where mean BMI was lowest (Italy). CONCLUSIONS: Weight control is an important aspect of management of T2DM. This requires accurate assessment and agreement of patient weight and BMI levels by treating physicians and their patients. Accurate risk stratification based on weight and BMI may help improve effective communications and disease management decisions between T2DM patients and their treating physicians.

PDB43

PATIENT REPORTED OUTCOMES ARE SUPERIOR IN PATIENTS WITH TYPE 2 DIABETES TREATED WITH LIRAGLUTIDE AS COMPARED TO EXENATIDE, WHEN ADDED TO METFORMIN, SULFONYLUREA OR BOTH

Christensen J*, Hammer M*, Zychma MJ, Busse J
Rune Universitet, Roehn, Germany, 1Artus University Hospital, Arhus, Denmark, 1Novo Nordisk A/S, Bagved, Denmark, 1Novo Nordisk A/S, Bagved, Denmark, 1University of North Carolina School of Medicine, Chapel Hill, NC, USA

OBJECTIVES: New treatments for T2D are needed to improve glycemic control, reduce side-effects, and improve patient satisfaction. Liraglutide is an OAD human GLP-1 analog that has benefits as monotherapy, or in combination with OADs. METHODS: The Liraglutide Effect and Action in Diabetes (LEAD-6) trial was an open-label trial comparing liraglutide to exenatide as add-on to OADs. Adults with T2D on metformin and/or sulfonylurea and A1C 7–11% were randomized to liraglutide 1.8 mg OD or exenatide 10 µg BD for 26 weeks. This was followed by a 14-week extension phase, in which all patients received liraglutide 1.8mg OD. RESULTS: During weeks 0–26, A1C reductions were significantly greater and the incidence of hypoglycemia was significantly lower in the liraglutide-treated group. Patient Reported Outcomes were assessed in 179 patients using Diabetes Treatment Satisfaction Questionnaire status (DTSQs) at week 0. 26, 34 and 40 and DTSQ change (DTSQc) at week 26 and 34. The overall treatment satisfaction was highest with liraglutide (p < 0.0001). DTSQc score increased from 27.4 at baseline to 32.1 at week 26 compared to exenatide (increase from 27.4 to 29.3). All items on DTSQc except ‘understanding’ (ie ‘current treatment,’ ‘convenience,’ ‘flexibility,’ ‘recommend,’ ‘continue’) improved significantly more with liraglutide than exenatide. The proportion of ‘satisfied’ patients (defined as DTSQc > 6) was 94% in liraglutide, 88% with exenatide (p = 0.0176). Patients perceived a greater reduction in hypoglycemia at week 26 with liraglutide (DTSQc: 0.9) than with exenatide (0.4: p = 0.0193) and a greater reduction in perceived hyperglycemia (1.0 − 0.3, respectively; p = 0.0007). During the extension phase, when all patients received liraglutide, DTSQs scores remained stable in patients who continued on liraglutide and had increased significantly (p = 0.0131) at week 40 in those who switched from exenatide to liraglutide at week 26. CONCLUSIONS: These results demonstrate significant improvements in patients’ treatment satisfaction with liraglutide compared to exenatide.

PDB44

EFFECTS OF INSULIN THERAPY ON THE DIABETES SYMPTOM CHECKLIST/REVISED (DSC-R): DATA FROM A LARGE INSULIN CLINICAL TRIAL

RTI Health Solutions, Research Triangle Park, NC, USA, 3 Eli Lilly and Company, Indianapolis, IN, USA, 4 Kato Research Group, Indianapolis, IN, USA, 4 SUNY Upstate Medical University and the Department of Veterans Affairs Medical Center, Syracuse, NY, USA

OBJECTIVES: To examine the impact of insulin initiation on the DSC-R in patients with type 2 diabetes (T2D). METHODS: We administered the DSC-R to T2D patients enrolled in a clinical trial (acronym: DURABLE) at baseline prior to starting insulin and at six months post-insulin initiation. The trial compared the efficacy and safety of insulin initiation with lixisen trihex/75/25 insulin glargine. The DSC-R is a T2D-specific measure that assesses the occurrence and the perceived burden of the following eight T2D-related symptoms: hypoglycemic, hyperglycemic, cardiovascular, neuropathic/pain, neuropathic/sensory, psychological/ fatigue, psychological/ cognitive, and ophthalmologic/vison. Summary score for each domain ranged from 0–100 with higher scores indicating greater symptom burden. We compared change in mean score (baseline to six months) for two insulin arms combined together. Effect size (ES; Cohen’s d) and analysis of covariance were used to examine the extent and significance of change. Effect sizes of 0.2, 0.5, and 0.8 represent small, medium, and large degrees of change, respectively. RESULTS: A total of 576 patients completed the DSC-R at both time points. The mean age, duration of diabetes, A1C, and percent female at baseline were 57.0 years, 9.6 years, 8.9%, and 41%, respectively. Baseline mean scores ranged from 24.2 (cardiovascular and neuropathic/pain) to 45.9 (psychological/fatigue). The mean scores at 6 months ranged from 22.6 (ophthalmologic/ vision) to 40.7 (psychological/fatigue). Absolute changes in the mean domain score ranged from 0.6 (neuropathic/sensory) (p = 0.02) to −9.8 (hyperglycemic) (p < 0.0001; ES = 0.4) to −9.8 (hyperglycemic) (p < 0.0001; ES = 0.38, small to medium effect). Other domains with ES ≥0.20 were psychological/fatigue and psychological/cognitive. CONCLUSIONS: Initiation of insulin therapy was associated with a small to moderate improvement in hyperglycemic symptoms domain. Small effects were also observed in psychological/fatigue and psychological/cognitive domains.