
b

ce

bative
used

e
othetical
on results

n the

or-

ht
ce, in the
l appears
of

gy if
Physics Letters B 596 (2004) 213–220

www.elsevier.com/locate/physlet

Nonperturbative definition of the pole mass and short distan
expansion of the heavy quark potential in QCD

G. Grunberg

Centre de Physique Théorique de l’ Ecole Polytechnique (CNRS UMR C7644), 91128 Palaiseau cedex, France

Received 6 May 2004; accepted 22 June 2004

Available online 2 July 2004

Editor: P.V. Landshoff

Abstract

We show that theO(Λ) ambiguity in the pole mass can be fixed in a natural way by introducing a modified non-pertur
V -scheme momentum space couplingα̃V (q) where the confining contributions have been subtracted out. The method
is in the spirit of the infrared finite coupling approach to power corrections, andgives a non-perturbative definition of th
‘potential subtracted’ mass. The short distance expansion of the static potential is derived, taking into account an hyp
short distance linear term. The magnitude of the standard OPE contributions are estimated in quenched QCD, based
of Lüscher and Weisz. It is observed that the expansion is not yet reliable at the shortest distances presently measured o
lattice.
 2004 Elsevier B.V.

1. Introduction

Historically, the pole massM and the heavy quark potentialV (r) were among the first quantities where ren
malons[1] have been discussed in a physical context in QCD. Latter, the connection of theO(Λ) ambiguity in
the pole mass[2,3] with a corresponding ambiguity in the coordinate space potential[4] was pointed out. It was
observed[5,6] that the leading renormalon contribution cancels in the total static energyEstatic= 2M + V (r), a
physical quantity which should be free of ambiguities. This cancellation is a non-trivial finding. Indeed, one mig
have expected that the pole mass and the static potential should be separately well defined: for instan
Schrödinger equation, the quark mass normalizes the kinetic energy. Furthermore, although the potentia
to be non-perturbatively defined only up to an arbitrary constant (in particular only the force is the quantity free
ambiguity in lattice calculations), it is difficult to maintain the view that the arbitrary normalization ofV (r) implies
an arbitrary normalization ofM, which nevertheless would follow from the non-ambiguity of the static ener
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there were no independent way to fix the normalization of either the mass or the potential. In this Letter I
that there is in fact a natural way to define unambiguously the pole mass at the non-perturbative level (at le
as theleadingrenormalon ambiguity is concerned) even in a confining theory like QCD, by properly subtr
out the confining contributions to the self-energy, hence to fix also the ‘constant term’ in the potential. In Section2,
the definition of theO(Λ) term in the pole mass is given, in term of a properly defined non-perturbative mome
spaceV -scheme coupling̃αV (q). The method used is in the spirit of the infrared (IR) finite coupling approac
power corrections[7]. In Section3, theoretical constraints oñαV (q) are reviewed. In Section4 the short distance
expansion ofV (r) is derived, including the effect of an hypothetical linear short distance term, and the sta
IR power corrections are estimated on theoretical ground.It is shown that present lattice data are not availabl
distances short enough for a reliable short distance analysis to be performed yet.

2. The non-perturbative pole mass

To define the pole mass, one has to fix its well-known renormalon ambiguity[2,3]. I start from the result[5,6]
that the leading IR contributionδMPT|IR to the perturbative pole massMPT (when expressed in term of a sho
distance mass likem ≡ mMS), is related (presumably to all orders of perturbation theory[5]) to the leading long
distance contributionδVPT|IR to the perturbative coordinate space potentialVPT by the relation

(2.1)δMPT|IR(µf ) = −1

2
δVPT|IR(µf ),

where

(2.2)δVPT|IR(µf ) =
∫

|�q|<µf

d3�q
(2π)3 ṼPT(q).

ṼPT(q) is the momentum space perturbative potential, related toVPT(r) by Fourier transformation

(2.3)VPT(r) =
∫

d3�q
(2π)3

exp(i �q . �r)ṼPT(q),

andµf is an IR factorization scale. Defining to all orders of perturbation theory a momentum space po
effective couplingαV |PT(q) by

(2.4)ṼPT(q) ≡ −4πCF
αV |PT(q)

q2
,

Eq.(2.1)can be rewritten as

(2.5)δMPT|IR(µf ) = CF

π

µf∫
0

dq αV |PT(q).

The right-hand side of Eq.(2.5)is presumably ill-defined, since it involves an integration over the IR Landau sing
larity thought to be present inαV |PT(q), and represents (takingµf ∼ Λ) theO(Λ) ambiguity in the pole mass. T
solve this problem, one would be tempted, in analogy with the IR finite coupling approach to power correcti[7],
to replace the perturbative effective couplingαV |PT(q) inside the integral in Eq.(2.5) by the correspondingnon-
perturbativecouplingαV (q) defined by

(2.6)Ṽ (q) ≡ −4πCF
αV (q)

q2 ,



G. Grunberg / Physics Letters B 596 (2004) 213–220 215

t the

er

ars
ndeed,

e

tic form
ion for

sonic
re

d

where this timeṼ (q) is the Fourier transform of the full non-perturbative potentialV (r):

(2.7)V (r) =
∫

d3�q
(2π)3

exp(i �q . �r)Ṽ (q).

However, in a confining theory,̃V (q) either does not exist (e.g., ifV (r) ∼ B logr +C for r → ∞), or is anyway too
singular at smallq (reflecting the singular large distance behavior ofV (r)), making the integral in Eq.(2.5)(with
the non-perturbativeαV (q)) divergent atq = 0. For instance, in the case of a linearly raising potentialV (r) =O(r)

for r → ∞, one getsαV (q) = O(1/q2) for q → 0. This observation suggests one should first subtract ou
confining long-distance part of the potential to define a suitable non-perturbative couplingαV (q). To this end, the
following procedure appears the most natural one: expand the potential aroundr = ∞, and subtract fromV (r) the
first few leading terms in this expansion (including an eventual constant term) which do not vanish forr → ∞.
There is by construction only afinitenumber of such terms. Let us call their sumVconf(r). Then we have

(2.8)V (r) = Vconf(r) + δV (r),

which, assuming the larger expansion can actually be performed,uniquelydefinesδV (r), such thatδV (r) → 0
both for r → 0 (from asymptotic freedom)and for r → ∞. It is clear thatδV (r) now admits a standard Fouri
representation

(2.9)δV (r) =
∫

d3�q
(2π)3

exp(i �q . �r)δṼ (q),

and one can define the newnon-perturbativecouplingα̃V (q) by

(2.10)δṼ (q) ≡ −4πCF

α̃V (q)

q2 .

One should note that the perturbative part of these quantities are preserved, namelyδVPT(r) ≡ VPT(r) and
δṼPT(q) ≡ ṼPT(q), sinceδV differs from V by theVconf(r) term, which, viewed from short distances, appe
as a finite sum of non-perturbative power-like corrections, invisible order by order in perturbation theory. I
the terms occurring in perturbation theory should scale as 1/r, hence vanish forr → ∞, which excludes them
from Vconf(r). Thusα̃V |PT(q) = αV |PT(q) is the same as in Eq.(2.4), i.e., α̃V andαV have identical perturbativ
expansions.

As an example, consider the potential in quenched QCD (this is actually the only case where the analy
of the r → ∞ expansion is known in low orders). Theoretical expectations give the long distance expans
r → ∞

(2.11)V (r) � Kr + C − π

12

1

r
+O

(
1

r2

)
.

Although theO(1/r) term is not a rigorous result of QCD, since it has been derived within an effective bo
string theory[8], it has been numerically confirmed[9] in high precision lattice simulations. We shall therefo
assume that Eq.(2.11)gives the correct large distance behavior of the static potential. It follows that

(2.12)Vconf(r) = Kr + C,

and one defines

(2.13)V (r) ≡ Kr + C + δV (r).

In this case, the couplingsαV (q) (if it can be defined non-perturbatively, i.e., ifC = 0 as previously noted) an
α̃V (q) just differ by a 1/q2 term, arising from the Fourier transform of theKr piece.
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The prescription for thenon-perturbativedefinition of the pole mass now reads as follows. Introduce the
tential subtracted’ mass[5]

(2.14)MPS(µf ) = MPT − δMPT|IR(µf ),

and define the non-perturbative IR contribution to the pole mass by

(2.15)δMIR(µf ) = −1

2
δVIR(µf ),

where

(2.16)δVIR(µf ) =
∫

|�q|<µf

d3�q
(2π)3δṼ (q),

which yields

(2.17)δMIR(µf ) = CF

π

µf∫
0

dq α̃V (q),

in complete analogy with Eqs.(2.1), (2.2) and (2.5). Then the pole mass is given by

(2.18)M = MPS(µf ) + δMIR(µf ) + · · · ,
where the dots represent non-leadingO(1/m) IR contributions from higher order renormalons, and theµf depen-
dence approximatively cancels between the two terms on the right-hand side. The interpretation of the prescription
Eq. (2.18)is transparent: it says one should remove fromMPT its ambiguous IR partδMPT|IR(µf ), as suggeste
in [5], and substitute for it the corresponding non-perturbative (andnon-ambiguous) IR contributionδMIR(µf ).
One should note the similarity between Eq.(2.18)and the corresponding expressions in the IR finite coupling
proach to power corrections[7]. In the present context, however, the non-perturbative coupling is unambigu
identified. With the pole mass well-defined, the constant termC in the large distance expansion of the poten
(Eq. (2.11)) is in turn fixed, since the corresponding constant term in the large distance expansion ofEstatic(r),
which should be unambiguous and calculable, is 2M + C.

3. Constraints on the non-perturbative α̃V (q)

Eqs.(2.11) and (2.13)yield δV (r) ∼ −(π/12)(1/r) for r → ∞, henceδṼ (q) ∼ −(π2/3)(1/q2) for q → 0,
which yields

(3.1)CF α̃V (q = 0) = π

12
,

i.e., α̃V (q = 0) � 0.196, a rathersmallIR fixed point value. Substituting this value as a rough estimate ofα̃V (q) in
the integrand of Eq.(2.17)gives

(3.2)δMIR(µf ) � CF

π
α̃V (q = 0)µf = 1

12
µf ,

which represents a correction of about 100 MeV for the range ofµf quoted in[5] for b-quarks.
A more refined estimate is obtained by inputting the information about theO(1/r2) term in Eq.(2.11), which

was obtained in[9] from a fit to high precision larger lattice data and yields forr → ∞

(3.3)δV (r) � − π 1 − π b

2
12 r 12 r
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with b � 0.04 fm, hence forq → 0

(3.4)δṼ (q) � −π2

3

1

q2 − b
π3

6

1

q

and

(3.5)CF α̃V (q) � π

12

(
1+ b

π

2
q

)
.

Note that, sinceb > 0, α̃V (q) increasesfrom its IR value asq increases, hence must be non-monotonous in
IR region, since asymptotic freedom implies it should ultimately decrease to 0 at largeq . At µf = 1.2 GeV, the
second term in the parenthesis in Eq.(3.5) represents a correction of about40% to the IR value. Substitutin
Eq.(3.5) in the integrand of Eq.(2.17)gives

(3.6)δMIR(µf ) � 1

12
µf

(
1+ b

π

4
µf

)
,

which yieldsδMIR(µf ) � 120 MeV forµf = 1.2 GeV.

4. Short distance expansion of the heavy quark potential

In this section I show that, barring constant terms, the short distance expansion of the heavy quark p
can be obtained directly1 from Eq.(2.7), despite the singular behavior ofṼ (q) at smallq . Introducing again the
factorization scaleµf , Eq.(2.7)can be written as

(4.1)V (r) = −2 CF

π

[ µf∫
0

dq

(
sinqr

qr

)
αV (q) +

∞∫
µf

dq

(
sinqr

qr

)
αV (q)

]
.

At short distances, we can expand the sinqr factor in the low momentum integral, which gives the IR pow
corrections. Making the further assumption thatαV (q) has no large power corrections at largeq and may be wel
approximated by its perturbative partαV |PT(q) aboveµf

(4.2)αV (q) � αV |PT(q)

(this assumption will be modified below, Eq.(4.7)), one ends up with ther → 0 expansion

(4.3)V (r) � VPT(r,µf ) − 2CF

π

[ µf∫
0

dq αV (q) − r2

6

µf∫
0

dq q2αV (q) +O
(
r4)],

where

(4.4)VPT(r,µf ) = −2 CF

π

[ ∞∫
µf

dq

(
sinqr

qr

)
αV |PT(q)

]

is the IR subtracted perturbative potential[5]. The normalization of the standardO(r0) andO(r2) renormalon-
related power corrections in Eq.(4.3) is thus given2 by low-energy moments ofαV (q). Note that theO(r0) term

1 I assume the non-perturbative Fourier transform Eq.(2.7) exists at least in a formal sense, in particular that a long distanceB logr + C

contribution is not present, as previously observed.
2 The corresponding expressions in term of non-local operators can be found in the effective field theory framework of[10].
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is actually infinite, as expected from the divergent IR behavior ofαV (q). In particular in quenched QCD Eq.(3.5)
implies forq2 → 0

(4.5)CF αV (q) ∼ 2K

q2 + π

12

(
1+ b

π

2
q

)
.

But since theO(r0) term contributes only an overall normalization constant to the potential, which in this se
is left arbitrary, one can drop it out. On the other hand, theO(r2) and higher orderr-dependent contributions a
finite. In particular, using Eq.(4.5) as a rough approximation toαV (q) in the range 0< q < µf one obtains in
quenched QCD forr → 0 (ignoring any constant term)

(4.6)V (r) � VPT(r,µf ) +
(

2K

3π
µf + 1

108
µ3

f + bπ

288
µ4

f

)
r2 +O

(
r4).

Let us now modify the previously mentioned assumption, in order to deal with the possibility that aO(1/q2)

power correction is actually present inαV (q). Such a correction has been first suggested in[11] as a consequenc
of new physics related to confinement, leading to aO(r) linear correction to the potential at short distances
the same size (and sign) as the standard long distance correction related to the string tension. It should
however, that a short distance linear piece may have amore conventional (although still non-perturbative)infrared
origin, as indicated by the position of the leading IR renormalon present inṼ (q), which also suggests[5] the
presence of aO(1/q2) correction. Let us thus assume that forq2 → ∞

(4.7)αV (q) � αV |PT(q) + 2K0

CF

1

q2

with K0 �= K in general. To deal with this correction, one can use the general method of[12], or more conveniently
introduce a new coupling̃αV (q) (different in general from the one in Section2, see below), related to the origin
αV (q) by

(4.8)CF αV (q) ≡ CF α̃V (q) + 2K0

q2 ,

such that theredefinedcouplingα̃V (q) is essentially given by its perturbative part (which coincides with tha
αV (q)) at largeq2

(4.9)α̃V (q) � αV |PT(q)

with no substantial power corrections. Thus from Eq.(4.8)

(4.10)Ṽ (q) = −8πK0

q4 − 4πCF

α̃V (q)

q2 ,

and, upon taking the Fourier transform

(4.11)V (r) = K0r + δV (r),

whereδV (r) is given by Eqs.(2.9) and (2.10), but with α̃V (q) now defined by Eq.(4.8). Note that forK0 = K this
definition coincides with that of Section2 (assumingC = 0, see the comment after Eq.(2.13)). Thus, introducing
a factorization scaleµf as in Eq.(4.1)we have

(4.12)δV (r) = −2CF

π

[ µf∫
0

dq

(
sinqr

qr

)
α̃V (q) +

∞∫
µf

dq

(
sinqr

qr

)
α̃V (q)

]
.
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Sinceα̃V (q) has no large power corrections, it can be approximated by its perturbative partαV |PT(q) above some
scaleµf , and one deduces the short distance expansion

(4.13)δV (r) � VPT(r,µf ) − 2CF

π

[ µf∫
0

dq α̃V (q) − r2

6

µf∫
0

dq q2α̃V (q) +O
(
r4)].

From Eqs.(4.5) and (4.8)we get forq2 → 0

(4.14)CF α̃V (q) ∼ 2(K − K0)
1

q2
+ π

12

(
1+ b

π

2
q

)
.

Thus, dropping again the (infinite)O(r0) term, and using Eq.(4.14)for q < µf , we obtain

(4.15)δV (r) � VPT(r,µf ) +
(

2(K − K0)

3π
µf + 1

108
µ3

f + bπ

288
µ4

f

)
r2 +O

(
r4),

hence from Eq.(4.11)

(4.16)V (r) � VPT(r,µf ) + K0r +
(

2(K − K0)

3π
µf + 1

108
µ3

f + bπ

288
µ4

f

)
r2 +O

(
r4)

which of course agrees with Eq.(4.6) for K0 = 0. The correlation between the coefficient of theO(r) correction
(which is µf independent) and that of the standard OPEO(r2) correction should be noted. ForK0 �= 0, we get
a neat derivation of the well-known statement[11] that the appearance of a linear short distance term inV (r) is
equivalent to the presence of aO(1/q2) correction in the standardαV (q) coupling. Moreover, forK0 = K, one
obtains the straightforward, but interesting, result that the appearance of the linear short distance term is e
to the statement that themodifiedcouplingα̃V (q) of Section2 (rather thenαV (q)) has noO(1/q2) corrections.

One might attempt an analysis of the lattice short distance data of[13] based on Eqs.(4.11) and (4.13).
VPT(r,µf ) could be evaluated from Eq.(4.4)by solving the known[14] 3-loop renormalization group equation f
αV |PT(q) and performing the integral, similar to the single dressed gluon ‘renormalon integral’ (with IR cu
in [12,15], while the power corrections should be fitted. Unfortunately, one finds that the perturbative exp
of theV -scheme coupling beta function is not reliable at values ofµf small enough that the low momentum int
gral in Eq.(4.12)can be meaningfully expanded and parametrized in term of a few power correction term
at the shortest values ofr presently measured on the lattice. Thus no reliable fit of the power corrections c
performed yet. It should be noted that in the present approach standard IR power corrections appear from
like separation of long and short distances in the Fourier transform of the momentum space potential, a
presence is mandatory. This is to be contrasted with the result of[13], where no power corrections were neede3

if the potential is predicted in term of the renormalization group equation of the position space effective
αF associated[17] to the forceF(r) = dV/dr = CF αF (1/r)/r2. However, the implicit definition4 of the power
corrections in the later case is different, and does not make use of a momentum space IR cutoff to sepa
from short distances.

5. Conclusion

We have shown that it is possible to fix in a natural way theO(Λ) renormalon ambiguity in the pole mass, th
giving anon-perturbativedefinition of the pole mass in QCD at this level of accuracy, which represents a n

3 The alternative analysis of[16] also finds no room for power corrections.
4 The convergence of the expansion of theαF beta function is only slightly better[13] than that of the momentum spaceαV beta function,

which presumably makes a quantitative analysis of the power corrections difficult also in the scheme of[13].
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non-perturbative extension of the ‘potential subtracted’ mass, in the spirit of the IR finite coupling appro
power corrections. This definition is an optimal one, in the sense the prescription is to remove from the hea
potential contribution to the self-energy those terms andonly those one (the confining ones contained inVconf(r))
which would give a meaningless (infinite) result for the pole mass. For instance, one shouldnot remove fromδV (r)

theO(1/r) ‘Lüscher term’ to include it inVconf(r) (see Eq.(2.11)) (which, moreover, would make the modified
finite V -scheme coupling̃αV (q) non-asymptotically free!). The applications of the proposed mass definition a
similar to those of the ‘potential subtracted’ mass, to which it provides the leading power correction, allow
accurate relation to the standardMS mass, but it can be used consistently with non-perturbative extensions
Coulomb static potential (such as implied by phenomenological potential models or the potential determ
the lattice). The remaining challenge is to fix theO(Λ2/m) ambiguities in the pole mass arising from higher or
renormalons.

We have also discussed the OPE like analysis of the short distance potential. The magnitude of the stan
contributions have been estimated from Eq.(4.5). However, the resulting short distance expansion is unreliab
the lowest values ofr measured so far on the lattice, due to the poor convergence of perturbation theory
momentum spaceV -scheme coupling beta function.
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