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Abstract

Let l be an oriented link of d components with nonzero Alexander polynomial �(u1; : : : ; ud). Let �
be a 2nite-index subgroup of H1(S3 − l) ∼= Zd, and let M� be the corresponding abelian cover of S3

branched along l. The growth rate of the order of the torsion subgroup of H1(M�), as a suitable measure
of � approaches in2nity, is equal to the Mahler measure of �. ? 2002 Elsevier Science Ltd. All rights
reserved.
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Keywords: Link; Alexander polynomial; Mahler measure

1. Introduction

Associated to any knot k ⊂ S3 is a sequence of Alexander polynomials �i; i¿ 1, in a single
variable such that �i+1 divides �i. Likewise, for any oriented link of d components there is a
sequence of Alexander polynomials in d variables. Following the usual custom, we refer to the
2rst Alexander polynomial of a knot or a link as the Alexander polynomial, and we denote it
simply by �.
In [9] Gordon examined the homology groups of r-fold cyclic covers Mr of S3 branched over

a knot k. He proved that when each zero of the Alexander polynomial � of k has modulus
one (and hence is a root of unity), the 2nite values of |H1(Mr)| are periodic in r. Gordon
conjectured that when some zero of � is not a root of unity, the 2nite values of |H1(Mr)| grow
exponentially.
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More than 15 years later two independent proofs of Gordon’s conjecture, one by Riley [16]
and another by GonzalHez-Acuña and Short [8], appeared. Both employed the Gel’fond–Baker
theory of linear forms in the logarithms of algebraic integers [2,7].

We extend the above results for knots, replacing the term “2nite values of |H1(Mr)|” with
“order of the torsion subgroup of H1(Mr)”, while at the same time proving a general result for
links in S3. Our proof, which is motivated by Silver and Williams [22], identi2es the torsion
subgroup of the homology of a 2nite abelian branched cover with the connected components of
periodic points in an associated algebraic dynamical system. Theorem 21:1 of [19], an enhanced
version of a theorem of Lind et al. [13], then completes our argument.

Recognizing that relatively few topologists are familiar with algebraic dynamical systems, we
have endeavored to make this paper self-contained. The reader who desires to know more about
such dynamical systems is encouraged to consult the extraordinary monograph [19].

2. Statement of results

Let l= l1∪· · ·∪ld be an oriented link of d components with exterior E= S3− intN (l), where
N (l) is a regular neighborhood of l. The meridianal generators of the link group Gl=�1(S3−l)
represent distinguished generators u1; : : : ; ud for the abelianization Gl=G′

l
∼= Zd. We identify these

generators with the standard basis of Zd.
Given a 2nite-index subgroup � ⊂ Zd there exists a covering E� of the link exterior corre-

sponding to the epimorphism Gl → Zd=�, the abelianization map composed with the canonical
quotient map. By attaching solid tori to E� so that meridians of the tori cover meridians of l
while the collection of cores map to the link, we obtain a cover M� of S3 branched over l.
Let Rd denote the ring Z[u±1

1 ; : : : ; u±1
d ] ∼= Z[Zd] of Laurent polynomials with integer coeM-

cients. The Mahler measure of a nonzero polynomial f∈Rd is de2ned by

M(f)= exp
(∫

Sd
log |f(s)| ds

)
;

where ds indicates integration with respect to normalized Haar measure, and Sd is the multi-
plicative subgroup of d-dimensional complex space Cd consisting of all vectors (s1; : : : ; sd) with
|s1|= · · ·= |sd|=1. Clearly, Mahler measure is multiplicative, and the measure of any unit is 1.
It is known that M(f)=1 if and only if f is equal up to a unit factor to the product of
cyclotomic polynomials in a single variable evaluated at monomials (see [19, Lemma 19:1]).

The quantity M(f), which is the geometric mean of |f| over the d-torus Sd, was introduced
by Mahler [14,15]. It is a consequence of Jensen’s formula [1, p. 205] that if f is a nonzero
polynomial cnun + · · ·+ c1u+ c0 (cn 	=0) in one variable, then

M(f)= |cn|
n∏
j=1

max(|rj|; 1);

where r1; : : : ; rn are the zeros of f. A short proof can be found in either [5] or [19].
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For any 2nite-index subgroup � we let

〈�〉=min{|v| : v∈�− 0};

where | · | denotes the Euclidean metric.
Since M� is a compact manifold, the homology group H1(M�) is 2nitely generated. (All

homology groups in this paper have integer coeMcients.) We decompose H1(M�) as the direct
sum of a free abelian group of some rank �� and a torsion subgroup TH1(M�). We denote the
order of TH1(M�) by b�.

Theorem 2.1. Let l= l1∪· · ·∪ld be an oriented link of d components having nonzero Alexander
polynomial �=�(u1; : : : ; ud). Then

lim sup
〈�〉→∞

1
|Zd=�| log b�= logM(�):

When d=1 the lim sup can be replaced by an ordinary limit.
As a consequence of the proof of Theorem 2.1 we obtain a new proof of a theorem of

Gordon. Recall that for any knot, �i denotes the ith Alexander polynomial.

Corollary 2.2 (Gordon [9]). Let k be a knot in S3. If �1=�2 divides tN − 1 for some N; then
H1(Mr) ∼= H1(Mr+N ) for all r.

The Mahler measure of u21 − u1 + 1, the Alexander polynomial of the trefoil knot 31, is 1
since both zeros of the polynomial have unit modulus. On the other hand, u21 − 3u1 + 1, the
Alexander polynomial of the 2gure eight knot 41, has zeros (1±

√
5)=2 and hence it has Mahler

measure (1 +
√
5)=2 ≈ 1:618.

Scanning the table of 2-component links in [17] we 2nd that 622 is the 2rst link with nonzero
Alexander polynomial having Mahler measure greater than 1. The polynomial is u1 + u2 − 1 +
u−1
1 + u−1

2 , which has Mahler measure approximately equal to 1:285.
The next link in the table, 632, has Alexander polynomial 2 − u1 − u2 + 2u1u2, which can

be rewritten as (2 − u1) + u1u2(2u1 − 1). Using Lemma 19:8 of [19] and an easy change of
basis (replacing u1u2 with a new variable u′2) we see that Mahler measure of this Alexander
polynomial is precisely 2.

No polynomial with integer coeMcients is known that has Mahler measure greater than 1 but
less than that of �(x)= x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1, which has Mahler measure
approximately equal to 1:176. (Only one of the nine zeros of � lies outside the unit circle.)
Deciding whether or not such a numerical gap truly exists is known as Lehmer’s problem,
and it remains a vexing open question. (see [5,11]). It is a provocative fact that � is the
Alexander polynomial of a knot. In fact, there are in2nitely many, including in2nitely many
with complements that 2ber over the circle.

For more calculations of Mahler measures of Alexander polynomials of links and further
discussion of Lehmer’s question see [23].
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Fig. 1. TZ
d
-Coloring rule.

3. Zd-shifts and link colorings

A Zd-action by automorphisms on a topological group X is a homomorphism � :m �→ �m
from Zd to Aut(X ). Two Zd-actions � and �′ on X and X ′, respectively, are algebraically
conjugate if there exists a continuous group isomorphism  :X → X ′ such that  ◦�m=�′m ◦ ,
for every m∈Zd.

Rd-modules are an important source of Zd-shifts via Pontryagin duality. Let T denote the
additive circle group R=Z. For any Rd-module L, the Pontryagin dual L∧=Hom(L;T) is a
group under pointwise addition. Here L is given the discrete topology, and L∧ is endowed with
the compact-open topology; L∧ is a compact abelian group. For m∈Zd, scalar multiplication
a �→ ma in L induces �m ∈Aut(L∧) via its adjoint action. In this way we have a Zd-action on
L∧. From a purely algebraic point of view, L∧ is a Rd-module. In the case that L is a free
Rd-module of rank N , we obtain the compact group L∧=(TN )Zd . The automorphism �m is the
shift map given by �m(#n)= (#n+m) for #=(#n)∈ (TN )Zd . The automorphisms �u1 ; : : : ; �ud will
be denoted by �1; : : : ; �d for notational ease.
Given a Zd-action � on X , we say that a point x∈X is periodic under � if its orbit

{�mx |m∈Zd} is 2nite. We will be particularly interested in periodic point sets

Fix�(�)= {x∈X |�mx= x ∀m∈�};
where � is a subgroup of 2nite index in Zd. For algebraically conjugate actions such sets
clearly correspond under the isomorphism  .

De"nition 3.1. Assume that D is a diagram of an oriented link l= l1∪· · ·∪ld of d components.
A TZd-coloring of D is an assignment of elements (colors) #; �; : : :∈TZd to the arcs of D such
that the condition

#+ �t�= %+ �t′# (3.1)

is satis2ed at any crossing. Here # corresponds to an overcrossing arc of the tth component of
l, while � and % correspond to undercrossing arcs of the t′th component. We encounter � as
we travel in the preferred direction along the arc labeled by #, turning left at the crossing (see
Fig. 1). The terminology is motivated by the concept of Fox coloring for knots [6], which was
generalized in [20,22].
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If D consists of N arcs, then the set ColT;Zd(D) of all TZd-colorings of D is a closed
subgroup of [TZd]N ∼= [TN ]Z

d
that is invariant under �m for each m∈Zd. It will follow from

observations in Section 4 that if D′ is a another diagram for l, then the Zd-action on ColT;Zd(D)
is algebraically conjugate to the action on ColT;Zd(D′). In anticipation we make the following
de2nition.

De"nition 3.2 (Cf. Silver and Williams [20]). Let l be a d-component oriented link with dia-
gram D. The color Zd-shift ColT;Zd(l) is the compact abelian group ColT;Zd(D) together with
the Zd-action �.

4. Alexander module and periodic points

This section contains the proofs of our main results. An example that illustrates the main
ideas is given at the end.

A diagram D for l yields a 2nite Wirtinger presentation 〈x1; x2; : : : ; xN | r1; : : : ; rN 〉 for Gl=
�1(S3−l). Let P be the canonical 2-complex with �1P ∼= Gl, constructed with a single vertex v,
directed edges labeled x1; : : : ; xN , and oriented 2-cells c1; : : : ; cN with each boundary @ci attached
to 1-cells according to ri (see Chap. 11 of [12]).
Let P̃ be the maximal abelian cover of P; that is, the cover corresponding to the abelianization

map Gl → Gl=G′
l
∼= Zd. As usual each cell v; xi; cj of P lifts to a family mṽ;mx̃i;mc̃j of oriented

cells indexed by Zd. By standard construction the chain complex 0 → C̃2
@2→C̃1

@1→C̃0 → 0 admits
a quotient 0 → C̃2

@2→C̃1 → 0 that determines the relative homology group H1(P̃; P̃
0
), where P̃

0

is the 0-skeleton of P̃. This Rd-module is the Alexander module of the link, denoted here by A.
By the universal coeMcient theorem [24, p. 243] the cohomology group H 1(P̃; P̃

0
;T) is

naturally isomorphic to the dual group of the Alexander module. It is a closed subgroup of
Hom(C̃1;T)= [TN ]Z

d
, the kernel of the coboundary operator

Hom(C̃1;T)
Hom(@2;1)→ Hom(C̃2;T)

and hence it inherits a Zd-action from Hom(C̃1;T) (see Section 3).
We observe that @2c̃1; : : : ; @2c̃N closely resemble the relations of the coloring rule (3.1). The

Wirtinger relator at the crossing in Fig. 1 has the form xixj1x
−1
i x−1

j2 , and the lifted loop in
the cover that begins at ṽ determines the 1-cycle x̃i + utx̃j1 − ut′ x̃i − x̃j2 , which induces the
homology relation x̃i+utx̃j1 = x̃j2 +ut′ x̃i. Lifts that begin at other points of the cover are simply
translates by elements of Zd. We can regard the assignment of #=(#m)∈TZd to an arc xi
as an assignment of #m ∈T to the 1-chain mx̃i. Then clearly ColT;Zd(D) and H 1(P̃; P̃

0
;T) are

described by identical subsets of [TN ]Z
d
. Since the Alexander module is a link invariant, it

follows that the algebraic conjugacy class of ColT;Zd(D) is independent of the diagram for l.
Consider a 2nite-index subgroup � of Zd. The unbranched cover E� has the same homology

as the quotient complex P̃=�. A 2-complex Q with the same 2rst homology group as the
branched cover M� is obtained from P̃=� by attaching additional 2-cells as follows. Each
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Wirtinger generator xi; 16 i6N , maps to some ut(i) under abelianization. Assume that ut(i)
represents an element of order n(i) in Zd=�. Then x̃i + ut(i)x̃i + · · · + un(i)−1

t(i) x̃i is a 1-cycle in
P̃=�, and we attach a 2-cell along it and each of its translates. The additional cells added to
the complex in this way correspond to the meridinal disks of tori that we attach to E� when
constructing M�. Consequently, Q has the same fundamental group and hence the same 2rst
homology group as M�.
Elements of H 1(Q;Q0;T) correspond to Zd-colorings in Fix�(�) such that if # is assigned

to the ith arc of D, then

#+ �t(i)#+ · · ·+ �n(i)−1
t(i) #=0: (4.1)

Such Zd-colorings comprise a subgroup SFix�(�)6Fix�(�) of special periodic points.
The universal coeMcient theorem implies that H 1(Q;T) is isomorphic to the dual group of

H1(Q) ∼= H1(M�). By decomposing H1(M�) as TH1(M�) ⊕ Z�� (see Section 2) and recalling
that A∧ ∼= A for any 2nite abelian group A, we have

H 1(Q;T) ∼= [TH1(M�)⊕Z��]∧ ∼= TH1(M�)⊕ T��: (4.2)

Consider now the portion of the cohomology long exact sequence:

H 0(Q0;T) +→H 1(Q;Q0;T) → H 1(Q;T) → 0: (4.3)

Lemma 4.1. The image of + is a direct summand of H 1(Q;Q0;T) isomorphic to Tr ; where
r= |Zd=�| − 1.

Proof. The 0-skeleton Q0 consists of vertices indexed by elements of Zd=�. Elements of
H 0(Q0;T) can be regarded as functions f :Zd=� → T. The image +(f) is an edge-labeling
of Q, assigning f(m′) − f(m) to an edge from mṽ to m′ṽ. Select a maximal tree T in the
1-skeleton of Q. It is clear that +(f) is uniquely determined by its values on T , and such values
can be prescribed arbitrarily. Since T has r edges, the image of + is isomorphic to Tr .

The map H 1(Q;Q0;T) ,→Tr given by restricting any cocycle to the edges of the maximal tree
T is an epimorphism, by what we have said above. We construct a right inverse - for , as
follows. Given a function g : T → T, choose an element f∈H 0(Q0;T) such that +(f) agrees
with g on T . De2ne -(g)= +(f). Hence the image of + is a direct summand of H 1(Q;Q0;T).

Corollary 4.2. Let SFix0�(�) be the connected component of the identity in SFix�(�). Then
SFix�(�)=SFix0�(�) ∼= TH1(M�).

Proof. By Eq. (4.2) we have TH1(M�)⊕T�� ∼= H 1(Q;T), and by the long exact sequence (4.3)
the latter module is isomorphic to H 1(Q;Q0;T)=im(+). Recall that H 1(Q;Q0;T) is isomorphic
to SFix�(�). By Lemma 4.1 the image of + is connected and hence contained in SFix0�(�).
Thus SFix�(�)=SFix0�(�) ∼= TH1(M�).

Corollary 4.3. The :rst Betti number �� of M� is equal to dim SFix�(�)− |Zd=�|+ 1:
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Proof. By Eq. (4.2) the Betti number �� is equal to the dimension of H 1(Q;T), and by the
long exact sequence (4.3) the latter is dim SFix�(�) − dim im(+). Lemma 4.1 completes the
argument.

The quantity dim SFix�(�) can be generally computed as the nullity of a certain matrix. The
computation is similar to that which results from the formula of Sakuma [18, Theorem 1:1(2)].
However, the dynamical systems perspective here is new.

Proof of Theorem 2.1. It follows from Corollary 4.2 that b�= |TH1(M�)| is equal to the number
of connected components of SFix�(�). Now, we apply techniques of symbolic dynamics to count
the number of components and determine their exponential growth rate.

We denote the connected component of the identity in Fix�(/) by the symbol Fix0�(/). For
any Zd-action / associated to the dual group of a Rd-module, Theorem 21:1 of [19] implies
that the exponential growth rate of |Fix�(/)=Fix0�(/)| as 〈�〉 approaches in2nity is equal to the
topological entropy of /, provided that the topological entropy of / is :nite. The topological
entropy of the Zd-action � above is always in2nite. However, we will show that there is a
related Zd-shift �′ such that (1) �′ has 2nite topological entropy equal to logM(�); and (2)
|Fix�(�′)=Fix0�(�′)|= |SFix�(�)=SFix0�(�)|. The main conclusion of Theorem 2.1 follows from
these assertions.

A TZd-coloring of D that assigns 0∈TZd to some arc, say the arc corresponding to Wirtinger
generator x1, will be called a based TZd-coloring. The collection of based TZd-colorings is a
closed shift-invariant subgroup of ColT;Zd(D), independent of the choice of arc. It is the dual
of B=A=〈x̃1〉, the quotient of the Alexander module by the submodule generated by x̃1, which
one might call the based Alexander module of the link. We denote the Zd-action on B by �B.

It is clear from the discussion above that for any knot the based Alexander module is iso-
morphic to the 2rst homology group of the in2nite cyclic cover of the knot exterior. Since all
generators of a Wirtinger presentation for a knot group are conjugate, it follows that periodic
points of �B are always special periodic points. (See the paragraph preceding Lemma 2:7 [21]
for details.) Hence in this case Fix((�B)r) is isomorphic to the dual of H1(Mr), for any r.

In the general case we de2ne special periodic points of �B just as we de2ned them for �.
We claim that

SFix�(�B)=SFix0�(�
B) ∼= SFix�(�)=SFix0�(�)

and hence the number of connected components of SFix�(�B) is equal to that of SFix�(�).
One way to see this is by constructing a maximal tree T for the 1-skeleton of Q, selecting
2rst a maximal number of edges of the form mx̃1. Recall that SFix�(�) can be identi2ed
with H 1(Q;Q0;T), and by the proof of Lemma 4.1 this group has a direct summand Tr , the
image of the map - de2ned above. We pass from SFix�(�) to SFix�(�)=SFix0�(�) in two
stages. First, we crush -(Tr); the quotient group is isomorphic to the subgroup of H 1(Q;Q0;T)
consisting of cocyles that vanish on the edges of the maximal tree T . However, in view of
Eq. (4.1), any cocycle that vanishes on those edges vanishes on all of the edges mx̃1. Thus
SFix�(�)=-(T r) ∼= SFix�(�B), the subgroup of H 1(Q;Q0;T) consisting of based TZd-colorings.
The connected component of the identity in this group is also a torus. Crushing it we 2nd that
SFix�(�)=SFix0�(�) ∼= SFix�(�B)=SFix0�(�

B).
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The based Alexander module B has an (N − 1) × (N − 1) presentation matrix R, which
can be obtained from the matrix for the Alexander module A by deleting the 2rst row and
column. Then �(u1; : : : ; ud)= (u1 − 1) det R (see [12, pp. 119–120]). Since the Mahler measure
of u1−1 is equal to 1, the determinant of R has the same Mahler measure as �. By Lind et al.
[13, p. 611] the topological entropy of �B is equal to the log of the Mahler measure of �.

The Zd-action �′ that we need is a modi2cation of �B. Consider based Zd-colorings of D,
but replace any color � by a pair (�; 2) of colors, and require in addition to the basic coloring
rule (3.1) the condition:

�t2= 2+ �; (4.4)

where t is the index of the component of l containing the arc colored by (�; 2). Denote the
associated Zd-action by �′.

The Zd-action �′ is on the dual group of a module B′ that we obtain from a presentation
for B by adding new generators z2; : : : ; zN and relations ut(i)zi= zi + xi (26 i6N ), where t(i)
is the index of the component of l containing the arc xi. The determinant of the new relation
matrix R′ is �(u1; : : : ; ud) times a product of polynomials of the form ut − 1. As before, since
the Mahler measure of each ut − 1 is equal to 1, we have M(det(R′))=M(�), and by Lind et
al. [13, p. 611] the topological entropy of �′ is equal to this value. Hence assertion (1) above
holds.

By a straightforward recursion argument we 2nd that Fix�(�′) ∼= SFix�(�B) ⊕ Ts. Here s is
the number of second coordinates 2 that can be freely assigned: Assume that ut represents an
element of order n in Zd=�. Condition (4.4) implies

2m+ut = 2m + �m;

2m+2ut = 2m + �m + �m+ut ;

...

2m+nut = 2m + �m + �m+ut + · · ·+ �m+(n−1)ut :

Clearly, 2m+nut = 2m if and only if �m+ut + · · · + �m+(n−1)ut =0: Moreover, the coordinates
2ut ; : : : ; 2(n−1)ut are uniquely determined from 20 and coordinates of �. When t′ is diOerent from t,
condition (4.4) imposes no new requirement; in such a case the coordinates 20; 2ui′ ; : : : ; 2(n′−1)ut′
can be chosen arbitrarily, where ut′ represents an element of order n′ in Zd=�. Assertion (2) is
immediate, and the proof of the theorem is complete.

Example 4.4. We will illustrate the ideas and terminology used in the proof of Theorem 2.1
with an example.

The diagram D for the link l=521, shown in Fig. 2, yields a Wirtinger presentation for Gl:

〈x1; x2; x3; x4; x5 | x1x3 = x5x1; x3x2 = x1x3; x5x4 = x3x5; x4x2 = x1x4; x2x4 = x5x2〉:
We assume that under abelianization x1 and x2 map to u1 while the remaining generators are

sent to u2. A portion of the maximal abelian cover P̃ is shown in Fig. 3. The 2-cells are not
shown.
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Fig. 2. Diagram for 521.

Fig. 3. Portion of P̃.

We consider the subgroup � of Z2 generated by u31 and u22. The 1-skeleton of Q (which is
the same as the 1-skeleton of P̃=�) is shown in Fig. 4. Since � has generators parallel to u1; u2,
it is easy to visualize the additional 2-cells that must be attached to P̃=� in order to build Q. In
more general examples, the boundaries of the new cells might wind around the graph several
times.

An element x∈Fix�(�B) can be represented by 3×2 matrices �; %; +; , assigned to arcs corre-
sponding to x2; x3; x4; x5, respectively. These matrices have entries in T, and are the restrictions
of the elements of TZd to a fundamental region of Zd=�. The element x is in SFix�(�B) if the
column sums of � and the row sums of %; +; , are all zero.

An element of Fix�(�′) assigns additional 3 × 2 matrices 2�; 2%; 2d; 2,. We can prescribe the
coordinates 2�0;0; 2

�
0;1 arbitrarily; the other coordinates of 2� are uniquely determined by these

and �. Similarly, the coordinates 2%0;0; 2
%
1;0; 2

%
2;0; 2

+
0;0; 2

+
1;0; 2

+
2;0; 2

,
0;0; 2

,
1;0; 2

,
2;0 are arbitrary. We have

Fix�(�′) ∼= SFix�(�)⊕ T11.
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Fig. 4. Skeleton of Q.

We remark that for this link the Alexander polynomial is (1− u1)(1− u2). Since the Mahler
measure of the polynomial is 1, the orders b� have zero exponential growth rate.

Proof of Corollary 2.2. Since �1=�2 annihilates the Alexander module of any knot [3], it fol-
lows that �N = id: From this we have Fix(�r+N )=Fix(�r). Recall that for any knot, Fix(�r) is
isomorphic to the dual of H1(Mr). Hence H1(Mr+N ) ∼= H1(Mr), for every r¿ 1.

5. Coloring with nonabelian groups

The coloring rule (3.1) generalizes in a natural way, allowing one to replace T with an
arbitrary topological group 4.

De"nition 5.1. Assume that D is a diagram of an oriented link l= l1∪· · ·∪ld of d components.
A 4Z

d
-coloring of D is an assignment of elements (colors) #; �; : : :∈4Zd to the arcs of D such

that the condition

# · �t�= % · �t′# (5.1)

is satis2ed at any crossing. The colors #; �; % correspond to arcs that are described as in De2-
nition 3.1.

As before, if D consists of N arcs, then the set Col4;Zd(D) of all 4Z
d
-colorings of D is a

closed subspace of [4N ]Z
d
that is invariant under �m for each m∈Zd. That Col4;Zd(D) does not

depend on the choice of diagram for l follows immediately from the following. Let Ẽ denote
the maximal abelian cover of the link exterior with projection p : Ẽ → E, and let ∗ be a point
of E. Let ∗̃ denote a 2xed lift of ∗. Any covering automorphism of Ẽ induces a homeomor-
phism of the quotient space Ẽ=p−1(∗), and hence induces an automorphism of �1(Ẽ=p−1(∗); ∗̃).
By considering the adjoint action we obtain a homeomorphism of the representation space
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Hom[�1(E=p−1(∗); ∗̃); 4]. In this way we obtain a Zd-action �′ on Hom[�1(E=p−1(∗); ∗̃); 4]. A
Zd-action on a topological space is de2ned just as for Zd-action on a topological group, elimi-
nating the requirement of a group structure on the space; two Zd-actions, � acting on X and �′
acting on X ′, are topologically conjugate if there is a homeomorphism  : X → X ′ such that
 ◦ �m=�′m ◦  ; for each m∈Zd.

Proposition 5.2. The Zd-actions on Hom[�1(Ẽ=p−1(∗); ∗̃); 4] and Col4;Zd(D) are topologically
conjugate.

Proof. The quotient space Ẽ=p−1(∗) has the same fundamental group as the quotient complex
P̃=P̃

0
, where P̃ is de2ned in Section 4 and P̃

0
is the 1-skeleton. There is a group presentation

for �1(P̃=P̃
0
) in which the generators correspond to the edges of P̃; lifts in P̃ of closed paths

representing Wirtinger relators are closed paths in P̃=P̃
0
representing the relators. Assignments

of colors to the arcs of D, or equivalently to the edges of P, such that condition (5.1) holds
at each crossing then correspond to homomorphisms from �1(P̃=P̃

0
) to 4. The correspondance

de2nes a homeomorphism  : Col4;Zd(D) → Hom[�1(Ẽ=p−1(∗); ∗̃); 4] such that  ◦�m=�′m ◦ ,
for each m∈Zd.

In view of this proposition we call Col4;Zd(D) the color 4d-shift of the link l, and we denote
it by Col4;Zd(l).

The abelianization of �1(Ẽ=p−1(∗)) is H1(P̃; P̃
0
). It is isomorphic to H1(Ẽ; p−1(∗)), the

Alexander module of the link. Hence we propose that �1(Ẽ=p−1(∗)) be called the Alexan-
der group of the link; we denote the group by Al. (Shortly after completing the 2rst draft
of this paper, the authors discovered that the Alexander group is a special case of the derived
group of a permutation representation, introduced by Crowell [4].)

It is much easier to write a presentation for the Alexander group than for the commutator
subgroup of �1(S3 − l). One begins with families of generators am; bm; cm; : : : (m∈Zd) corre-
sponding to the arcs of the diagram. Each crossing gives rise to a family of relations: a crossing
such as in Fig. 1 imposes the relation am · bm+ut = cm · am+u′t . In the case of a knot, when d=1,
presentations of this sort are well known; Hausmann and Kervaire [10] termed them Z-dynamic.
A presentation for the Alexander group of a link such as the one we have described might be
called Zd-dynamic.
The next proposition describes the relationship between the Alexander group Al of a link

l and the commutator subgroup G′
l. We use the terminology of Section 4. Recall that T is a

maximal tree in the 1-skeleton of the cover P̃.

Proposition 5.3. Let l be an oriented link of d components. The generators of Al correspond-
ing to the edges of T freely generate a subgroup F(ET ) of Al. Moreover; Al is isomorphic
to the free product G′

l ∗ F(ET ).

Proof. Let CP̃
0
denote the cone on the 0-skeleton of P̃. The fundamental group of X = P̃ ∪P̃0 CP̃

0

is isomorphic to Al. We can regard X as the union of P̃ and T ∪P̃0 CP̃
0
, which have
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contractible intersection T . An application of the Seifert van-Kampen theorem completes the
argument.

Example 5.4. We examine two examples. Both are simple, but they highlight some of the
advantages of working with the Alexander group rather the commutator subgroup of a link:

(i) Let l be the trivial 2-component link. The group Gl is free on two generators. Choosing a
diagram without crossings, we 2nd that the Alexander group Al is free on generators ai; j; bi; j,
where i; j range over Z. The commutator subgroup G′ is also free, but it does not admit a
natural Z2-action by automorphisms as does Al.
(ii) Next consider the link l=221, a Hopf link. The group Gl is free abelian of rank 2.

The Alexander group Al has presentation 〈ai; j; bi; j | ai; jbi+1; j= bi; jai; j+1〉. In this example the
commutator subgroup G′

l is trivial.

6. Conclusion

A possible direction for further inquiry involves links with zero Alexander polynomial.
The homology growth rate in Theorem 2.1 was computed as the topological entropy of a

Zd-action �′. When the Alexander polynomial of the link is zero, the entropy of �′ can be shown
to be in2nite; in such a case we obtained no information. However, we oOer the following.

Conjecture 6.1. If l is an oriented link of d components; then

lim
〈�〉→∞

1
|Zd=�| log |TH1(M�(l))|= logM(�i);

where �i is the :rst nonzero Alexander polynomial of the link.
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