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Note

About the number of C∞-words of form w̃xwI
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Abstract

Let pi (n) denote the number of the C∞-words of form w̃xw with length 2n + i and gap i , where i is the length of word x . In
this paper, we prove the following result: pi (n) = 6 for all n ≥ 1 and i = 2, 3, 4. Moreover, we provide a complete solution of
w̃xw ∈ Cbω for |x | ≤ 4.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since the beginning of the last century, combinatorics on words are of an increasing importance in various fields
of science like computer science, mathematics, biology, physics or crystallography. In particular, palindromes play an
important role among the regular patterns. The palindrome complexity has been studied in [1–7].

Brlek and Ladouceur [3] recently described a general framework for the study of a particular class of infinite words
over the 2-letter alphabet Σ = {1, 2}, which is invariant under the action of the run-length encoding operator. This
class is related to the curious Kolakoski sequence [8]
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which received a noticeable attention and shows some intriguing combinatorial properties, constituting mainly a
bouquet of conjectures. They proved that the palindromes of this class are characterized by the left palindromic
closure of the prefixes of the Kolakoski sequences and revealed an interesting perspective for understanding some of
the conjectures. In particular, recurrence, mirror invariance and permutation invariance are all direct consequences of
the presence in K of these palindromes.

But in [3], the key step of the proof process of Proposition 7: ∆(qx) /∈ Pref (K ) H⇒ D(qx) /∈ Pref (K ) seems to
be false. In fact, we have ∆(w) = D(w)u for w = 22 . . ., where u = ε or 1. Hence D(qx) /∈ Pref (K ) H⇒ ∆(qx) /∈
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Pref (K ) holds. For avoiding this bug, in [7] we provided a very simple proof of p(n) = 2 for all positive integers, by
the uniqueness of the palindromic extension of C∞-palindromes, where p(n) denotes the number of C∞-palindromes
with length n.

Because any palindrome is of form w̃w or w̃αw, where α ∈ Σ , we can consider the palindromes as the C∞-words
of form w̃xw with gaps 0, 1. So in general we naturally ask what the complexity of C∞-words of form w̃xw is. In
Section 3, we discuss the number of C∞-words of form w̃xw with gaps 2, 3, 4. In Section 4, we explore the infinite
C∞-words w satisfying the condition w̃xw ∈ Cbω and obtain a complete solution.

2. Definitions and notations

This section presents useful notions borrowed from [3]. Let Σ = {1, 2}, Σ ∗ denotes the free monoid over Σ .
A finite word over Σ is an element of Σ ∗. If w = w1w2 · · · wn , wi ∈ Σ for i = 1, 2, . . . , n then n is called the
length of the word w and denoted by |w|. If |w| = 0 then w is called the empty word and denoted by ε. The number
of occurrences of a letter α ∈ Σ is |w|α . Obviously, the length of a word is given by the number of its letters:
|w| = |w|1 + |w|2.

The set of all right infinite words is denoted by Σω, the set of all left infinite words is denoted by Σ lω, the set of
all two-sided infinite words is denoted by Σ bω. Given a word w ∈ Σ ∗, a factor u of w is a word u ∈ Σ ∗ satisfying
∃x, y ∈ Σ ∗ such that w = xuy. If x = ε(resp. y = ε) then u is called a prefix (resp. suffix). A block of length k
is a factor of the particular form u = αk, α ∈ Σ . Pref (w) denotes the set of all prefixes of w. Finally N∗, Nω, N lω

and N bω denote the free monoids, the set of all right infinite words, the set of all left infinite words and the set of all
two-sided infinite words over N respectively, where N is the set of all positive integers.

The mirror image of u = u1u2 · · · un ∈ Σ ∗ is the word ũ = unun−1 · · · u2u1. It is obvious that u ∈ Σ lω
⇐⇒

ũ ∈ Σω. A palindrome is a word P such that P = P̃ . The complement or permutation of the letters, defined
by 1̄ = 2, 2̄ = 1, which is extended to words as well. The permutation of u = u1u2 · · · un ∈ Σ ∗ is the word
ū = ū1ū2 · · · ūn .

We see that every word w ∈ Σ ∗ can be uniquely written as a product of factors as follows:

w = αi1 ᾱi2αi3 ᾱi4 . . . , where i j > 0.

The operator giving the size of the blocks appearing in the coding is a function

∆ : Σ ∗
→ N∗, defined by

∆(w) = i1i2i3 · · · =

∏
k≥1

ik

which is easily extended to infinite words and two-sided infinite words respectively.
For any w ∈ Σ ∗ (or Σω), s(w) denotes the first letter of the word w. For each w ∈ Σ ∗ (or Σ lω), e(w) denotes

the last letter of the word w. It is clear that the operator ∆ satisfies the property: ∆(uv) = ∆(u)∆(v) if and only if
e(u) 6= s(v).

The function ∆ is not bijective because ∆(w) = ∆(w̄) for every word w. However, pseudo-inverse functions

∆−1
1 ,∆−1

2 : Σ ∗
→ Σ ∗

can be defined by

∆−1
1 (u) = 1u1 2u2 1u3 2u4 · · ·

∆−1
2 (u) = 2u11u22u3 1u4 · · ·

which is easily extended to Σω and Σ lω.
But if ∆−1

i is extended from Σ ∗ to Σ bω in the similar way as follows:

∆−1
1 ,∆−1

2 : Σ bω
→ Σ bω, u = · · · u−3u−2u−1u0u1u2u3 · · ·

∆−1
1 (u) = · · · 2u−3 1u−2 2u−1 1u0 2u1 1u2 2u3 · · ·

∆−1
2 (u) = · · · 1u−3 2u−2 1u−1 2u0 1u1 2u2 1u3 · · · .
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If w = · · · w−3w−2w−1w0w1w2w3 . . . , and w = u, then there exists k ∈ Z such that wi = ui+k for all i ∈ Z .

Clearly, if k is odd, then ∆−1
i (w) = ∆−1

i (u); if k is even, then ∆−1
i (w) = ∆−1

i (u) for i = 1, 2. Hence ∆−1
i (i = 1, 2)

is not a function from Σ bω to Σ bω. But ∆−1
i (w) is unambiguous for a fixed w ∈ Σ bω. The following property is

immediate:

∀u ∈ Σ ∗(Σω,Σ lω,Σ bω) : ∆−1
α (u) = ∆−1

ᾱ (u).

The operator ∆ over Σω has two fixpoints, that is ∆(K ) = K ,∆(1K ) = 1K . Since ∆(K̃ 1K ) = K̃ 1K , K̃ 1K is a
fixpoint of ∆ over Σ bω. But we do not know whether it is the only fixpoint.

We say that a finite word w ∈ Σ ∗ in which neither 111 or 222 occurs is differentiable, and its derivative, denoted
by D(w), is the word whose j th symbol equals the length of the j th run of w, discarding the first and/or the last run
if it has length one. It is clear that D is an operator from Σ ∗ to Σ ∗ and

D(w) =


ε, ∆(w) = 1or w = ε

∆(w), ∆(w) = 2x2 or ∆(w) = 2
x2, ∆(w) = 1x2
2x, ∆(w) = 2x1
x, ∆(w) = 1x1.

Obviously, if w ∈ C∞ and |w| > 0, then |D(w)| < |w|. Moreover D is an operator from Σ ∗ to Σ ∗, and D and ∆
can be all iterated.

Definition. (1) w ∈ Σ ∗ is C∞ if ∃k ∈ N such that Dk(w) = ε. The class of C∞-words is denoted by C∞.
(2) w ∈ Σω is Cω if for all k ∈ N such that ∆k(w) ∈ Σω. The class of Cω-words is denoted by Cω.
(3) w ∈ Σ lω is C lω if for all k ∈ N such that ∆k(w) ∈ Σ lω. The class of C lω-words is denoted by C lω.
(4) w ∈ Σ bω is Cbω if for all k ∈ N such that ∆k(w) ∈ Σ bω. The class of Cbω-words is denoted by Cbω.

Clearly, K , K ∈ Cω, K̃ , ˜K ∈ C lω and K̃ 1K , K̃ 2K ∈ Cbω.

It is easy to check that ∆ and D commute with the mirror image (˜) and are stable for the permutation(¯):

Lemma 1 (Proposition 4 in [3]). (1) For all u ∈ Σ ∗, D(ũ) = D̃(u), D(ū) = D(u);
(2) For all u ∈ Σ ∗(Σω,Σ lω,Σ bω),∆(ũ) = ∆̃(u),∆(ū) = ∆(u).

These properties indicate that C∞, Cω, C lω and Cbω are all closed under these operators:

w ∈ C∞
⇐⇒ w̄, w̃ ∈ C∞

w ∈ Cω
⇐⇒ w̄ ∈ Cω

w ∈ C lω
⇐⇒ w̄ ∈ C lω

w ∈ C lω
⇐⇒ w̃ ∈ Cω

w ∈ Cbω
⇐⇒ w̄, w̃ ∈ Cbω.

3. The number of C∞-words of form w̃xw

In this section, we discuss the number of C∞-words of form w̃xw with gaps 2, 3, 4. Let pi (n) denote the number
of the C∞-words of form w̃xw with length 2n + i and gap i , where i is the length of the word x . For w ∈ C∞, α ∈ Σ ,
if αwα ∈ C∞, then we call αwα a palindromic C∞-extension of the word w.

Lemma 2. Let q be a word and α ∈ Σ . If each of the words q̃αq, q̃q, q̃ααᾱq, q̃αᾱᾱq, q̃αᾱαq, q̃ααq, q̃αᾱααq,

q̃ααᾱαq, and q̃αᾱᾱαq ∈ C∞, then any of them has exactly one palindromic C∞-extension. Moreover if |q| ≥ 1,
then q̃αᾱq also has exactly one palindromic C∞-extension.

Proof. Case 1. q̃αq ∈ C∞.

By induction on |q| (the length of q). It is obvious that q is respectively equal to ᾱ, ᾱᾱ, ᾱᾱα, ᾱᾱαα,

ᾱᾱααᾱ, ᾱᾱααᾱα for |q| = 1, 2, 3, 4, 5, 6. So if xq̃αqx ∈ C∞ for x ∈ Σ , then x takes ᾱ, ᾱ, α, α, ᾱ, α for
|q| = 0, 1, 2, 3, 4, 5 respectively, i.e. the statement holds for |q| = 0, 1, 2, 3, 4, 5.
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Assume that the statement has held for |q| ≤ k (≥5). Let q be in C∞ such that xq̃αqx ∈ C∞ and |q| = k + 1.
Since q̃αq ∈ C∞ and |q| ≥ 6, we have q = ᾱᾱuββ or q = ᾱᾱuββ̄.

Note that since q̃αq ∈ C∞ and |ᾱᾱuβ| = |q| − 1 = k, we see that exactly one of all possible values ᾱᾱuββ and
ᾱᾱuββ̄ of q such that xq̃αqx ∈ C∞ is in C∞ by the inductive hypotheses. The similar results will be quoted many
times in the following proof process of Lemma 2, but we will not mention it repeatedly.

If q = ᾱᾱuββ, β ∈ Σ , then x = β̄ and D(xq̃αqx) = D(q̃αq) ∈ C∞. Hence in this case the statement holds. If
q = ᾱᾱuββ̄, then D̃(q)1D(q) = D(q̃αq) ∈ C∞ and

D(xq̃αqx) =

{
1D̃(q)1D(q)1, x = β

2D̃(q)1D(q)2, x = β̄.

Since |D(q)| < |q| = k + 1, by the inductive hypotheses we see that the statement also holds.

Case 2. q̃q ∈ C∞.

It is obvious that q is respectively equal to α, αᾱ, αᾱα, αᾱαᾱ, αᾱαᾱᾱ, αᾱαᾱᾱα for |q| = 0, 1, 2, 3, 4, 5, 6. Hence
the statement is true for |q| = 0, 1, 2, 3, 4, 5.

If |q| ≥ 6, then since q̃q ∈ C∞, we get q = αᾱv. Hence q = αᾱuββ or q = αᾱuββ̄, where β ∈ Σ . In the former
case, if xq̃qx ∈ C∞ then we have x = β̄ and D(xq̃qx) = D(q̃)2D(q) = D(q̃q). Therefore the statement is true. In
the latter case, we have D̃(q)2D(q) = D(q̃q) ∈ C∞ and

D(xq̃qx) =

{
2D̃(q)2D(q)2, x = β̄

1D̃(q)2D(q)1, x = β.

By Case 1 we see that the statement also holds.

Case 3. q̃ααᾱq ∈ C∞.

Induction on |q|. It is obvious that q is respectively equal to ᾱ, ᾱα, ᾱαᾱ, ᾱαᾱᾱ, ᾱαᾱᾱα, ᾱαᾱᾱαᾱ for |q| =

0, 1, 2, 3, 4, 5, 6. It follows that the statement is true for |q| = 0, 1, 2, 3, 4, 5.

Assume that the statement is true for |q| ≤ k (≥5). Let q be in C∞ such that xq̃ααᾱqx ∈ C∞ and |q| = k + 1.
Since |q| ≥ 6 and q̃ααᾱq ∈ C∞, we have q = ᾱαv and D̃(q)122D(q) = D(q̃ααᾱq) ∈ C∞. Hence q = ᾱαuββ or
q = ᾱαuββ̄, where β ∈ Σ .

If q = ᾱαuββ and xq̃ααᾱqx ∈ C∞ then x = β̄ and D(xq̃ααᾱqx) = D(q̃ααᾱq) ∈ C∞. Therefore the statement
is true.

If q = ᾱαuββ̄ and xq̃ααᾱqx ∈ C∞, then

D(xq̃ααᾱqx) =

{
1D̃(q)122D(q)1, x = β

2D̃(q)122D(q)2, x = β̄.

Hence

D( ˜xq̃ααᾱqx) =

{
1D̃(q)221D(q)1, x = β

2D̃(q)221D(q)2, x = β̄.

Since D̃(q)221D(q) =
˜

D̃(q)122D(q) ∈ C∞ and |D(q)| < |q| = k + 1, by the inductive hypothesis we see that
exactly one of 1D̃(q)221D(q)1 and 2D̃(q)221D(q)2 is also in C∞, i.e. exactly one of 1q̃ααᾱq1 and 2q̃ααᾱq2 is
also in C∞. Thus the statement is also true.

Case 4. q̃αᾱᾱq ∈ C∞.

From q̃αᾱᾱq ∈ C∞ it follows that q̃ᾱᾱαq= ˜̃qαᾱᾱq ∈ C∞. By Case 3 q̃ᾱᾱαq has exactly one palindromic
C∞-extension. Therefore q̃αᾱᾱq also has exactly one palindromic C∞-extension.

Case 5. q̃αᾱαq ∈ C∞.

Since (̃αq)ᾱ(αq) = q̃αᾱαq ∈ C∞, by Case 1 we see that q̃αᾱαq has exactly one palindromic C∞-extension.

Case 6. q̃ααq ∈ C∞.



284 Y.B. Huang / Theoretical Computer Science 393 (2008) 280–286

Since q̃ααq = (̃αq)(αq), by Case 2, we see that the statement is true.

Case 7. q̃αᾱq ∈ C∞.

Since q̃αᾱq ∈ C∞, it is clear that q is respectively equal to ᾱ, ᾱα, ᾱαα, ᾱααᾱ, ᾱααᾱα, ᾱααᾱαα, or
α, αᾱ, αᾱᾱ, αᾱᾱα, αᾱᾱαᾱ, αᾱᾱαᾱᾱ for 1 ≤ |q| ≤ 6. Hence the statement is true for 1 ≤ |q| ≤ 5.

Now let q be such that |q| ≥ 6 and q̃αᾱq ∈ C∞. By q̃αᾱq ∈ C∞, we have q = ᾱαv or q = αᾱv. If q = ᾱαv and
xq̃αᾱqx ∈ C∞ for x ∈ Σ , then

D(xq̃αᾱqx) =


D̃(q)112D(q), q = ᾱαuββ, x = β̄

1D̃(q)112D(q)1, q = ᾱαuββ̄, x = β

2D̃(q)112D(q)2, q = ᾱαuββ̄, x = β̄.

Therefore in view of Case 3, we see that exactly one of xq̃αᾱqx for x ∈ Σ is also in C∞.
If q = αᾱv and xq̃αᾱqx ∈ C∞ for x ∈ Σ , then

D(xq̃αᾱqx) =


D̃(q)211D(q), q = αᾱuββ, x = β̄

1D̃(q)211D(q)1, q = αᾱuββ̄, x = β

2D̃(q)211D(q)2, q = αᾱuββ̄, x = β̄.

From Case 4, it follows that q̃αᾱq has exactly one palindromic C∞-extension. From the above discussion we see that
the statement also holds for |q| ≥ 6.

Case 8. q̃αᾱααq ∈ C∞.

Since q̃αᾱααq = (̃αq)ᾱα(αq) and |αq| = 1 + |q| ≥ 1, from Case 7 it follows that the statement holds.

Case 9. q̃ααᾱαq ∈ C∞.

Since q̃ααᾱαq = ˜q̃αᾱααq , from Case 8 we can get the required result.

Case 10. q̃αᾱᾱαq ∈ C∞.

Since q̃αᾱᾱαq = (̃ᾱαq)(ᾱαq), by Case 2, we see that the statement holds. �

Theorem 1. Let pi (n) denote the number of C∞-words of form q̃xq with length 2n + i and gap |x | = i . Then
pi (n) = 6 for i = 2, 3, 4 and n ≥ 1.

Proof. If i = 2, then remarking that the words αᾱ have exactly two palindromic C∞-extension, from x = 12, 21, 11
or 22, and the cases q̃ααq and q̃αᾱq of Lemma 2, it follows that p2(n) = 6.

If i = 3, then from x = 121, 212, 221, 122, 112 or 211, and the cases q̃ααᾱq, q̃αᾱᾱq, and q̃αᾱαq of Lemma 2 it
follows that p3(n) = 6.

If i = 4, then from x = 2122, 2212, 1211, 1121, 1221 or 2112, and the cases q̃αᾱααq, q̃ααᾱαq , and q̃αᾱᾱαq of
Lemma 2 it follows that p4(n) = 6. �

4. The infinite C∞-words w satisfying the condition w̃xw ∈ Cbω

In [7] we discussed the infinite C∞-words w satisfying the condition w̃xw ∈ Cbω with |x | = 0, 1 and proved that

Lemma 3 ([7, Lemma 6–7]). (1) q̃1q ∈ Cbω
⇐⇒ q = K .

(2) q̃2q ∈ Cbω
⇐⇒ q = K .

(3) q̃q ∈ Cbω
⇐⇒ q = α∆−1

ᾱ (K ), where α = 1, 2.
If u = xy ∈ Σω, x ∈ Σ ∗, for the convenience, in what follows we shall use the following notation: y = x−1u.

In this section, we discuss the cases for |x | = 2, 3, 4 and give a complete solution. For this, we need the following
important infinite sequence h: it is an infinite word of symbols 1 and 2, the first symbol is 1, from the second run
starting, the length of the i th run is the (i − 1)th symbol, i.e.

h = 1211212212211211221211 · · · · · · = 1(2−1 K )
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and

∆(1−1h) = ∆(211212212211211221211 · · · · · ·) = h.

It is easy to check that

Lemma 4. (1) ∆(h̃221h) = h̃122h, ∆(h̃122h) = h̃221h.
(2) h̃221h, h̃122h ∈ Cbω.

(3) ∆2(h̃221h) = h̃221h, ∆2(h̃122h) = h̃122h.

Lemma 5. Let h21 = 211∆−1
2 ∆−1

1 (h), h12 = 122∆−1
1 ∆−1

1 (h). Then h̃21αᾱh21, h̃12αᾱh12 ∈ Cbω for α = 1, 2.

Proof. Since ∆2(h̃21αᾱh21) = ∆2( ˜(211)−1h21112αᾱ211(211)−1h21) = ∆2(
˜∆−1

2 ∆−1
1 (h)112αᾱ211∆−1

2 ∆−1
1 (h))

=

∆(∆̃−1
1 (h)22112∆−1

1 (h)), α = 2

∆(∆̃−1
1 (h)21122∆−1

1 (h)), α = 1

=

{
h̃221h, α = 2

h̃122h, α = 1.

In view of Lemma 4(2), we have h̃21αᾱh21 ∈ Cbω for α = 1, 2. By a similar discussion, we can get h̃12αᾱh12 ∈

Cbω. �

Lemma 6. h̃221h, ˜̄h112h̄, h̃122h, ˜̄h211h̄ ∈ Cbω.

Proof. Since ∆( ˜̄h112h̄) = ∆(h̃221h) = ∆(h̃221h), and ∆( ˜̄h211h̄) = ∆(h̃122h) = ∆(h̃122h), by Lemma 4(2) we

see that h̃221h, ˜̄h112h̄, h̃122h, ˜̄h211h̄ ∈ Cbω. �

Lemma 7. (1) Let h11 = 11∆−1
2 ∆−1

1 (h), h22 = 22∆−1
1 ∆−1

1 (h). Then h̃112122h11, h̃112212h11, h̃221211h22, and
h̃221121h22 ∈ Cbω.

(2) Let Kα−1 = α−1∆−1
α (K̄ ), α = 1, 2. Then K̃α−1αᾱᾱαKα−1 ∈ Cbω for α = 1, 2.

Proof. (1) Since ∆2(h̃112122h11) = ∆2(
˜∆−1

2 ∆−1
1 (h)11212211∆−1

2 ∆−1
1 (h)) =

˜∆(∆−1
1 (h)21122∆−1

1 (h)) =

h̃122h, and h̃112212h11 =
˜h̃112122h11. ∆2(h̃221211h22) = ∆2(

˜∆−1
1 ∆−1

1 (h)22121122∆−1
1 ∆−1

1 (h)) =

˜∆(∆−1
1 (h)21122∆−1

1 (h)) = h̃122h, and h̃221121h22 =
˜h̃221211h22, in view of Lemma 4(2) we obtain

h̃112122h11, h̃112212h11, h̃221211h22, and h̃221121h22 ∈ Cbω.

(2) Since ∆(K̃α−1αᾱᾱαKα−1) = ∆(
˜

(α−1∆−1
α (K̄ ))αᾱᾱα(α−1∆−1

α (K̄ ))) = ∆(∆̃−1
α (K̄ )ᾱᾱ∆−1

α (K̄ )) =
˜̄K 2K̄ =

K̃ 1K ∈ Cbω , we have K̃α−1αᾱᾱαKα−1 ∈ Cbω. �

Now we can state our second main result:

Theorem 2. (1) w̃ααw ∈ Cbω
⇐⇒ w = ∆−1

ᾱ (K̄ ) for α = 1, 2.

(2) w̃αᾱw ∈ Cbω
⇐⇒ w = 211∆−1

2 ∆−1
1 (h) or 122∆−1

1 ∆−1
1 (h).

(3) w̃ααᾱw ∈ Cbω
⇐⇒ w = h(α = 2) or w = h̄(α = 1).

(4) w̃αᾱᾱw ∈ Cbω
⇐⇒ w = h(α = 1) or w = h̄(α = 2).

(5) w̃αᾱαw ∈ Cbω
⇐⇒ w = 1−1 K̄ (α = 1) or w = 2−1 K (α = 2).

(6) w̃αᾱααw ∈ Cbω
⇐⇒ w = 11∆−1

2 ∆−1
1 (h)(α = 2) or w = 22∆−1

1 ∆−1
1 (h)(α = 1).

(7) w̃ααᾱαw ∈ Cbω
⇐⇒ w = 11∆−1

2 ∆−1
1 (h)(α = 2) or w = 22∆−1

1 ∆−1
1 (h)(α = 1).

(8) w̃αᾱᾱαw ∈ Cbω
⇐⇒ w = α−1∆−1

α (K̄ ).

Proof. (1) It follows from Lemmas 2 and 3(3).
(2) It follows from Lemmas 2 and 5.
(3) It follows from Lemmas 2 and 6.
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(4) It follows from Lemmas 2 and 6.
(5) It follows from Lemmas 2 and 3(1–2).
(6) It follows from Lemmas 2 and 7(1).
(7) It follows from (6).
(8) It follows from Lemmas 2 and 7(2). �

The significance of Theorem 2 is due to give the construct of C∞-words of form w̃xw with gaps 2, 3, 4.

5. Remarks

From the above discussion we can see that the key element of computing of pn(i) for n ≤ 4 is the fact that for each
x ∈ C∞ and |x | ≤ 4, every palindromic C∞-extension of x has an unique palindromic C∞-extension. But if |x | ≥ 5,
then the same result does not hold. For example, taking x = ᾱααᾱα, the palindromic C∞-extension ᾱx ᾱ of x has no
palindromic C∞-extension. Also neither does ᾱααᾱαᾱᾱαxαᾱᾱαᾱααᾱ. Therefore the computing of pn(i) for n ≥ 5
would become more complicated than the case for n ≤ 4.
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