 0 (ignoring any constant term)

2K 1 br 2 4
V(r) >~ Ver(r, uy) + (—,uf+ 108" 3+ g )r +0(r%). (4.6)

3

Let us now modify the previously mentioned assumption, in order to deal with the possibility ¢hdt/a?)
power correction is actually presentdy (¢). Such a correction has been first suggestddihas a consequence
of new physics related to confinement, leading t®@) linear correction to the potential at short distances, of
the same size (and sign) as the standard long distance correction related to the string tension. It should be noted.
however, that a short distance linear piece may hawer e conventional (although still non-perturbatiirdyared
origin, as indicated by the position of the leading IR renormalon presefit(n, which also suggest§] the
presence of &(1/¢?) correction. Let us thus assume that§ér— oo

2Ko 1

ay(q) ~aypt(g) + Cr 2 (4.7)

with Ko # K in general. To deal with this correction, one can use the general metfib2] odr more conveniently,
introduce a new coupling@y (¢) (different in general from the one in Secti@nsee below), related to the original

av(q) by

- 2Ko
CFOlV(C])ECFOlV(CI)‘F?» (4.8)

such that theedefinedcouplingay (¢) is essentially given by its perturbative part (which coincides with that of
av () at largeg®

ay(q) ~avpt(q) (4.9)

with no substantial power corrections. Thus from Eg8)

~ 8 K

7= -2 RLIAC2 (4.10)
and, upon taking the Fourier transform

V(r)=Kor +8V(r), (4.11)

wheresV (r) is given by Eqs(2.9) and (2.1Q)but withay (¢) now defined by Eq(4.8). Note that forKp = K this
definition coincides with that of Sectidh(assumingC = 0, see the comment after HQ.13)). Thus, introducing
a factorization scal@ ¢ as in Eq(4.1)we have

nf

f ) oo .
5V (r) =—2%[ / dq(s';‘fr)&mw / dq(s';‘fr)&vm)}. 4.12)
0

nf
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Sinceay (¢) has no large power corrections, it can be approximated by its perturbative,perig) above some
scaleu r, and one deduces the short distance expansion

Iy Iy
2C . r2 .
SV (r) = Ver(r, wy) — TF [/dq ay(q) — E/dq g%y (q) + 0(”)}. (4.13)
0 0
From Eqs(4.5) and (4.8yve get forg? — 0
1 b4 b4
% ~2(K—-Ko)—=+-—=|1+b=q ). 4.14
Cray () ~2( o)q2+12< + zq) (4.14)
Thus, dropping again the (infinit€)(+°) term, and using Eq4.14)for ¢ < W, We obtain
~ el A 4.1
8V (r) = Ver(r, juy) + ( 3+ 1ot +agglts ) O, (4.15)

hence from Eq(4.11)

W wy 1_28@ + %M;‘)ﬂ +0(r) (4.16)
which of course agrees with E@.6) for Ko = 0. The correlation between the coefficient of thé-) correction
(which is 1  independent) and that of the standard QP&?) correction should be noted. Féfp # 0, we get
a neat derivation of the well-known statemght] that the appearance of adar short distance term ivi(r) is
equivalent to the presence of&(1/4%) correction in the standargly (¢) coupling. Moreover, folkg = K, one
obtains the straightforward, but interesting, result that the appearance of the linear short distance term is equivalent
to the statement that theodifiedcouplingay (¢) of Section2 (rather therwy (¢)) has no®(1/¢2) corrections.

One might attempt an analysis of the lattice short distance dafa3jfbased on Eqs(4.11) and (4.13)
Vpr(r, ur) could be evaluated from E¢4.4) by solving the knowi14] 3-loop renormalization group equation for
ay|pt(g) and performing the integral, similar to the single dressed gluon ‘renormalon integral’ (with IR cut-off)
in [12,15], while the power corrections should be fitted. Unfortunately, one finds that the perturbative expansion
of the V-scheme coupling beta function is not reliable at values pmall enough that the low momentum inte-
gral in Eqg.(4.12)can be meaningfully expanded and parametrized in term of a few power correction terms, even
at the shortest values ofpresently measured on the lattice. Thus no reliable fit of the power corrections can be
performed yet. It should be noted that in the present approach standard IR power corrections appear from an OPE-
like separation of long and short distances in the Fourier transform of the momentum space potential, and their
presence is mandatory. This is to be contrasted with the res[ilBhfwhere no power corrections were neetled
if the potential is predicted in term of the renormalization group equation of the position space effective charge
or associated17] to the forceF (r) = dV /dr = Crar(1/r)/r?. However, the implicit definitioh of the power
corrections in the later case is different, and does not make use of a momentum space IR cutoff to separate long
from short distances.

V(r) = Ver(r, iuy) + Kor + (

5. Conclusion

We have shown that it is possible to fix in a natural way@hel) renormalon ambiguity in the pole mass, thus
giving anon-perturbativelefinition of the pole mass in QCD at this level of accuracy, which represents a natural

3 The alternative analysis ¢16] also finds no room for power corrections.
4 The convergence of the expansion of the beta function is only slightly bettdd 3] than that of the momentum spage beta function,
which presumably makes a quantitative analysis of the power corrections difficult also in the scl&8je of
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non-perturbative extension of the ‘potential subtracted’ mass, in the spirit of the IR finite coupling approach to
power corrections. This definition is an optimal one, in the sense the prescription is to remove from the heavy quark
potential contribution to the self-energy those terms amigl those one (the confining ones containedign(r))

which would give a meaningless (infinite) result for the pole mass. For instance, one sbtrglchove froms V (r)
theO(1/r) ‘Luscher term’ to include it iVeoni(r) (see Eq(2.11) (which, moreover, would make the modified IR

finite V-scheme couplingy (¢) non-asymptotically free!). The applitans of the proposed mass definition are
similar to those of the ‘potential subtracted’ mass, to which it provides the leading power correction, allowing an
accurate relation to the standavt§ mass, but it can be used consistently with non-perturbative extensions of the
Coulomb static potential (such as implied by phenomenological potential models or the potential determined on
the lattice). The remaining challenge is to fix t8%A2/m) ambiguities in the pole mass arising from higher order
renormalons.

We have also discussed the OPE like analysis of the short distance potential. The magnitude of the standard OPE
contributions have been estimated from Ey5). However, the resulting short distance expansion is unreliable at
the lowest values of measured so far on the lattice, due to the poor convergence of perturbation theory for the
momentum spac&-scheme coupling beta function.
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