Invited Papers

Few-mode multicore fibers for long-haul transmission line

Yusuke Sasaki a,⇑, Katsuhiro Takenaga a, Shoichiro Matsuo a, Kazuhiko Aikawa a, Kunimasa Saitoh b

a Fujikura Ltd., 1440, Mutsuzaki, Sakura, Chiba 285-8550, Japan
b Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan

Abstract

Few-mode multicore fibers (FM-MCFs) that enable dense space-division multiplexing (DSDM) have the potential to drastically improve the fiber capacity. In designing the FM-MCFs, several issues that originate from multicore fibers and few-mode fibers must be considered. In this paper, these design issues such as inter-core crosstalk (IC-XT) and dispersion mode delay (DMD) are discussed. A three-mode 12-core fiber with low-DMD low-IC-XT achieves long-haul DSM transmission over 500 km. The design concept, fiber design, and characteristics of the fabricated three-mode 12-core fiber are also described.

1. Introduction

The transmission capacity of optical communication systems using single-mode fibers (SMFs) has been expanded in accordance with the increase of IP traffic. However, there is a limitation of capacity of approximately 100 Tbit/s owing to the fiber fuse phenomenon and Shannon limit [1]. Space-division multiplexing (SDM), realized by multicore fibers (MCFs) and few-mode fibers (FMFs), is expected to overcome the capacity limit of the current optical communication systems. An MCF has multiple cores in a single cladding. An FMF supports multiple transmission modes in a single core. Spatial channel count (SCC) [2] is expanded by using each core or mode of an MCF and an FMF as signal channels, respectively. The MCFs and FMFs have achieved several transmission records. The first transmission capacity over 1 Pbit/s [3] and capacity-distance product over 1 Ebit/s/km were achieved by 12-core SM-MCFs [4,5]. In addition, a 22-core SM-MCF has achieved the highest transmission capacity of 2.15 Pbit/s [6]. A single-core 10-mode fiber has achieved a transmission capacity of 115.2 Tbit/s [7]. However, it is predicted that further improvement in SCC and transmission characteristics will be difficult for the SM-MCFs or FMFs, because inter-core crosstalk (IC-XT) in an SM-MCF increases as the core count increases, and inter-LP-mode crosstalk (IM-XT) in an FMF increases as the mode count increases. These crosstalks also prevent the SDM from realizing long haul transmission. Thus, in order to realize future dense SDM (DSDM) systems, multicore fibers with few-mode cores, known as few-mode multicore fibers (FM-MCFs), are being investigated. The SCC of a fiber can be increased by using an FM-MCF, because the SCC of an FM-MCF is the core count multiplied by the mode count. SCC of over 100 was realized by FM-MCFs [8–10]. However, long-haul FM-MCF transmission over 500 km has only been achieved by a three-mode 12-core fiber with an SCC of 36 [11].

In this paper, we present the design and characteristics of our fabricated three-mode 12-core FM-MCF with a cladding diameter (D_c) of 230 µm, low dispersion mode delay (DMD) of less than $|\beta_2| \text{ ps/km}$, and low IC-XT of less than 0.516 dB/500 km. First, general issues required for designing an FM-MCF are explained. This is followed by a review of many types of proposed FM-MCFs. Thirdly, techniques to fabricate the fiber are depicted, which include a heterogeneous core arrangement, arranging cores in a square lattice, and a graded index in the core profile. Finally, measured characteristics of the fabricated fiber are reported.

2. FM-MCF design issues

MCFs can be categorized into coupled MCFs and uncoupled MCFs. In the case of coupled MCFs, the transmission LP-modes in each core are strongly coupled among the cores, and supermodes are generated. DMD can be decreased by the use of supermodes. In contrast, uncoupled MCFs use the cores as independent waveguides to reduce the signal processing load. Reported FM-MCFs have been mainly based on uncoupled MCF technology. In designing these uncoupled FM-MCFs, the following issues relating...
to the MCFs and FMFs design must be addressed: (A) IC-XT, (B) core layout, (C) IM-XT, and (D) DMD.

Issue A is a common problem with SM-MCFs. Minimal IC-XT is preferable for long-haul transmission with multilevel modulation. For example, QPSK and 32QAM transmission with a Q-penalty of 0.5 dB require IC-XT values of less than −19 dB and −29 dB, respectively [3]. For SM-MCFs, IC-XT between the LP01 modes is the only IC-XT of concern. However, for FM-MCFs, we should also take into account the IC-XT relating to higher-order modes such as between the LP11 modes (XT11-11) [12]. There is also IC-XT between different propagating modes such as between the LP11 mode and the LP01 mode (XT11-01). Fig. 1 shows an example of the calculated core pitch dependencies of IC-XTs after 100 km propagation at 1550 nm and a bending diameter of 210 mm. Power coupling theory is used to calculate the IC-XT [13]. We assumed a core radius of 6.47 μm and a relative refractive index difference of 0.45% with a step index profile that supports LP01 and LP11 mode transmission over the C + L band (1530 nm–1625 nm) in practical use. The calculated effective areas \(A_{\text{eff}} \) of the LP01 and the LP11 modes are 110 μm² and 170 μm² at 1550 nm, respectively. It is observed that XT11-11 is larger than XT01-01 by approximately 40 dB. This is because that higher-order mode has relatively large \(A_{\text{eff}} \) compared to that of the LP01 mode, and the confinement of higher-order modes is weaker than that of the fundamental mode. The XT01-11 is also small because the difference in the effective indices between the LP01 and LP11 modes is large [14]. Thus, XT is dominated by XT11-11 and therefore FM-MCFs should be designed with careful consideration of IC-XT related to the highest-order modes.

A common approach for reducing IC-XT is enlarging core pitch, which leads to a large \(D_{\text{c}} \) and deterioration of the mechanical reliability of a fiber. Reducing effective core area \(A_{\text{eff}} \) can also suppress IC-XT. However, reduced \(A_{\text{eff}} \) is inadequate for long-haul transmission systems owing to non-linear effects. In general, \(A_{\text{eff}} \) differs according to the propagation mode, and the \(A_{\text{eff}} \) of the LP11 mode is the smallest of all modes. It is desirable for the \(A_{\text{eff}} \) of the LP01 mode to be larger than that of conventional SMFs of around 80 μm² at 1550 nm.

Two methods have been proposed to reduce IC-XT without enlarging core pitch or reducing \(A_{\text{eff}} \). One approach is to introduce a low-index layer, such as index trenches [15] or air holes [16], to surround each core. Air-holes have the largest index contrast and confine light more strongly than an index trench. However, it can be difficult during the drawing process to maintain their size. In addition, air-holes at a splice point can easily collapse, causing variation of the mode field diameter (MFD) and large splice loss. Index-trench technique is widely used in bending insensitive fibers to improve the bending-loss characteristics of a fiber. It can be fabricated by doping fluorine into the cladding. One issue with this structure is that the cutoff wavelength of the inner core lengthens rapidly if the core pitch becomes smaller than a certain threshold [15], because the confinement of the modes in the inner core is increased by the index trench of the surrounding cores. Fig. 2 shows the calculated LP21-mode 22-m cutoff wavelength (\(\lambda_{\text{cc}-21} \)) of the center core of a two-LP-mode seven-core fiber as a function of core pitch [17]. The core parameters are shown in Fig. 3. A full vector finite element method was used for the calculation [18]. The \(\lambda_{\text{cc}-21} \) increases rapidly when the core pitch is less than 45 μm. The core pitch of a trench assisted FM-MCF is thus also limited by the cutoff wavelength, not only by the IC-XT.

Another approach involves employing a heterogeneous core arrangement with cores of different relative effective index \((n_{\text{eff}}) \). Fig. 4 illustrates the IC-XT behavior between the same propagation modes of a homogeneous MCF and a heterogeneous MCF as a function of the bending radius. The IC-XT of a homogeneous MCF changes proportionally as the bending radius increases. In the case of a heterogeneous MCF, the IC-XT changes radically at a threshold bending radius \((R_{pk}) \) given by

\[
R_{pk} = \frac{n_{\text{eff}}}{n_{\text{eff}}},
\]

where \(n_{\text{eff}} \) is the effective index of a propagating mode in a core, \(\Delta n_{\text{eff}} \) is the difference of \(n_{\text{eff}} \) between cores, and \(A \) is the core pitch [13]. In the range of bending radius greater than \(R_{pk} \), IC-XT is drastically reduced compared to a homogeneous MCF because the phases do not match. We can thus reduce the IC-XT of an MCF by setting \(R_{pk} \) below the effective bending radii in the cables. However, heterogeneous \(A_{\text{eff}} \) is not preferable because it leads to equalizing splice loss and optical signal-to-noise ratio (OSNR) over all cores. An SM-MCF with heterogeneous \(n_{\text{eff}} \) and homogeneous \(A_{\text{eff}} \) that has overcome these issues was reported [19].

Issue B is related to issue A. In the case of using an MCF in an actual transmission line, all cores are assumed to be excited equally and each core receives IC-XT from all neighboring cores. The aggregated IC-XT \(\text{IC-XT}_{\text{worst}} \) is calculated by

\[
\text{IC-XT}_{\text{worst}} = \text{IC-XT} \times \log n,
\]

where \(n \) is the number of neighboring cores surrounding each core. A small \(n \) is preferable to suppress IC-XTworst. In order to both maximize the core count of an MCF and reduce \(n \), various core layouts have been proposed for SM-MCFs, and some of these are also used for FM-MCFs. Fig. 5 summarizes the MCF core layouts presented to date: hexagonal close-packed structure (HCPS), one-ring structure (ORS) [20], dual-ring structure (DRS) [21], and square lattice structure (SLS) [22].
n trench can successfully suppress DMD [24, 25]. The other approach is a large IM-XT and large DMD [14]. In addition, the multi-step index profile (MSI) [23], graded-index (GI) profiles, and GI with an index trench can be used as independent channels in an FMF, multi-input multi-output (MIMO) technology is typically used to separate the coupled degenerate modes at the output. The signal-recovery computation becomes more complex with increasing DMD. To reduce the signal-processing load for MIMO across a wide range of wavelengths, both low DMD magnitude and low DMD slope are desired. It is also important that there is a large difference in n_{eff} between different LP-modes in a core, as this serves to suppress IM-XT. There are two methods to reduce the DMD while maintaining small IM-XT. One is the optimization of refractive index profiles to minimize the DMD of a fiber. This optimization can be achieved by adjusting the length of each fiber. The other approach is to use a higher-n_{eff} core and a lower-n_{eff} core. Cores used in two-LP-mode MCFs must suppress both LP01- and LP11-mode transmissions over the C + L band. The effective radius of several hundred mm. A large Δn_{eff} is required to realize low DMD and low IC-XT. In order to realize these characteristics, we adopted a GI profile, heterogeneous core arrangement, and square lattice structure for the three-mode 12-core fiber. The highest SCC of any reported SM-MCF to date is 32 [28]. In contrast, an SCC of over 100 was realized by using six-mode (LP_01, LP_11, LP_11b, LP_21a, LP_21b, and LP_02) 19-core fibers [8–10]. However, the transmission distance of experiments using fibers with an SCC over 100 was limited to less than 10 km. In addition, the D of these fibers exceeded 300 μm. An RCMF of around 60 was achieved by a six-mode 19-core fiber with a D of less than 250 μm. A three-mode 12-core fiber realized DMD of less than 63 ps/km and an ICXT of −48.4 dB/km, which enabled a long distance QPSK transmission of 527 km [11].

4. Fiber design

For long-haul transmission using an FM-MCF, it is preferable to realize low DMD and low IC-XT. In order to realize these characteristics, we adopted a GI profile, heterogeneous core arrangement, and square lattice structure for the three-mode 12-core fiber.

4.1. Core design

It is desirable for the R_{pk} of IC-XT of a heterogeneous MCF to be small to suppress the deterioration of IC-XT in cables that have an effective radius of several hundred mm. A large Δn_{eff} is required to minimize R_{pk}. This large Δn_{eff} is realized by using a higher-n_{eff} core and a lower-n_{eff} core. Cores used in two-LP-mode MCFs must support both LP01- and LP11-mode transmissions over the C + L band. We used an effective two-LP-mode condition to realize these criteria, i.e., a cutoff wavelength of the LP21 mode of less than 1530 nm, and a bending loss of the LP11 mode of less than 0.5 dB/100 turns are needed.

3. Reported FM-MCFs

Table 1 summarizes the FM-MCFs reported to date. Relative core multiplicity factor (RCMF) [12] and relative spatial efficiency (RSE) [27] have been proposed to compare characteristics of FM-MCFs. The RCMF indicates how large an optical signal to noise ratio (OSNR) can be realized, which is given by the core multiplicity factor (CMF) of an MCF and that of a standard SMF. The CMF is the aggregate A_{eff} at 1550 nm of each mode in each core of an MCF as per the following equations,

$$CMF = \frac{CMF_{MCF}}{CMF_{SMF}}.$$

$$CMF_{MCF} = \frac{n \sum_{l=0}^{m} A_{eff,l}}{(\pi/4)D_l^2},$$

$$CMF_{SMF} = \frac{A_{eff,SMF}}{D_{c,SMF}} = 80/((\pi/4)125^2)$$

where n is the core count, m is the mode count, and $A_{eff,l}$ is the A_{eff} of the l-th mode in each core. RSE indicates how many SCCs are realized in a limited D_c compared to an SMF, which is given by

$$RSE = \frac{m \times n}{D_c^2} \times 125^2.$$

The highest SCC of any reported SM-MCF to date is 32 [28]. In contrast, an SCC of over 100 was realized by using six-mode (LP_01, LP_11, LP_11b, LP_21a, LP_21b, and LP_02) 19-core fibers [8–10]. However, the transmission distance of experiments using fibers with an SCC over 100 was limited to less than 10 km. In addition, the D_c of these fibers exceeded 300 μm. An RCMF of around 60 was achieved by a six-mode 19-core fiber with a D_c of less than 250 μm. A three-mode 12-core fiber realized DMD of less than 63 ps/km and an ICXT of −48.4 dB/km, which enabled a long distance QPSK transmission of 527 km [11].
at a wavelength of 1625 nm and a bending radius of 30 mm. Too high n_{eff} causes increasing cutoff wavelength of the LP21 mode and too low an n_{eff} causes deterioration of the bending loss of the LP11 mode under the equal trench width condition. Using only two types of core is essential to maximize the effective two mode conditions. Δn_{eff} causes increasing cutoff wavelength of the LP21 mode and ΔD_{MD} of zero, respectively. For an ORS, the relation for maximum containable core count (C_0), core pitch (l_c), and cladding thickness (t_c) is defined as

$$C_0 \leq \frac{\pi}{2} \frac{l_c}{d} \left(\frac{t_c}{d} \right)^2$$

4.2. Core pitch optimization

The IC-XT of a MCF over the range of R_{pk} is dominated by correlation length as

$$\text{IC-XT} = \frac{2 \kappa^2}{d \Delta \beta^2} L,$$

where κ is the coupling coefficient, β is the difference of the propagation constant of the two cores, L is the fiber length, and d is the correlation length [13]. We used a value of d of 50 mm. Fig. 10 shows the calculated IC-XT after 500-km propagation as a function of A at 1565 nm and at a bending diameter of 500 mm. A of larger than 43 μm realizes IC-XT of less than -40 dB/500 km. Fig. 11 shows calculated bending radius dependence of $\text{XT}_{11,11}$ when A is 43 μm. An R_{pk} of less than 100 mm is achieved owing to the large Δn_{eff}, enabling the fiber to be used with a variety of cable types without crosstalk degradation [42].

4.3. Cladding thickness

Cladding thickness (T_c) is defined as the shortest distance from the center of the outmost core to the coating. Values of T_c that are too small cause excess losses owing to the leakage of the light into the coating. This phenomenon occurs in the LP11 mode rather than in the LP01 mode because the LP11 mode has far larger A_{eff} than the LP01 mode. Fig. 12 shows calculated LP11-bending losses as a function of T_c at 1550, 1565, and 1625 nm. A bending loss of less than 0.001 dB/km at 1565 nm is required to avoid performance deterioration of the outermost cores. T_c of larger than 42.2 μm enable the suppression of the bending loss of both Core 1 and Core 2 to less than 0.001 dB/km. This large T_c is also helpful to sustain a low microbending loss.

4.4. Core layout

In the case of HCPS and DRS, three types of cores are required to allow the alternate arrangement of cores as shown in Fig. 13 (a) and (b). On the other hand, the ORS and SLS enable a heterogeneous arrangement with only two core types (Fig. 13 (c) and (d), respectively). For an ORS, the relation for maximum containable core count (C), core pitch (A), D_c, and cladding thickness (T_c) is defined as

$$D_c = \frac{A}{\sin^2 \theta} + 2 \times T_c,$$

where θ is the angle between the core and the fiber axis.
For an SLS, the optimum core arrangement for minimizing D_c depends on the core count. The relations between C, A, D_c, and T_c in an SLS are:

$$D_c = \begin{cases} \sqrt{2} \times A + 2 \times T_c (C = 4) \\ \sqrt{5} \times A + 2 \times T_c (C = 5\text{--}6) \\ 2\sqrt{2} \times A + 2 \times T_c (C = 7\text{--}9) \\ \sqrt{10} \times A + 2 \times T_c (C = 10\text{--}12) \\ 3\sqrt{2} \times A + 2 \times T_c (C = 13\text{--}16) \end{cases}$$

Fig. 14 shows the relationship of D_c and C in the ORS and SLS. A and T_c are chosen to be 43.0 μm and 42.2 μm, respectively. By using the SLS, a core count of 12 is realizable in a D_c of 250 μm. Although a fiber with D_c of 250 μm is larger than a normal SMF with D_c of

![Fig. 8](image-url) Structural core parameter dependence of DMD, n_{eff}, and A_{eff} when W/r_1 is 0.7 and W/r_1 is 0.2. White lines, black lines, and black dotted lines, and a black dashed line indicate effective two-LP-mode conditions, LP_{01}-A_{eff}, n_{eff}, and DMD of zero, respectively.

Table 2

Optimized core parameters.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Core 1</th>
<th>Core 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>μm</td>
<td>9.78</td>
</tr>
<tr>
<td>Δ</td>
<td>%</td>
<td>0.473</td>
</tr>
<tr>
<td>Δ_t</td>
<td>%</td>
<td>-0.70</td>
</tr>
<tr>
<td>r_2/r_1</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>W/r_1</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>s</td>
<td>-</td>
<td>2.2</td>
</tr>
<tr>
<td>LP_{01}-A_{eff}</td>
<td>μm2</td>
<td>110.1</td>
</tr>
<tr>
<td>LP_{11}-A_{eff}</td>
<td>μm2</td>
<td>146.9</td>
</tr>
</tbody>
</table>

*Calculated value.

![Fig. 9](image-url) Calculated wavelength dependence of DMD of Core 1 and Core 2.

![Fig. 10](image-url) Calculated IC-XT ($XT_{01-11}, XT_{01-01}, XT_{11-01}, XT_{11-11}$) as function of core pitch (A). Bending diameter is 500 mm and wavelength is 1565 nm.

![Fig. 11](image-url) Calculated bending radius dependence of XT_{11-11}. R_{at} of less than 100 mm is realized.

Please cite this article in press as: Y. Sasaki et al., Few-mode multicore fibers for long-haul transmission line, Opt. Fiber Technol. (2016), http://dx.doi.org/10.1016/j.yfopte.2016.09.017
125 μm, a fiber with D_c of 250 μm can be used in a telecommunication network by using a proof level of more than 1% [2,10]. When using the SLS for a trench assisted MCF, the k_{cc-21} of the inner cores should be noted because they are surrounded by a maximum of seven cores. Fig. 15 shows the calculated k_{cc-21} of the inner cores. By setting K_larger than 43 μm, lengthening of the k_{cc-21} is avoidable even if we use the SLS. The optimized fiber parameters are summarized in Table 3.

5. Fiber fabrication

There are two main methods to fabricate MCFs, namely the drill tool method and the stack and draw method as shown in Fig. 16. The stack and draw method is suitable for fabricating large size preforms and low loss fibers [43]. We fabricated a 52.7-km three-mode 12-core fiber based on the fiber design using the stack and draw method. Fig. 17(a) shows a cross-section of the fabricated fiber. Fig. 17(b) illustrates the core number assignment. High n_{eff} cores with thin trench-width are marked blue and have odd number designations, and low n_{eff} cores with thick trench width are marked white and have even numbers. Table 4 summarizes the measured dimensions. The averaged λ was almost identical to the designed value, and the T_c and coating diameter were 47 μm and 340.8 μm, respectively. Table 5 summarizes the optical characteristics of each core. Measured λ_{cc-21}s were less than 1530 nm for all cores.

Fig. 18 shows the setup for DMD measurement by the impulse response method. The excitation ratio of the LP_{01} and LP_{11} modes was controlled by adjusting the offset position of the SMF against each core of the fabricated fiber. Fig. 19 presents the wavelength dependence of DMD for all the cores. The symbols indicate measured DMD values. The lines indicate approximate linear fits from the measured values. The DMD values were estimated to be less than 63 ps/km over the C band for all cores, owing to the optimum GI profile. We then measured IC-XTs between adjacent cores of the 52.7-km fabricated fiber. Fig. 20 shows the setup for measuring the IC-XT values. The spool diameter of the fiber was 310 mm.

A mode multiplexer (mode MUX) can convert the LP_{01} mode to a higher order mode such as the LP_{11} mode. The output port from a mode MUX that was connected to a tunable light source was spliced to a core of the fabricated fiber to excite both the LP_{11a} and LP_{11b} modes. The output powers from cores on another end face were measured with a two-LP-mode single-core fiber (TM-SCF). The TM-SCF had the same profile as the fabricated MCF (GI with trench) to measure the low IC-XT values [44]. The measured
values of IC-XT were less than $-60\,\text{dB/span}$ in the C + L band. Fig. 21 shows the estimated IC-XT_worst after 500 km propagation at 1550 nm and 1608 nm. The IC-XT might be smaller than the measurement limits of our system because there was no IC-XT dependency on wavelength. However, it was confirmed that the largest IC-XT_worst was $-48.4\,\text{dB/500 km}$ at 1550 nm. This value was much smaller than the calculated value. IC-XT over R_{pk} of a heterogeneous MCF is dominated by the correlation length \([13]\). There is a possibility that the correlation length of the fabricated fiber was different from the assumed value of 50 mm.

![Fig. 16. Fabrication methods of MCFs.](image)

![Fig. 17. Cross-section and core number assignment of the fabricated fiber. Blue-marked cores are high n_{eff} cores and white-marked cores are low n_{eff} cores.](image)

<table>
<thead>
<tr>
<th>Table 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured dimensions of the fabricated fiber (μm).</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>D_c</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

![Table 4](image)

![Fig. 18. Setup for the measurement of impulse responses. (TLS: tunable light source, PD: photo detector.)](image)

<table>
<thead>
<tr>
<th>Table 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured optical characteristics of the fabricated fiber.</td>
</tr>
<tr>
<td>Unit</td>
</tr>
<tr>
<td>Attenuation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>α_{eff}</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MFD</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>22-m cutoff wavelength</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PMD on the spool</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PDL on the spool</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Chromatic dispersion</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Polarization mode dispersion.
** Polarization dependent loss.
*** Calculated value.

